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Abstract

We consider ageing properties of a general repair process. Under certain assumptions
we prove that the expectation of an age at the beginning of the next cycle in this process
is smaller than the initial age of the previous cycle. Using this reasoning, we show that
the sequence of random ages at the start (end) of consecutive cycles is stochastically
increasing and is converging to a limiting distribution. We discuss possible applications
and interpretations of our results.
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1. Introduction

A convenient mathematical description of repair processes uses a concept of stochastic (or
failure) intensity (see Aven and Jensen (1999)). Consider, for example, a renewal process
(i.e. perfect, instantaneous repair) with an underlying absolutely continuous distribution, F(t),
t ∈ [0, ∞), a failure rate λ(t), and a sequence of waiting times {Sn}, n ≥ 1, where S0 = 0.
Denote the sequence of independent and identically distributed (i.i.d.) inter-arrival times by
{Tn}, n ≥ 1, where S1 = T1. The stochastic intensity in this case is compactly written via the
corresponding indicator function as

λt =
∞∑

n=0

λ(t − Sn) 1{Sn≤t<Sn+1}, t ≥ 0. (1)

Denote by At the age process, which corresponds to the renewal process (1),

At =
∞∑

n=0

(t − Sn) 1{Sn≤t<Sn+1}, t ≥ 0.

Thus, At starts at t = 0 as a linear function with a unit slope. It jumps down to 0 at S1, which
is the time of the first renewal, and so on. The age of a repairable system in this case is just the
time elapsed since the last renewal.

As a minimal repair does not change the age of a system, its age process is trivial, i.e.

At = t, t ≥ 0.
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Assume now that a repair action at t = t1 (i.e. the realization of T1) decreases the age of
a system not to 0, as in the case of a perfect repair, but to v1 = qt1, 0 < q < 1, and the
system starts the second cycle with this initial age in accordance with the cumulative distribution
function 1 − F(v1 + t)/F (v1), where F ≡ 1 − F . This age is often called the virtual age.
For convenience, we will omit the term ‘virtual’ in what follows. The forthcoming cycles are
defined in a similar way to form a process of general repair (see Kijima (1989), Stadje and
Zuckerman (1991), Finkelstein (1992), (2000), Baxter et al. (1996), and Last and Szekli (1998),
to name a few). The sequence of ages after the ith repair {Vi}i≥0 in this model, for a specific
case of a linear, deterministic repair function qt , is defined as

V0 = 0,

V1 = qT1,

V2 = q(V1 + T2),

...

Vi = q(Vi−1 + Ti),

(2)

and distributions of the corresponding inter-arrival times for realizations vi are given by

F i(t) = F(vi−1 + t)

F (vi−1)
, i ≥ 1. (3)

Therefore, the age process for this model is

At =
∞∑

n=0

(t − Sn + Vn) 1{Sn≤t<Sn+1}, t ≥ 0. (4)

Other settings and generalizations can be also considered (see, for example, Last and Szekli
(1998) for relevant examples). All these models have a crucial common feature: the corres-
ponding age processes are defined by the generic distribution F(t) and only the ‘position’ of
the starting point of each cycle (as, for example, in (3)) depends on the concrete model.

Define a stochastic point process as stochastically ageing, if its inter-arrival times {Tn},
n ≥ 1, are stochastically decreasing, i.e.

Ti+1 ≤st Ti, i ≥ 1,

Thus, the renewal process is not ageing in this sense, whereas the nonhomogeneous Poisson
process is ageing if its rate is an increasing function.

The following definition deals with ageing properties of the sequence of ages at the start
(end) of cycles for the point processes of the described types.

Definition 1. The age process is called stochastically increasing if the (embedded) sequence
of ages at the start (end) of cycles is stochastically increasing.

If, for example, a generic F(t) is of the increasing failure rate (IFR) type, then the stochasti-
cally increasing age process describes overall deterioration of our repairable system with time,
which is the case for various wearing out systems in practice.

In what follows we will study the properties of the age process (4) with a nonlinear quality
of repair function q(t). Under rather weak assumptions it will be shown that this process is
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stochastically increasing and is becoming stable in distribution (i.e. converges to a limiting
distribution as t → ∞). These issues for the linear q(t) were first addressed in Finkelstein
(1992), where the corresponding renewal-type equations were also derived. The rigorous and
detailed treatment of monotonicity and stability for rather general age processes driven by
generic F(t) was given by Last and Szekli (1998). The approach of Last and Szekli was
based on applying some fundamental probabilistic results: a Loynes-type scheme and Harris-
recurrent Markov chains were used. Our approach for a more specific model (but with weaker
assumptions on F(t) and with a time dependent q(t)) is based on a direct probabilistic reasoning
and on the appealing ‘geometrical’ notion of an equilibrium age v∗.

Apart from obvious engineering applications, these results may have some important bio-
logical interpretation. Most biological theories of ageing agree that the process of ageing can
be considered as some process of ‘wear and tear’ (see, for example, Yashin et al. (2000) ). The
existence of repair mechanisms in organisms decreasing the accumulated damage on various
levels is also a well-established fact. As in the case of DNA mutations in the process of cell
replication, this repair is not perfect. Asymptotic stability of the repair process means that an
organism, as a repairable system, is practically not ageing in the defined sense for sufficiently
large t . Therefore, the deceleration of human mortality rate at advanced ages (see, for example,
Thatcher (1999)) and even the approaching of this rate to the mortality plateau can be explained
in this way. As we will see, this conclusion relies on an important assumption that a repair
action decreases the overall accumulated damage and not only its last increment. It is worth
noting that another possible explanation of mortality deceleration phenomenon at advanced
ages is via the concept of population heterogeneity (see Finkelstein and Esaulova (2006) for
mathematical details).

2. The quality of the repair function

Assume now that a linear function qt in (2) is now an increasing, continuous in [0, ∞), and
concave function q(t), q(0) = 0. Therefore,

q(t1 + t2) ≤ q(t1) + q(t2), t1, t2 ∈ [0, ∞). (5)

Also, let
q(t) < q0t, (6)

where q0 < 1, which shows that repair rejuvenates the failed item to some extent and that q(t)

cannot be arbitrarily close to q(t) = t (minimal repair).
Let a cycle start with an age v. Denote by T (v) the cycle duration with the corresponding

survival function given by the right-hand side of (3) for vi−1 = v. The next cycle will start at
a random age q(v + T (v)). In this section we will be interested in some equilibrium age v∗.
We define this age as a solution to the following equation:

E[q(v + T (v))] = v. (7)

Thus, if some cycle of a general repair process starts at age v∗, then the next cycle will start
with a random age with expectation v∗, which is obviously a martingale property.

Theorem 1. Let {Tn}, n ≥ 1, be a process of general repair with an increasing, continuous
quality of repair function q(t), defined by (5) and (6).

Assume that the generic distribution F(t) has a finite first moment and that the corresponding
failure rate is either bounded from below for the sufficiently large t by c > 0 or is converging
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to 0 as t → ∞ such that
lim

t→∞ tλ(t) = ∞. (8)

Then there exists at least one solution to (7) and, if there is more than one, the set of these
solutions is bounded in [0, ∞).

Proof. (a) As E[T (0)] < ∞, it is evident that E[T (v)] < ∞, v > 0. If λ(t) is bounded
from below by c > 0, then

E[T (v)] ≤ 1

c
;

therefore, applying (5), we obtain

E[q(v + T (v)] ≤ q(v) + E[T (v)]. (9)

It follows from (6) and (9) that
E[q(v + T (v))] < v,

for sufficiently large v. On the other hand, E[q(T (0))] > 0, which proves the first part of the
theorem, as the function E[q(v +T (v))]− v is continuous in v, positive at v = 0, and negative
for sufficiently large v.

(b) Now, let λ(t) → 0 as t → ∞. Consider the following quotient:

E[T (v)]
v

=
∫ ∞
v

exp(− ∫ x

0 λ(u) du) dx

v exp(− ∫ v

0 λ(u) du)
.

Applying l’Hôpital’s rule and using the assumption (8), we obtain

lim
v→∞

E[T (v)]
v

= lim
t→∞

1

λ(v)v − 1
= 0. (10)

Therefore, applying (9) and taking into account (6) and (10), we obtain

E[q(v + T (v))]
v

≤ q(v)

v
+ E[T (v)]

v
< 1.

The last inequality holds for sufficiently large v. Using the same argument as in the first part
of the proof completes our reasoning.

Corollary 1. If F(t) is IFR then the conditions of Theorem 1 hold and there is, at least, one
solution to (7).

Remark 1. The sufficient condition (8) is a rather weak one stating, in fact, that tλ(t) must
just have a limit as t → ∞, which should not be finite. For instance, the ‘bizarre’ failure rate
λ(t) = | sin t | ln t/t , which tends to 0 as t → ∞, does not comply with (8). On the other hand,
it is clear that, for example, for the Weibull distribution with decreasing failure rate (8) holds.

Theorem 2. Let F(t) be IFR. Assume that a current cycle of a general repair process starts at
age v∗ + �v, where v∗ is an equilibrium solution to (7) and �v > 0.

Then the expectation of an age at the start of the next cycle ‘will be closer’ to v∗, i.e.

v∗ < E[q(v∗ + �v + T (v∗ + �v))] < v∗ + �v. (11)
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Proof. As stated in Corollary 1, at least one solution to (7) exists in this case. Let us first
prove the second inequality in (11). Taking into account that q(t) is an increasing function and
that the random variables T (v) are stochastically decreasing in v (for increasing λ(t)), we have

E[q(v∗ + �v + T (v∗ + �v))] < E[q(v∗ + �v + T (v∗))].

When obtaining this inequality the following simple fact was used. If two distributions are
ordered as F 1(t) > F 2(t), t ∈ (0, ∞), and g(t) is an increasing function, then by integrating
by parts it is easy to see that

∫ ∞

0
g(t) dF2(t) <

∫ ∞

0
g(t) dF1(t). (12)

Finally,

E[q(v∗ + �v + T (v∗))] ≤ E[q(v∗ + T (v∗))] + q(�v) = v∗ + q(�v) < v∗ + �v.

The first inequality in (11) is proved using similar arguments. We have

E[q(v∗ + �v + T (v∗ + �v))] > E[q(v∗ + T (v∗))] = v∗,

after observing that the random variable v∗ + �v + T (v∗ + �v) is stochastically larger than
v∗ + T (v∗).

Corollary 2. If F(x) is IFR, then (7) has a unique solution.

Proof. Assume that there are two solutions to (7), i.e.

E[q(v∗ + T (v∗))] = v∗,
E[q(ṽ + T (ṽ)] = ṽ. (13)

Let ṽ = v∗ + �v, �v > 0. Then, in accordance with (11), we obtain

E[q(ṽ + T (ṽ))] = E[q(v∗ + �v + T (v∗ + �v))] < v∗ + �v = ṽ,

which contradicts (13).

Remark 2. When (7) has a unique solution, it can be shown, similarly to the proof of (11), that

v∗ − �v < E[q(v∗ − �v + T (v∗ − �v))] < v∗.

Remark 3. The results of this section hold when repair action is stochastic. That is, {Qi},
i ≥ 1, is a sequence of i.i.d. random variables (independent from other stochastic components
of the model) with support in [0, 1] and E[Qi] < 1.

The described properties show that there is a shift in the direction of the equilibrium point
v∗ of the starting age of the next cycle as compared with the starting age of the current cycle.
Note that for the minimal repair process the corresponding shift is always in the direction of
infinity.
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3. Monotonicity and stability of an age process

Denote the age distribution at the start of the (i + 1)th cycle by θS
i+1(v), i = 1, 2, . . . ,

and denote the corresponding age distribution at the end of the previous ith cycle by θE
i (v),

i = 1, 2, . . . . It is clear that, in accordance with our model (see (2)–(3) and (5)–(6)), we have

θS
i+1(v) = θE

i (q−1(v)), i = 1, 2, . . . , (14)

where the inverse function q−1(v) is also increasing. This can be easily seen, since

θS
i+1(v) = P(V S

i+1 ≤ v) = P(q(V E
i ) ≤ v) = P(V E

i ≤ q−1(v)),

where V S
i+1 and V E

i are random ages at the start of (i +1)th cycle and at the end of the previous
one respectively. The following theorem states that the age processes under consideration are
stochastically increasing.

Theorem 3. Random ages at the end (start) of each cycle in the general repair model (2)–(3)
and (5)–(6) form the following stochastically increasing sequences:

θ
E
i+1(v) > θ

E
i (v), θ

S
i+2(v) > θ

S
i+1(v), v > 0, i = 1, 2, . . . . (15)

Proof. We shall prove the first inequality; the second one follows trivially from (14).
Consider the first two cycles. Let vE

1 be the realization of T1, where T1 is the age at the
end of the first cycle and at the same time the duration of this cycle. Then (for this realization)
the age at the end of the second cycle is q(vE

1 ) + T (q(vE
1 )). It is clear that this random variable

is stochastically larger than T1 and, as this property holds for each realization, (15) holds for
i = 1.

Assume that (15) holds for i = n − 1, n ≥ 3. Due to definition of age at the start and the
end of a cycle, integrating by parts and using (14), we obtain

θE
n (v) =

∫ v

0

(
1 − exp

(
−

∫ v

x

λ(u) du

))
d(θS

n (x))

=
∫ v

0
θS
n (x) dx

(
exp

(
−

∫ v

x

λ(u) du

))

=
∫ v

0
θE
n−1(q

−1(x)) dx

(
exp

(
−

∫ v

x

λ(u) du

))
, (16)

θE
n+1(v) =

∫ v

0

(
1 − exp

(
−

∫ v

x

λ(u) du

))
d(θS

n+1(x))

=
∫ v

0
θS
n+1(x) dx

(
exp

(
−

∫ v

x

λ(u) du

))

=
∫ v

0
θE
n (q−1(x)) dx

(
exp

(
−

∫ v

x

λ(u) du

))
, (17)

where we use the fact that exp(− ∫ x+(v−x)

x
λ(u) du) = exp(− ∫ v

x
λ(u) du) is the probability of

survival from initial age x to age v > x. This can also be interpreted via the remaining lifetime
concept.

Taking into account the induction assumption and comparing (16) and (17), using similar
reasoning to that used while obtaining (12), we have

θE
n (v) < θE

n−1(v) �⇒ θE
n (q−1(v)) < θE

n−1(q
−1(v)) �⇒ θE

n+1(v) < θE
n (v),

which completes the proof.
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The next theorem states that the increasing sequences of survival functions θ
E
i (v), θ

S
i (v)

are converging to a limiting survival function as i → ∞, and that the decreasing sequences of
distribution functions 1 − θ

E
i (v), 1 − θ

S
i (v) are converging to a limiting distribution function

as i → ∞. Thus, the repair process is stable in the defined sense.

Theorem 4. Let the governing distribution F(t) in a general repair model (2)–(3) and (5)–(6)
be IFR.

Then there exists the following limiting distributions for ages at the start and at the end of
cycles:

lim
i→∞ θE

i (v) = θE
L (v) and lim

i→∞ θS
i (v) = θS

L(v). (18)

Proof. The proof is based on Theorems 2 and 3. As the sequences (15) are increasing at
each v > 0, there can be only two possibilities. Either there are limiting distributions (18) with
uniform convergence in [0, ∞) or the ages grow infinitely, as for the case of minimal repair
(q = 1). The latter means that, for each fixed v > 0,

lim
i→∞ θE

i (v) = 0 and lim
i→∞ θS

i (v) = 0. (19)

Assume that (19) holds and consider the sequence of ages at the start of a cycle. Then, for an
arbitrarily small ζ > 0, we can find n such that

P(V S
i ≤ v∗) ≤ ζ, i ≥ n,

where v∗ is an equilibrium point which is unique and finite according to Corollary 2. It follows
from (11) that, for each realization vS

i > v∗, the expectation of the starting age at the next
cycle is smaller than vS

i . On the other hand, the ‘contribution’ of ages in [0, v∗) can be made
arbitrarily small if (19) holds. Therefore, it can be easily seen that for sufficiently large i

E[V S
i+1] < E[V S

i ].
This inequality contradicts Theorem 3, according to which expectations of ages form an
increasing sequence. Therefore assumption (19) is wrong, and the limiting property (18) holds.
As previously, the result for the second limit in (18) follows trivially from (14).

Corollary 3. The sequence of inter-arrival lifetimes {Tn}, n ≥ 1, is stochastically decreasing
to a random variable with a limiting distribution, i.e.

lim
i→∞ Fi(t) = FL(t) =

∫ ∞

0

(
1 − exp

(
−

∫ v+t

v

λ(u) du

))
d(θS

L(v)). (20)

Proof. Equation (20) follows immediately after taking into account that convergence in (18)
is uniform. On the other hand, comparing

Fi(t) =
∫ ∞

0

(
1 − exp

(
−

∫ v+t

v

λ(u) du

))
d(θS

i (v))

and

Fi+1(t) =
∫ ∞

0

(
1 − exp

(
−

∫ v+t

v

λ(u) du

))
d(θS

i+1(v)),

it is easy to see, using the same argument as in the proof of Theorem 2, that Fi+1(t) > Fi(t),
t > 0, i = 1, 2, . . . , (i.e. a stochastically decreasing sequence of inter-arrival times), as
θi+1(v) < θi(v), and the integrand function is increasing in v for the IFR case.
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4. Concluding remarks

Under reasonable assumptions, we show that the general repair process with a quality of
repair function q(t), defined by (5) and (6), is stochastically increasing. Therefore, this property
describes a certain overall deterioration of a repairable object. On the other hand, Theorem 4
states that this deterioration slows down and eventually vanishes at infinity, which means that
the defined type of repair is decreasing age (i.e. wear) in a way that is ‘sufficient’ for this result.

Model (2) is usually referred to in the literature as the Kijima-2 general repair model.
It is worth noting that it was independently suggested and analyzed in Finkelstein (1988).
Unfortunately this paper was not translated into English.
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