AUTOMORPHISMS OF FULL II₁ FACTORS, II

вү JOHN PHILLIPS

The purpose of this note is to continue the author's study of the automorphisms of certain factors of type II₁. Namely, those factors arising from the left regular representation of a free nonabelian group. Our main result shows that the outer conjugacy classes of automorphisms of such a factor are not countably separated. This had previously been shown only when the number of free generators was assumed to be infinite.

Preliminaries. If A is a von Neumann algebra, we denote the group of *-automorphisms of A by Aut A and its normal subgroup of inner automorphisms by Int A. We let ϵ denote the canonical homomorphism, ϵ :Aut $A \rightarrow$ Aut A/Int A and we denote the quotient group Aut A/Int A by Out A.

We let A_* denote the predual of A and endow Aut A with the topology of pointwise norm convergence in A_* . With this topology, Aut A is a topological group which is polish if A_* is separable [3]. A is called full if Int A is closed in this topology [1]. If A is a II₁ factor with canonical trace, tr, then the topology on Aut A is actually the topology of pointwise convergence in A, where A is given the norm $\|\times\|_2^2 = tr(x^*x)$, [3].

Let F_n be the free nonabelian group on *n* generators $(n = 2, 3, ..., +\infty)$. Then, F_n is a countable discrete group with infinite conjugacy classes. For each g in F_n , let $\lambda(g)$ be the unitary operator on $\ell^2(F_n)$ defined by:

$$(\lambda(g)f)(h) = f(g^{-1}h), f \text{ in } \ell^2(F_2), h \text{ in } F_n$$

Let $U(F_n) = \{\lambda(g) \mid g \text{ in } F_n\}^{"}$ be the left von Neumann algebra of F_n on $\ell^2(F_n)$. It is well-known that $U(F_n)$ is a factor of type II₁. Moreover, $U(F_n)$ is a full factor. To see this, one uses lemma 6.2.1 and 6.3.1 of [7] to show that $U(F_n)$ does not have property Γ ; then by [1, corollary 3.8] we see that $U(F_n)$ is full.

Now, let \mathbb{T} be the unit circle and let $\Lambda = (\gamma_1, \ldots, \gamma_n)$ be any sequence of elements of \mathbb{T} . Let $\{x_k\}_{k=1}^n$ be the free generators of F_n . Then, there is a unique automorphism α_{Λ} of $U(F_n)$ such that

$$\alpha_{\Lambda}(\lambda(x_k)) = \gamma_k \lambda(x_k), \qquad k = 1, \ldots, n.$$

Moreover, α_{Λ} is easily seen to be outer, if $\Lambda \neq (1, 1, ..., 1)$.

If X is a set and \mathfrak{B} is a σ -algebra of subsets of X, we call (X, \mathfrak{B}) a Borel space and the sets in \mathfrak{B} are called Borel sets. If there is a countable family of

Received by the editors June 15, 1977 and in revised form, November 9, 1977.

sets in \mathfrak{B} which generate \mathfrak{B} as a σ -algebra and which separate the points of X, we say that (X, \mathfrak{B}) is countably separated or smooth. For more on this subject, see [6]. If A is a II₁ factor, then Out A is a Borel space with the quotient Borel structure obtained from Aut A. If \sim denotes the equivalence relation of conjugacy in the group Out A, it is the quotient space Out A/\sim that is of interest to us.

1. The Main Theorem

1. THEOREM. For any n > 1, the Borel space $Out(U(F_n))/\sim$ is not smooth.

Proof. Let $\{x_1, \ldots, x_n\}$ be the free generators of F_n and let γ be a fixed element of the unit circle, \mathbb{T} , such that $\gamma^k = 1 \Leftrightarrow k = 0$. For each t in \mathbb{T} define α_t , an automorphism of $U(F_n)$, by:

$$\alpha_t(\lambda(x_1)) = t\lambda(x_1)$$

$$\alpha_t(\lambda(x_2)) = \gamma\lambda(x_2)$$

$$\alpha_t(\lambda(x_k)) = \lambda(x_k) \text{ for } k > 2.$$

Clearly the map $t \mapsto \alpha_t : \mathbb{T} \to \operatorname{Aut} (U(F_n))$ is continuous and therefore the composition $t \mapsto \epsilon(\alpha_t) : \mathbb{T} \to \operatorname{Out} (U(F_n))$ is also continuous. Moreover, the map $t \mapsto \epsilon(\alpha_t)$ is one-to-one and hence a homeomorphism onto the compact set $\{\epsilon(\alpha_t) \mid t \text{ in } \mathbb{T}\}.$

Let K be the countable subgroup of \mathbb{T} consisting of all roots of all powers of γ . That is, $K = \{t \text{ in } \mathbb{T} \mid t^k = \gamma^m \text{ for some integers } k, m \text{ with } k \neq 0\}$. We define an equivalence relation on \mathbb{T} by $t_1 \simeq t_2 \Leftrightarrow$ either $t_1 t_2 \in \{\gamma^k \mid k \text{ in } \mathbb{Z}\}$ or $t_1 t_2^{-1} \in \{\lambda^k \mid k \text{ in } \mathbb{Z}\}$ or $t_1 t_2^{-1} \in \{\lambda^k \mid k \text{ in } \mathbb{Z}\}$. Since $T/\{\gamma^k \mid k \text{ in } \mathbb{Z}\}$ is not smooth by [7.2 of 6] one deduces that T/\simeq is not smooth. We demonstrate that the Borel spaces $\pi \setminus K/\simeq$ and $\{\epsilon(\alpha_t) \mid t \text{ not in } K\}/\sim$ are Borel isomorphic. This will prove the theorem.

Let t_1 and t_2 be in $\mathbb{T} \setminus K$ and suppose that $\epsilon(\alpha_{t_1})$ and $\epsilon(\alpha_{t_2})$ are conjugate in Out $(U(F_n))$. Then, the embeddings

$$m \mapsto \epsilon(\alpha_{t_1}^m)$$
$$m \mapsto \epsilon(\alpha_{t_2}^m)$$

define the same topology on \mathbb{Z} since conjugation in a topological group is a homeomorphism. As in lemma 1.2 of [8], one shows that these topologies on \mathbb{Z} are exactly the weak topologies on \mathbb{Z} determined by the group of characters $\langle t_1, \gamma \rangle$ and $\langle t_2, \gamma \rangle$. Hence, by lemma 1.3 of [8], we conclude that $\langle t_1, \gamma \rangle = \langle t_2, \gamma \rangle$. Hence there are integers m, p, k, ℓ such that

$$t_1 = t_2^m \gamma^k$$
$$t_2 = t_1^p \gamma^\ell$$

so that $t_1 = t_1^{pm} \gamma^{m\ell+k}$. Therefore, $t_1^{1-pm} = \gamma^{m\ell+k}$ so that 1-pm = 0 because $t_1 \notin K$. Thus, either m = p = 1 or m = p = -1 so that in either case $t_1 \approx t_2$.

326

1978]

Conversely, suppose that $t_1 \simeq t_2$ and t_1 , t_2 are not in K. Suppose that $t_1 t_2 = \gamma^k$. Define an automorphism σ of $U(F_n)$ via

$$\sigma(\lambda(x_1)) = \lambda(x_1^{-1}x_2^k)$$

$$\sigma(\lambda(x_i)) = \lambda(x_i) \text{ for } j > 1.$$

Clearly, σ define a surjective homomorphism of $\lambda(F_n)$ onto $\lambda(F_n)$; but, since $\tau(\lambda(x_1)) = \lambda(x_2^k x_1^{-1}), \tau(\lambda(x_j)) = \lambda(x_j)$ for j > 1 defines an inverse homomorphism to σ , we have that σ defines an automorphism of $\lambda(F_n)$ which therefore extends to an automorphism of $U(F_n)$. We easily compute that $\sigma^{-1}\alpha_{t_1}\sigma = \alpha_{t_2}$. Thus, a fortiori, $\epsilon(\alpha_{t_1}) \sim \epsilon(\alpha_{t_2})$. Since $t \mapsto \epsilon(\alpha_t)$ is a homeomorphism which carries the equivalence relation, \approx , on $\mathbb{T} \setminus K$ to the equivalence relation, \sim , on $\epsilon(\mathbb{T} \setminus K)$, the Borel spaces $\mathbb{T} \setminus K \simeq$ and $\epsilon(\mathbb{T} \setminus K) \simeq$ are Borel isomorphic.

2. Automorphisms generating discrete subgroups of Out A. On $U(F_{\infty})$ it is easy to define automorphisms θ such that $\{\epsilon(\theta^n) \mid n \in \mathbb{Z}\}$ is a discrete copy of \mathbb{Z} in Out $(U(F_{\infty}))$ (for example let θ be the "shift" on the generators of F_{∞} , see [8].) It appears to be a reasonable conjecture that if $\{\epsilon(\theta^n) \mid n \in \mathbb{Z}\}$ is discrete in Out A then the crossed product $W^*(\theta, A)$ is a full II₁ factor, if A is. In any case, we exhibit such an automorphism on $u(F_n)$ and prove that $W^*(\theta, U(F_n))$ is full.

2. PROPOSITION. There exists an automorphism θ on $U(F_n)$ such that $\{\epsilon(\theta^n) \mid n \in \mathbb{Z}\}$ is a discrete copy of \mathbb{Z} in Out $(U(F_n))$ and $W^*(\theta, U(F_n))$ is a full II₁ factor.

Proof. Define
$$\theta(\lambda(x_1)) = \lambda(x_1x_2)$$

and $\theta(\lambda(x_k)) = \lambda(x_k), \quad k \ge 2.$

Then θ defines an automorphism of $\lambda(F_n)$ and so extends to an automorphism of $U(F_n)$. Since $\theta^m(\lambda(x_1))$ is not conjugate to $\lambda(x_1)$ by the test on p. 76 of [5], we have that θ^m is an outer automorphism of $\lambda(F_n)$ for all $m \neq 0$. Then, by an argument due to H. Behncke, [4], θ^m is an outer automorphism on $U(F_n)$ for each $m \neq 0$.

Now let G be the semidirect product of $\lambda(F_n)$ by \mathbb{Z} where \mathbb{Z} acts as powers of θ . Then U(G) is isomorphic to $W^*(\theta, U(F_n))$ and to see that U(G) is full, it suffices by [1] to see that U(G) does not have property Γ . In the notation of lemma 6.2.1. of [7], let

 $\mathfrak{F} = \{ (\lambda(w), \theta^m) \mid m \text{ in } \mathbb{Z}, \text{ and } w \text{ ends in a nonzero power of } x_1 \}$ $c_1 = (\lambda(x_1 x_2 x_1^{-1}), id)$ $c_2 = (\lambda(x_2), id).$

One easily verifies that \mathcal{F} , c_1 , c_2 satisfy the requirements of lemma 6.2.1 of [7]. Therefore, U(G) does not have property Γ .

J. PHILLIPS

As noted in [8], $W^*(\theta, U(F_n))$ being full, forces $\{\epsilon(\theta^m) \mid m \in \mathbb{Z}\}$ to be discrete in Out $(U(F_n))$.

3. REMARKS. (a) Clearly there are many other automorphisms having the property described in Proposition 2. Classifying them appears to be a difficult task, however. (b) Although it is easy to construct automorphisms on $U(F_n)$ with finite outer period, the author does not know if one can construct automorphisms on $U(F_2)$ with nontrivial obstruction, γ , to the lifting problem:

See [8, §4.6].

References

1. A. Connes, Almost periodic states and factors of type III_1 , J. Functional Analysis, 16 (1974), 415-445.

2. J. Dixmier and E. C. Lance, Deux nouveaux facteurs de type II_1 , Inventiones math., 7 (1969), 226–234.

3. U. Haagerup, The standard form of von Neumann algebras, Math. Scand. 37 (1975), 271-283.

4. R. R. Kallman, A generalization of free action, Duke Math. J. 36 (1969), 781-789.

5. A. G. Kurosh, The Theory of Groups, vol. II, Chelsea, New York, 1956.

6. G. W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-165.

7. F. J. Murray and J. Von Neumann, On rings of operators IV, Annals of Math. 44 (1943), 716-808.

8. J. Phillips, Automorphisms of full II_1 factors, with applications to factors of type III, Duke Math. J. 43 (1976), 375–385.

DEPARTMENT OF MATHEMATICS DALHOUSIE UNIVERSITY HALIFAX, NOVA SCOTIA

328