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Abstract

Starting with a class J! of £2-groups, necessary and sufficient conditions on J( are given to
ensure that the corresponding Hoehnke radical p (determined by the subdirect closure of Jl as
semisimple class) is a radical in the sense of Kurosh and Amitsur; has a hereditary semisimple
class; satisfies the ADS-property; has a hereditary radical class or satisfies pN n / C pi and
lastly, have both a hereditary radical and semisimple class or satisfies pN n / = pi.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 08 A 05, 16 A 21.

Introduction

Radicals are an important tool in structure theory since they yield subdirect
decompositions of the semisimple algebras. Vice versa, it is often interesting
to start with concrete class ^ of algebras and to consider the radical whose
semisimple class is the subdirect closure of Jf. Such a radical is always a rad-
ical in the sense of Hoehnke [6], but in general it will not satisfy further con-
ditions, in particular, it need not be a radical in the classical Kurosh-Amitsur
sense. Thus there is the problem of finding a correspondence between prop-
erties of the radical and of the class J# . Investigations of this kind have been
done by Rashid and Wiegandt [17] and by Anderson, Kaarli and Wiegandt
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172 R. Mlitz and S. Veldsman [2]

In this note we continue these investigations, giving necessary and sufficient
conditions on Jf to ensure that the corresponding radical p

(1) is a radical in the sense of Kurosh and Amitsur (Section 2)
(2) has a hereditary semisimple class or satisfies the ADS-property (Sec-

tion 3)
(3) has a hereditary radical class or satisfies pN n / c pi for al / < N

(Section 4)
(4) has both a hereditary radical and semisimple class or satisfies pNnl =

pi for all / < N (Section 5).

In Section 6 we give several examples to show the independence of vari-
ous conditions under discussion. Although we will work in a universal class
of Q-groups, most of the results will remain true in any category with a
zero-object and in which the appropriate variants of the homomorphism and
isomorphism theorems of algebra are available.

For the basics on Hoehnke radicals, we refer to Hoehnke [6] and for
Kurosh-Amitsur radicals, Divinsky [4] or Wiegandt [23] can be consulted.

1. Preliminaries

Let sf be a universal class of Q-groups (that is, a class closed under taking
homomorphic images and ideals); all considerations will be in j / . As usual,
we denote by 0 the one-element Q-group in sf and by / < Â  the fact that
/ is an ideal of N. Essential ideals (that is, ideals / satisfying J < N and
/ n / = 0 implies 7 = 0) are denoted by / < oN. All subclasses of sf under
discussion will be assumed to be abstract, that is, containing 0 and closed
under isomorphic copies. For a subclass JK of J / , we denote by J? the
subdirect closure of JZ in sf, that is,

Jf := {N € sf\N is a subdirect sum of Q-groups from

We call Jf subdirectly closed if J? = Jt. With a n i V e j / , w e associate two
ideals, depending on Jt', which are defined by

JT(N) := ^ ( / < N | / G Jt) and (N)Jf := f]{I < N | N/I e Jt).

Note that {N)Jt = (NJJ? for all W e sf. As usual, 2C and S? will denote the
upper radical and upper semisimple operators on a class / C j / , that is,

:= {N esf \ N has no non-zero homomorphic image in «#} and

:= {N e sf | N has no non-zero ideals which are in ^}.

Later it will be useful to remember that S8£# = ^ I # for any M c sf.
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[3] Radicals and subdirect decompositions 173

A subclass oisf is hereditary (homomorphically closed) if it is closed under
the taking of ideals (homomorphic images respectively).

A Hoehnke radical (//-radical for short) [6] on sf is a mapping p assigning
to each N e sf an ideal pN of N and satisfying

(pi) f(pN) C p(f(N)) for any homomorphism / denned o n i V e j / ,
(p2) p(N/pN) = 0 for all N e sf.

With each //-radical p we associate two subclasses of sf, namely:

&p := {N € sf | pN = 0} and 31 „ := {N e sf \ pN = JV},

called the semisimple class and the radical class of /> respectively. From
[6] we know that the radical classes are exactly the homomorphically closed
subclasses of sf and the semisimple classes exactly the subdirectly closed
subclasses of sf. Any //-radical p is uniquely determined by S?p via pN =
(N)<?p. It follows that for an arbitrary subclass J[ of sf, the mapping p
denned by pN := (N)J? = (NJJt is always an //-radical with S?P=Z#. In
the sequel it will be called the H-radical corresponding to J[; it is the largest
//-radical for which all Q-groups in JH are semisimple, that is, the upper H-
radical determined J?. For this radical, we have 3ZP = '%&'P = V/Ztf = 2£#.

For any J[ c sf, the class % J? is always homomorphically closed; hence
^ 26# is subdirectly closed. Consequently there are two //-radicals p and
p', not necessarily comparable in any way, with 5^p = Jf and S?P' = S^f/Jf.

In connection with the equality pN — (N)Jt, we recall the concept of
an ^f-representable ideal: Let JH c sf, N € sf. An ideal / < N is ^f-
representable if / is of the form I — f)aLa where each La< N and satisfies

Such ideals will be denoted by / < N. Each N esf always contains a small-
est ^-representable ideal, namely (N)Jf. \f J? Q sf is homomorphically
closed, we may define an //-radical p by

[N if Near,

By construction, this //-radical is the smallest one for which all d-groups
from df are radical, that is the lower H-radical determined by *#. In general
there are several different //-radicals with the same radical class (compare
[6]). To save a lot of unnecessary formulations, we also mention the follow-
ing:

1.1 THEOREM. IfJ? Csf.pthe corresponding H-radical and we have a
Proposition: p satisfies some condition (x) if and only if J! satisfies some

condition (y), then there always is a corresponding
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Corollary: p satisfies condition (x) if and only if any K Csi with X = J!
satisfies condition (y).

Moreover, such a condition (y) is always subdirectly invariant {that is a
subclass of si satisfies condition (y) if and only if its subdirect closure in si
satisfies condition {y)).

PROOF. Let 5? c si with j f = 3#. Let p' be the //-radical denned by
p'N := (N)Jr. Then for all N e si, p'N = (N)JT = (NJJ? = (N\£ =
(N)Jt = pN, that is p' = p. Thus, p satisfies (x) if and only if p' satisfies
(x) if and only if 3£ satisfies (y) by the Proposition. The last assertion can
easily be verified.

As an application of this result, we have

1.2 PROPOSITION. Let J? c si', p the corresponding H-radical. Then
there is no condition (x) such that p satisfies condition (x) if and only if^ is
hereditary.

PROOF. In view of Theorem 1.1 it is sufficient to show that hereditariness is
not subdirectly invariant. Although J ' c j / hereditary implies Jf hereditary
(compare Proposition 3 in [1]), the converse is not true. Let sf be the class
of all associative rings. Let B be a non-zero subdirectly reducible ring and
let J[ be the class of all subdirectly irreducible rings together with 3){B), the
Dorroh extension of B. Then J?= si (by the well-known Birkhoff theorem)
which is clearly hereditary, but J? is not hereditary.

2. Kurosh-Amitsur radicals

A subclass 31 c si is a Kurosh-Amitsur radical class (KA-radical class for
short) if 31 is homomorphically closed and for all iV e si, 31 (N) e & and
3Z{N/3l{N)) = 0.

Any KA-radical class 31 determines an //-radical p by defining pN :=
&(N) for all N esi. In such a case, 3ip = 31 and &p = S&. In [15]
it was shown that if p is an //-radical, then 31 p is a KA-radical class with
32P{N) = pN for all N e si if and only if p satisfies

(p3) ppN = pN for all N e si {idempotence), and
(p4) pi = I<NGSf implies / C pN (completeness).

Consequently, //-radicals which are idempotent and complete are called KA-
radicals. Conditions (p3) and (p4) are independent; this follows from Ex-
amples 6.1 and 6.2.
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[5] Radicals and subdirect decompositions 175

A subclass J! C j / is regular ifO^I<NG^ implies the existence of
an ideal K < I such that 0 ^ I/K e ^ . ^ is an r-class if every O^NeJf
has an image 0 ^ iV/7 € 3VJ?. Clearly any hereditary class is regular and
every regular class is an r-class. Moreover, S?p is regular for any KA-radical
p. Not every r-class is regular (see, for example, Leavitt [10]).

2.1 PROPOSITION. Let J? c.stf, p the H-radical corresponding^. Then
the following are equivalent:

(1) J? is an r-class,
(2) 31 p (= fUt) is a KA-radical class,
(3) (a) 3lp(N) e 31 p for all NesZ,

(b) 31 p is closed under extensions (that is if I < N with I and N/I both
in 31 p, then Ne3?p).

The above equivalences are well-known; so are those in the next result (in
any case, they can easily be verified):

2.2 PROPOSITION. Let J? Qsrf and let p be the corresponding H-radical.
The following are equivalent:

(I) Jt is regular,

(3) p is complete,
(4) 3lp{N) C pN for all NesS.

2.3 REMARK. If J! is not an r-class, then (even if p is idempotent) we
may have 0 ^ 32P(N) e J? for some N as can be verified from Examples 6.3
and 6.4. The idempotence of p always implies the dual of (4) in Proposition
2.2 namely (4*): pN c 3lp(N) for all N e sf. If J? is regular, then (4*)
holds iff pN = 3lp{N) for all iV e s/ iff p is a KA-radical iff p is idempotent
(compare [15]). Example 6.3 shows that (4*) does not imply idempotence,
that is there exists an //-radical satisfying (4*) but neither (p3) nor (p4).

A straightforward checking yields

2.4 PROPOSITION. Let J! c. stf, p the H-radical corresponding to J[.
Then p is idempotent if and only ifJ[ fulfills

(T) / < N € sf with (I)JT ± I implies I ^ (N)Jt (in fact, (N)Jf c / ) .

Note that condition (T) can be reformulated by

I <N estf and K<I with 0 ^ I/K € J! implies the existence

of an ideal J < N such that 0 ^ N/J € J? and / <jt J.
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Thus, (T) is a weaker form of condition (S) for JV = JK used by Leavitt and
Van Leeuwen [14]—we claim the property for ^#-representable ideals; they
for arbitrary ideals.

2.5 COROLLARY. Let J[ c srf', p the corresponding H-radical. The fol-
lowing are equivalent:

(1) p is a KA-radical,
(2) Z# = 5<m for a KA-radical class &,
(3) J? is regular and fulfils condition (T),
(4) 3lp{N) = pN for allNetf.

It is well-known that if Jt? is a regular subclass of sf, then 2£# is a KA-
radical class and S" f/Jf is the smallest KA-semisimple class which contains
J?; hence / C / c y g£#. In this case, if p is the //-radical corresponding
to Jt', then l~%p = %Ctf is a KA-radical class, but in general the inclusion
•&p(N) Q pN is strict. However, imposing condition (T) on J[ ensures that
^# = Sfi/J?. This was the approach of Rashid and Wiegandt [17] who first
made use of condition (T).

3. Heredity properties connected with semisimple classes

The hereditariness of the corresponding radical or semisimple class may
provide important information about the radical. We start our investigations
with heredity properties linked with the semisimple class.

3.1 PROPOSITION. Let / C j / , p the corresponding H-radical. Then the
following are equivalent:

(1) p is s-hereditary (that is pi c pN n / for all I < N G s/)\
(2) &„ (= J?) is hereditary;
(3) / <N e -# implies I e ^ .

PROOF. That (1) implies (2) implies (3) is straightforward. To show that
(3) implies (1), consider J < N € s/ with N/J e Jt. For any I < N, we
have / / ( / n / ) = (/ + / ) / / < N/J e J? and in view of (3), it follows that
/ / ( / n / ) e Jt'. Hence pi C J nl and by the definition of p the validity of
(1) follows.

Any one of the conditions (1) to (3) above, trivially implies (/?4); the con-
verse is not true since there are KA-radicals with non-hereditary semi-simple
classes (see for example Leavitt and Armendariz [13] or our Example 6.5).
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[7] Radicals and subdirect decompositions 177

Example 6.6 shows that none of the conditions (1) to (3) implies idempo-
tence.

In the classical KA-radical theory of associative rings, the hereditariness of
the semisimple class is ensured by the Anderson-Divinsky-Sulinski-property
(ADS-property): An //-radical p has the ADS-property if / < N e sf implies
pi < N. As we shall see later, for //-radicals p the ADS-property is not in
relation with the hereditariness of 5^p. For a characterization of the radi-
cals with the ADS-property, the next two conditions on a class Jt C j / are
important.

(G) K < I < N e sf with I/K e Jt implies the existence of an
ideal B < N such that B c K and I/B <= Jt'.

(G) K <I <N e tf with I/K e Jt implies the existence of an
ideal B < N such that B C K and I/B e It.

The first one (G) is equivalent to a condition introduced by Rjabuhin [18] to
characterize ideal-hereditary radicals—see condition (A) in Buys [3], Defini-
tion 2.1.

A further condition on a class Jt which is of relevance here is

(F) K<I<NGX? and I/K eJt implies K<N.

Clearly (F) implies (G) implies (G). In general, these implications cannot be
reversed: first we need

3.2 PROPOSITION. Let Jt Csf ,p the corresponding H-radical. Then the
following are equivalent:

(1) p has the ADS-property,
(2) J? satisfies condition (G);
(3) J( satisfies condition (G).

PROOF. If p has the ADS-property, then pi < N for all / < N e J / . Hence,
if K<I<Netf with I/K e Jt, then (G) is fulfilled with B := pi; hence (1)
implies (2). Suppose Jt satisfies condition (G). We now show that Jt fulfils
(G). Let K<I<Nttf with I/K e Jt. Hence I/K is of the form

I/K = ̂  \J/Ka \Ka<I such that I/Ka e Jt and
subd V a )

Since J[ satisfies (G), for each a there is an ideal Ba<N such that Ba c Ka

and I/Ba e Jt. Let B = f|a Ba. Then B < N, B c f|a Ka = K and

subd
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Lastly we show that (3) implies (1). Let / < N e sf. Since I/pi €.SP
P=Z#,

condition (G) on Jt implies the existence of an ideal B < N with B C pi and
I/B € ̂ f. The latter property yields pi C B; hence pi = B <N.

It is now easy to see that (F) is in general stronger than (G). If s# is the
class of all associative rings, then every KA-radical p has the ADS-property,
hence 3*p fulfils condition (G). In [1, Theorem 2], it was shown that every
regular class which satisfies condition (F) must consist of semiprime rings.
This means that the semisimple class of any subidempotent radical (that is
if pA = A then A2 - A) satisfies (G) but not (F). By Theorem 1.1 and
Proposition 3.2 it follows that (G) is subdirectly invariant; thus to show that
(G) is in general stronger than (G) it is sufficient to show that (G) is not
subdirectly invariant (although it is retained under subdirect closures). But
this follows from Example 6.7.

Using Proposition 3.2 and Corollary 2.5, we have

3.3 COROLLARY. For M c stf, the H-radical corresponding to Jf is a
KA-radical with the ADS-property if and only if J^ is regular and satisfies
conditions (T) and (G).

We call a class / C j / closed under essential Jt'-representable extensions
(for short CE^fE-class) ifI<Nes/ and I<oN, then / e J( implies N Z.JT.

3.4 PROPOSITION. If J? c sf is a CEJ^E-class, regular and fulfils (G),
then the corresponding H-radical is a KA-radical and has the ADS-property.

PROOF. Let p be the .//-radical corresponding to •# . We only have to show
that p is idempotent. Let N esf. If ppN ^ pN, then there exists an ideal
K < pN such that 0 ̂  pN/K e Jf. By condition (G), there is an ideal B < N
with B C K and pN/B e J?'. Since pN is an .^f-representable ideal of N,
pN/B is an ̂ -representable ideal of N/B. Indeed, if pN — f|a La where
La<N with N/La G J?', then B C La for each a. Hence,

pN/B = [\La/B | LJB < N/B and (N/B)/(La/B) = N/La € Jt).
a

It is well-known that if C/B < N/B is maximal with respect to (pN/B) n
(C/B) = 0, then pN/B £ (pN + C)/C < oN/C. Since J? is a CE^TE-class,
N/C e J? follows. This means pN C C which contradicts pN/B ^ 0. Thus
ppN - pN.

Since (G) is in general stronger than (G), the converse of the above result
is not true (compare Example 6.7). Notice that (G) and heredity of Jt do
not imply that ^ is a CE^#E-class (compare Example 6.6).
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3.5 COROLLARY. J[ C J / is the semisimple class of a KA-radical with the
ADS-property if and only ifJf is regular, closed under subdirect sums, satisfies
condition (G) and is a CEJPE-class.

PROOF. We only have to verify that if Jf — S?p for a KA-radical p with
the ADS-property, then J? satisfies condition (G) and is an CE^fE-class.
The validity of (G) follows from Proposition 3.2. Consider thus / < oN e s/

with / = f|a La e J[ where La<N with N/La e Jt. By the definition of p,
pN C / . Since p is a KA-radical, pN C pi — 0; hence Nei^, = ^ .

3.6 COROLLARY. Let / C j ^ . Then the H-radical corresponding to J?
is a KA-radical with the ADS-property if and only ifJt is regular, fulfils (G)
and J[ is a CEJ(E-class.

As mentioned earlier, it is well-known that for KA-radicals p (that is under
the presence of (p3) and (p4)), the ADS-property implies the hereditariness
of S?p. Since there are non-hereditary semisimple classes of KA-radicals, (p3)
and (p4) imply neither s-heredity nor the ADS-property (compare [13]). Let
us mention that there are quite a few natural universal classes where (p3) and
(p4) do imply the ADS—for example, the associative rings, alternative rings,
abelian groups and the class of all groups. However, Examples 6.1 and 6.2
show that (/?3) and the ADS-property do not imply (p4) (and consequently
S^p is not hereditary) and that the ADS-property and (p4) do not imply (p3)
nor the hereditariness of S?p. In view of these examples, one might ask for
conditions which, under the presence of the ADS-property, ensure that the
semisimple class is hereditary. The next result provides some information.

3.7 PROPOSITION. Let p be an H-radical with the ADS-property. Then p
is s-hereditary if and only ifp is complete and hereditarily idempotent on 5^p

(that is I<N &yp implies ppl = pi).

PROOF. Any ^-hereditary //-radical satisfies, without the assumption of
ADS, the two conditions. Conversely, if / < N e S?p, then ppl = pi and by
the ADS-property and the completeness of p, we have pi c pN = 0, that is

4. Heredity properties linked with radical classes

For heredity properties linked with 31 p, the situation is more complicated
than for those linked with S?p. It is well-known that for KA-radicals p the
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properties of being r-hereditary (that is pN n / C pi for all / < N e
and of having a hereditary radical class 31 p are equivalent. Note that for
an r-hereditary //-radical p, p is always idempotent and 31 p is hereditary.
However, the converse is not true in view of the next two propositions.

4.1 PROPOSITION. For an H-radical p, conditions (1) and (2) below are
equivalent:

(1) p is r-hereditary;
(2) (a) p is idempotent,

(b) & is hereditary,
(c) p{pNnI)C

PROOF. That (1) implies (2) is straightforward. Suppose (2) holds and
take I<N e j / . Then pNn/<ipN e 3 1 p implies pNn / = p(pNn/) c pi
by (a), (b) and (c). Hence p is r-hereditary.

Note that if p is complete, then (a) and (b) imply (c); the radical then being
a KA-radical. If p is a KA radical for which either 31 p or <5̂  is hereditary,
then p satisfies (c), but (c) does not imply the hereditariness of either 31 p

or S?p (compare Example 6.5). Further, Example 6.11 shows that not every
KA-radical has to satisfy condition (c). Remark also that, in view of Example
6.1, r-hereditary and ADS do not imply completeness.

4.2 PROPOSITION. For H-radicals on sf, conditions (a), (b) and (c) are
independent.

PROOF. We show that these conditions are in fact independent in a very
strong sense by giving a model for each of the following systems (where (x)
is the negation of (x), x e {a, b, c}):

(1) (a), (b), (E)—Example 6.4,
(2) (a), {b), (c)-Example 6.5,
(3) (a), (6), (c),
(4) (a), (b), (c)-Example 6.8,
(5) (a), (b), (c)—Example 6.10,
(6) (a), (b), (£)—Example 6.9,
(7) (a), {b), (c)—Example 6.11.
Concerning (3), note the following. Let J! be a subclass of J / for which

both ^f and 2£# are hereditary and J! is a proper subclass oiS^^Jl (since
^f is regular, J ' c Z c ^ ^ S # ) . If /> is the //-radical corresponding ^#,
then <5^ = 3 ^ and 31 p = %J? are both hereditary. Hence p fulfils (b) and (c)
but p is not idempotent. Indeed, if p were idempotent, then pN € 31 p. Hence
pN C .$?„(#) = {N)Smp = {N)&"%J? = {~N)5P^T£ C (iV)M = />W, that
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is pN = 3%P(N). Consequently J? = J?"%&dr which contradicts our choice
of Jt'. The existence of such classes df follows from Example 6.6 which
completes the proof.

4.3 REMARK. Let Jf c.s^ ,p the corresponding //-radical. Since 31 p —
%J? = %J[ and N/pN G J? for all N G sf, straightforward arguments
show that the hereditariness of 31 p is equivalent to any one of the following
conditions.

(1) K<I<N esf with 0 ^ I/K G Jf implies the existence of an ideal
J<N such that 0 ? N/J e Jt'.

(2) K < I < N G stf with 0 / I/K G J? implies the existence of an ideal
J<N such that 0 ^ N/J Gdf.

(3) K < I < N G sf with 0 ^ I/K G 3# implies the existence of an ideal
J<N such that 0 ^ N/J eJf.

(4) K <I < N G sf with 0 ^ I/K G d! implies the existence of an ideal
J < N such that 0 ^ N/J G d7.

(5) I<N es/ with / ^ (/)•# implies the existence of an ideal J<N such
that 0 ^ N/J G . # .

(6) I<N €sf with / ^ (I)J! implies the existence of an ideal J<N such
that 0 ^ N/J G ^£.

From the above it is clear that conditions (1) to (6) are equivalent. In view
of Proposition 4.1, it seems natural to look for some condition to add to (1)
to (6) in order to ensure that p is r-hereditary. Considering the meaning of
r-hereditariness, Theorem 2 and Corollary 3 in Leavitt and Van Leeuwen [14]
and the characterization obtained by Mlitz and Oswald ([16, Theorem 3.5]—
the proof carries over for Q-groups), we get " / n / c K" or " / £ / " as possible
candidates for such supplementary conditions. Thus for i = 1,2,3,4,5,6 let
us denote by (i') the condition obtained from (i) in Remark 4.3 by adding
".. . a n d / n / c AT"for/ = 1,2,3 and 4 and adding ". . . and / n / c (I)Jt"
for / = 5,6. Furthermore, by (/") we denote the condition obtained from (i)
in Remark 4.3 by adding ".. . and / £ / " for / = 1,2,..., 6.

4.4 PROPOSITION. Let J£ Csf,p the H-radical corresponding to Jt'. The
following are equivalent.

(1) p is idempotent and 31p is hereditary,
(2) - # satisfies condition (i") for any i G {1,2,3,4,5,6}.

PROOF. Since the ideal / given by the implications in (i") is independent
of K, it is clear that the equivalences (1") if and only if (3") if and only if
(5") andJ2") if and only if (4") if and only if (6") hold. Furthermore, since
Jt c Jt', also (1") implies (2"). Suppose Jt satisfies condition (2"). For
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I<N erf with (I)JH' ^ I, there is an ideal J < N such that 0 ^ N/J e 3#
with/ £ J. Hence N/J is of the form

N/J = J2 \N/Ja \Ja<N with N/Ja e .# and / = f] Ja ) .
subd V a /

Clearly there is an ao such that / ^ /ao which shows the validity of (1"). We
have thus showed that the conditions (1") to (6") are all equivalent. If p is
idempotent and 91 p is hereditary, then J[ satisfies condition (1"). Indeed,
if / < N e $f and (I)J? ^ I, then / $ 91 p and thus also N € £?p. Hence
there is an ideal J < N such that 0 ^ N/J e Jf. If / C J for all such ideals
/ , then I c pN. But the idempotence of p and the hereditariness of 9ZP

yields / e 91 p which contradicts / £ 91 p. Consequently condition (1") is
fulfilled. Conversely, assume condition (1") holds. Then, so does condition
(1) and 91 p is hereditary. If p is not idempotent, then ppN ^ pN for some
N € sf. Applying condition (1") for / :— pN, there is an ideal J < N such
that 0 ^ N/J e J[ and pN <£ J. But N/J e Jf implies pN C J; clearly a
contradiction. Thus p is idempotent and the proof is complete.

4.5 COROLLARY. Let ^ Qsrf,p the corresponding H-radical. Then p is
an r-hereditary KA-radical if and only ifJ[ is regular and satisfies condition
(I")-

It is clear that condition (1") implies condition (T)—the converse is not
true since there are KA-radicals with non-hereditary radical classes. Also,
(1") implies (1), but not conversely; see Example 6.6.

4.6 PROPOSITION. Let JH Qsf ,p the corresponding H-radical. Then the
following implications hold:

(3') if and only if (5') implies (1') implies (2') if and only if(6') if and only
'7(4') if and only if p is r-hereditary implies (1").

PROOF. Since / / ( / )^f e 3# and (I)Jf is the smallest ideal of / with this
property, the implications (3') if and only if (5') implies (1') and (6') if and
only if (4') are obvious. Moreover, (1') implies (2') trivially since Jf C J!'.
We now show that (2') implies (6'). To every K<I<N e s/ with 0 ^ I/K e J!',
there is some J<N (depending on K and thus denoted in the sequel by JK)
with 0 ^ N/JK e Z# and / n JK Q K by (2'). Hence, taking the intersection
over all K < I sending / into «# - {0}, we obtain

and In (f]JK) =
\K J
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that is (6') holds. Suppose now (4') holds and let I < N. If pi = I, then
trivially / n pN C pi. Suppose that I/pi ^ 0. By (4'), there is an ideal
J < N such that 0 ^ N/J € Jf with I f)J C pi. Since pN C / , we have
/ n pN C pi, that is p is r-hereditary. Finally, suppose p is r-hereditary.
Then (2') holds, for if K<I<N e sf with O^I/Kt Jf, then / := pN fulfils
the requirements of (2'). The last implication follows from Propositions 4.1
and 4.4.

Condition (3') is quite strong in view of

4.7 PROPOSITION, / c i fulfils condition (3') if and only ifJ? = Z#
and J!fulfils condition (2')-

PROOF. Suppose (3') holds and let 0 ̂  N e Jf. Apply condition (3') with
I = N. Then there is an ideal J <N such that N/J e J? and I C\J C pi.
This means J = N n J C pN = 0; hence N € Jf. Thus J! = Z# and (2')
follows from Proposition 4.6. The converse is obvious because it can easily
be verified that if J? is subdirectly closed, the conditions (1') to (6') on J?
are all equivalent.

Note that by Theorem 1.1 conditions (2'), (4') and (6') are subdirectly
invariant. In general, (1') is weaker than (3'); see Example 6.12. For the
relationship between (1') and (2'), see the end of Section 4. Example 6.4
shows that (1") does not imply (2'). Of course, if J! is regular, then (2') and
(2") coincide on J!'.

Since 5^p is subdirectly closed for any //-radical p, we have

4.8 COROLLARY. An H-radical p is r-hereditary if and only if'S?p fulfils
any one {and hence all) of the conditions (V) to (6').

4.9 COROLLARY. / C J / U the semisimple class of an r-hereditary KA-
radical if and only ifJf is regular and satisfies conditions (3').

4.10 COROLLARY. Let / C j / . Then J[ is the semisimple class of an
r-hereditary KA-radical if and only if^# is regular and fulfils condition (2').

In Corollary 4.9, condition (3') cannot be replaced by the weaker condition
(1') since there are regular subclasses of stf which fulfil (1') without being
subdirectly closed—see Example 6.12.

A further condition which has frequently been used in connection with the
hereditariness of ^£# is the closedness of *# under essential extensions (see
for example [1], [5], [19]). For J[ Qsf', define the essential cover JHk of J[
in $? by Jtk := {N e sf \ there is an ideal / < oN with / e ^}. We say that
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*># is closed under essential extensions if ^ = ^ • We will also use condition
(E') on a class / C j / :

(E') If / < N e sf and / £ (I)J?, then there exist ideals U, V of
N such that U C V and 0 ̂  F/£/ e ^f.

This condition is weaker than condition (E) used by Leavitt in [10] and
[11]. Condition (E') is trivially fulfilled if the <-relation is transitive on sf.
Moreover, (G) implies (E'), the converse being false in view of Example 6.7.

Since the condition (F) used by Leavitt and Van Leeuwen [14] implies (E'),
the following result strengthens Theorem 4(1)—(3) of [14] and generalizes the
corresponding result from KA-radicals of associative rings to //-radicals of
fl-groups.

4.11 PROPOSITION. Let J? c stf, p the corresponding H-radical. Then
the following are equivalent:

{\)3lp(= WJl) is hereditary;
(2) yj( = WJ?k and J? fulfils condition (E');
(3) 1Utr\Jtk = 0 and J? fulfils condition (E').

PROOF. (1) implies (2): Since J? c Jtk, %jrk c ^ T . Let N e ^Jt. If
Af ^ flC^k, then there is an ideal I<N with 0 ^ N/I e ^ . By definition
of ^ , there is an essential ideal / / / < oJV// with / / / e Jl'. Since 31 p

is homomorphically closed and hereditary,this means / / / e 3lp = %J[; a
contradiction. Thus ^ # = ^C#fc. The hereditariness of 31 p implies that
(1) of Remark 4.3 is satisfied; hence (E') holds with U = J and V = N.
Trivially (2) implies (3). Suppose (3) holds. If &p is not hereditary, then
there is an ideal / < N e 31 p with I £3lp. By (E') there are ideals U, V of
N with U C V and 0 ̂  V/U e J?. Let C/£/ < N/U be maximal with respect
to V/U n C/U = 0. Then we have 0 ^ V/U s (V + C)/C < oN/C. Hence
N/C e^k- But N e 3t'p implies N/C e^p; clearly not possible. Thus 38p

is hereditary.
By Theorem 1.1, conditions (2) and (3) of 4.11 are subdirectly invariant;

thus, remembering that SS£# = %Jf, we get

4.12 COROLLARY. 31 P hereditary is equivalent both to
(2) ^ # = &C#)k andJTsatisfies (E') and to
(3) ^ # n (Jt)k = 0andJf satisfies (E').

Notice that, when considered separately, none of the conditions %£# =
\, ^J(r\JKk = 0 or (E') are subdirectly invariant. The first two conditions

carry over from J! to J!', but not vice versa (compare the ring A in Example
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6.13); (E') for J[ implies trivially (E') for Jt', the converse being false in
view of Example 6.16.

4.13 COROLLARY. JHk c J? (or equivalently, J!k = J?) and JK satisfies
(E') implies 32p is hereditary.

The converse is not true in view of Example 6.2. Note that by Leavitt's
example [11, Theorem 4], given here in Section 6 as Example 6.13, one may
have Jfk = •># without 31 p = $W being hereditary (compare also Example
6.16). Thus the condition (E') cannot be dropped in the above results. But
we can prove the following.

4.14 PROPOSITION. Let J? c j / , p the corresponding H-radical. If p is
r-hereditary, then Jf is closed under essential extensions, in particular, J?K c

= J# k .

PROOF. Let / < oN e J / with / e J?. Since p is r-hereditary, pN n / c
pi = 0; thus pN = 0 and N e Jt', showing {J?)k Q -^'• Now obviously

The converse is not true. J[kc.J[ does not imply even the hereditariness
of 31 p (compare Example 6.13). Moreover, r- and s-hereditary do not imply
4 c / (compare Example 6.14). Next let us exhibit how the above results
can be strengthened in the presence of the ADS-property, that is of (G) for
Jt'. Since J[ has (G) if and only if Jf has (G) (compare with Proposition
3.2) and (G) implies (E'), we first obtain from Corollary 4.12

4.15 PROPOSITION. Let / C j ^ fulfil (G); then the following are equiva-
lent:

(l)3?p = %J!is_ hereditary;
(2) 2C# = 2ff#)*;
(3) fUT n £W)k = 0.

4.16 COROLLARY. Let Jf c sf ,p the H-radical corresponding JH'. The
following are equivalent:

(1) p has the ADS-property and 31 p is hereditary;
(2) J? satisfies condition (G) and VJt = ^(J^)k;
(3) J! satisfies condition (G) and %&# n (J?)k = 0.

4.17 PROPOSITION. Let J! c sf fulfilJG). Then the H-radical corre-
sponding to J[ is r-hereditary if and only ifJ[ is closed under essential exten-
sions.
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PROOF. The sufficiency follows from Proposition 4.14. Conversely, we
show that the assumed two conditions imply (2'); the result then follows
from Proposition 4.6. Consider thus K < I < N e s>f with 0 ^ I/K e Jt'.
By (G), there is an ideal B < N such that B C K and I/B e Jl. If J/B
is an ideal in N/B which is maximal with respect to J/B n I/B — 0, then
I/B = (I + J)/J < oN/J. Since Jl is closed under essential extensions,
N/J € Jl. Furthermore, iV// ^ 0 and InJQBCK.

4.18 COROLLARY. Let M c j / . / j r/ie H-radical corresponding to Jl'.
Then the following are equivalent:

(1) p has the ADS-property and is r-hereditary;
(2) J? satisfies (G) and~^ = (W)k; _
(3) J? satisfies (G) and (N)Jt = {N){JT)k.

4.19 PROPOSITION. Let J? c / 5«cA f/?a/ ^ w hereditary. Then the H-
radical corresponding to J[ is r-hereditary if and only if Jl is dosed under
essential extensions and J[ fulfils (G).

PROOF. The necessity follows from Proposition 4.17. Conversely, if p is
r-hereditary, in view of Proposition 4.14, we only have to show that J? fulfils
(G). Let K <]_< N &sf with I/K € Jl. Then pi C K. By Proposition 3.1,
since 5"p = J! is hereditary and since p is r-hereditary, pi = I n pN < N.
Hence (G) is fulfilled with B = pi.

In the above proposition, the hereditariness of J[ cannot be weakened to
regularity; see Example 6.15. Stronger results can be obtained, in a similar
way, using (G) instead of (G). Example 6.16 shows that if we assume only
(G) in the next proposition, then (iii) is weaker than the equivalent conditions
(i) and (ii).

4.20 PROPOSITION. Let / C j / fulfil (G), p the corresponding H-radical.
The following are equivalent:

(i) p is r-hereditary;
(ii) Jl is closed under essential extensions;

(iii) Jlk C J('.

PROOF, (i) o (ii) =• (iii) follows from Propositions 4.17 and 4.14. We
only have to show that (iii) implies (ii). Let / < oiV e stf with / e J!'. Then
1 = EsubdC/** \ Ka<I with I/Ka € Jl and f)aKa = 0). By (G), for
each a there is an ideal Ba< N with Ba C Ka and I/Ba e Jl'. For each
a, choose Ca/Ba < N/Ba maximal with respect to I/Ba n Ca/Ba = 0. Then
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I/Ba £ (/ + Ca)/Ca < oN/Ca; hence N/Ca e^kcjf. Now / n (fla c«) £
f)a

Ba c f|QATa = 0 and since / is an essential ideal, C\aCa = 0. Thus

l
As in Propositions 4.17 and 4.19, the next two results can be verified.

4.21 PROPOSITION. Suppose / C j / fulfils (G). Then J? is closed under
essential extensions if and only ifJ? satisfies conditions (V).

4.22 PROPOSITION. Let J? c s/ be hereditary. Then J? fulfils (1') if and
only if it is closed under essential extensions and satisfies (G).

Comparing the above results, we are getting new information about the re-
lationship between conditions (1') and (2'). Under the presence of condition
(G) on Jt,

(1') is equivalent to J£k C J[ (Proposition 4.21) and
(2') is equivalent to Jtk Q -^ (Propositions 4.20 and 4.6).

In view of these equivalences, it is easy to see that (1') is stronger than (2')
by considering Example 6.14.

Lastly we may mention that any subclass of s>f is always contained in
a smallest KA-radical class which can be obtained by using, for example,
the Tangeman-Kreiling construction [21]. It is well-known that for rings,
if the starting class is hereditary, so is this radical class. Since the proof
uses only the homomorphism theorems, it remains true for Q-groups. For
completeness we only state:

4.23 PROPOSITION. Let 3 be a hereditary homomorphically closed sub-
class ofsf.

Let 2X := 31.
Let

Six := {N e sf\ there exists an ideal I<N such that I e3!x-\ and

for non-limit ordinals X and

3>x'.= IN €.s/ \N = \^Ia where {/„} is an ascending chain of ideals Ia'.= IN
I

on N, each belonging to some Qs^iKkS

ifX is a limit ordinal.
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Then 32 := \JxeOTd^x is a hereditary KA-radical class, in fact, the smallest
KA-radical class which contains 21.

5. Ideal hereditary radicals

Following Rjabuhin [18], a radical p on J / is called ideal-hereditary if it
is both r- and s-hereditary, that is pi = pN n / for all / < N

5.1 PROPOSITION. Let Jf csf,p the corresponding H-radical. Then the
following are equivalent:

(1) p is ideal-hereditary;
(2) Jf satisfies condition (3) of Proposition 3.1 and any one of the condi-

tions {!'), (4') or (6') of Proposition 4.6;
(3) J? satisfies any one of the conditions (1") to (6") of Proposition 4.4

and<9*p is hereditary;
(4) p is idempotent and both 31 p andS?p are hereditary;
(5) J[ satisfies conditions (T), (3) of Proposition 3.1 and any one of con-

ditions (I) to (6) of Remark 4.3;
(6) p is a KA-radical with both £%p andS^ hereditary;
(7) p is a KA-radical, M'p is hereditary and satisfies (*) K<I<N e J / and

K e 31 p implies K e 31 p where K is the ideal in N generated by K;
(8) p is a KA-radical with the ADS-property and32,'p hereditary;
(9) ^ is regular, satisfies conditions (T), (G) and any one of conditions

(1) to (6) of Remark 4.3;
(10) J[ is regular, J[ is closed under essential extensions and J[ fulfils

(G).

PROOF. (1) o (2) by Propositions 3.1 and 4.6.
(3) o (4) by Proposition 4.4.
(1) => (4) by Propositions 3.1 and 4.1.
(4) => (5) by Propositions 2.4, 3.1 and Remark 4.3.
(5) => (6) since 5^p hereditary implies p complete.
(6) =» (7) only (*) needs verification. If K<I<N e J / is as required in (*),

then K C pi c pNn/<N. Thus ~K c pNnl c pN and the hereditariness
of 3?p yields Ke&p.

(7) =>_(8) for I<N e s/, we have pI<I<N and pie 31 p. By (*) JI
hence pi c />/.

(8) <*• (9) by Propositions 2.2, 2.4, 3.2 and Remark 4.3.
(8) •<=>(!), well-known.
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(10) «• (8) by Corollary 4.16 and Proposition 2.2.
Condition (*) holds obviously if the <-relation is transitive on J / . The

following proposition shows that it holds in other important cases.

5.2 PROPOSITION. Let srfbe a universal class of alternative rings or groups.
IfJ! c j / is regular, then 31 = &C# satisfies (*). Thus every complete H-
radical on sf fulfils (*).

PROOF. The proof depends on the following result proved by Krempa [8]
for alternative rings and is easy to verify for groups:

Let K < TC < JV with AT the ideal of N generated by K. Then
every non-zero homomorphic image of K contains a non-zero
ideal which is a homomorphic image of K.

We proceed with the proof of the proposition. Let K<I<N with K e 3t.
If K $ 31, then K has a non-zero homomorphic image, say K/B, such that
0 ^ K/B e J!'. By the above-mentioned result, K/B contains a non-zero
ideal, say C/B, which is a homomorphic image ofK. Since ./# is regular, C/B
and hence K, has a non-zero homomorphic image in ^# which contradicts

5.3 COROLLARY. Ifsf is a universal class of alternative rings or groups,
(7) in Proposition 5.1 can be weakened to: p is a KA-radical and 6%'p is hered-
itary.

5.4 REMARK. (7) and (8) in Proposition 5.1 cannot be weakened (as (6)
to (4)) by claiming only that p is idempotent or complete (and not necessarily
KA)—Example 6.1 provides us with an idempotent //-radical p with ADS
and 3lp hereditary and satisfying (*) (since, in 6.1, normality is transitive)
but p is not complete. Also, Example 6.2 shows that ADS, regularity and
(*) do not imply 5^p hereditary. Furthermore, Example 6.6 shows that the
hereditariness of both 31 p and S?p do not imply, even in the presence of ADS
and (*), that p is idempotent. These observations confirm the fact already
mentioned in Section 3 that the ADS is not a very useful property for H-
radicals which are not KA.

Our next result generalizes Theorem 1 of Anderson, Kaarli and Weigandt
[1] in that we use condition (G) where they have used condition (F).

5.5 PROPOSITION. IfJt c stf is regular, satisfies (G) andJtk c ^ , then
the corresponding H-radical is ideal-hereditary {and thus a KA-radical).

PROOF. By Propositions 4.20 and 5.1(10).
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The converse is not true since (G) is not subdirectly invariant (compare
Example 6.7).

5.6 COROLLARY. J? C sf is the semisimple class of an ideal-hereditary
KA-radical if and only if^ is regular, closed under subdirect sums and essen-
tial extensions and satisfies condition (G).

For a KA-radical p, the next implications illustrate some of the charac-
terizing conditions of properties which we have considered. As usual, if
K<1<N € J/', then K means the ideal of N generated by K. In this diagram,
each statement to the right of an equivalence sign (•»), should be followed
by"... forall/<A^€J/":

p ideal-hereditary «• pi = pN n / • » / ? / - pN n /

p has the ADS-property «• p(p(I)) = pN n p(I) o pi = pN C\ p{I)

p 5-hereditary <=>• />(/?/) = pN n pi *> pi — pN n /?/.

In 4.1, the condition p(pNnl) C /?/ has appeared. If p is a KA-radical, the
following can easily be verified:

p(pN D / ) = pN n / for all / < N e ^ «• ̂  is hereditary and

and

= pi for all / < N € J / <*• />(/>iV nl)2 pi for all / < AT
oS"p is hereditary.

6. Examples

In order to avoid a lot of unnecessary repetitions, we first give a summary
of the main implications between the conditions which we considered. In
the examples we will then only mention the strongest one (unless we want
to emphasize something specific). In our scheme, i represents any element
from tne set {1,2,3,4,5,6} and p is always the //-radical corresponding to
Jf (as in the examples that follow).

6.1 Let $/ be the variety of all abelian groups. In this case, every subgroup
is normal; thus every subclass of $f satisfies (F). Let

J? := {N e sf | W = 0 or N is finite}.
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Jf is closed both under essential extensions and subdirect products, hence it
fulfils (3') (since (G) is valid). It can easily be verified that

f N if N is finite,

I 0 if N is infinite;

hence p is the lower //-radical in J / determined by the class of all finite
abelian groups. Clearly p is r-hereditary. Thus p is idempotent but not
complete since <9p = J£ = J? is not regular. In fact, Jf is not even an
r-class.

6.2 Let again J / be the variety of all abelian groups; as above every sub-
class of J / satisfies (F). For a prime p, let c(p) and c(p°°) denote the cyclic
group of order p and the infinite quasicyclic group respectively (compare
Example 1 in Divisky [4]). Let J? be the subclass of J / which consists
of 0, c{p) and c{p°°) where p runs through all the primes p. J? is regu-
lar since every proper ideal of c(p°°) can be mapped homomorphically onto
c{p). Consequently p is complete and has the ADS-property. Using Propo-
sition 3.1, we now show that p is not s-hereditary. For a fixed prime p, let
H2 :=J0, l/p2,2/p2,...(p2 - \)/p2}. Then c{p2) = H2 < c(p°°) € Jt, but
H2$LJ£. Using the well-known result that every abelian group has a homo-
morphic image of the form c(q) or c(q°°) for a suitable prime q, we have
31 p = "2/jr = 0; thus 31 p is hereditary. The only KA-radical corresponding
to 31 p = 0 being the trivial one, we can conclude that p is not KA; hence
not idempotent and thus not r-hereditary. From Proposition 4.20 we obtain
^ t ^ Jf. Also notice that J? is not closed under essential ^#-representable
extensions. Indeed, if H\ := {0, l/p,2/p,...,(p - l)/p} for a fixed prime
p, then c{p) = H\ < H2 (H2 is defined above) and Hi is ^#-representable
and essential in H2, but H2 $ J?. Obviously pN C 3lp(N) = 0 does not
hold in general; moreover, p is not hereditarily idempotent on S"p (since
Hi < c(p°°) € &p but ppH2 ? pH2).

6.3 (Leavitt [12]). Let Z2 be the two-element field and let ^2° be the zero-
ring on 3?2- Let K be the ring generated over Z2 by {e,x} where e2 — e,
ex = xe = x and x2 = 0. Let

s/ := {0, JT2,3$, Z2 © 3$,Z% © ^ 2 ° , ^ , K

J / is a universal class of (associative and commutative) rings since the only
non-trivial ideal of K is the ideal in K generated by x. But this ideal is
isomorphic to 2? and K/3?2

Q = Z2. Let
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To simplify the verification of the conditions, we provide

193

N

pN

3lp{N)

0

0

0

-22

0

0

20

-=2

20

22®22°

22o

22°

9*0 ffi, 9"0
-^2 *& -^2

0

K

22o

2°

K®22°

20® 20

22
0®22°

The relation of being an ideal in J / is transitive, hence J? satisfies (F).
Furthermore, J( = ~J#, 31 p = {0,22

0} is hereditary and pN c 3?P{N) for all
N e J / ; hence /> satisfies condition (4*) of Remark 2.3. However, ̂ # is not an
r-class, not a CE^E-class, J?k<^J[ and p is not idempotent (but hereditarily
idempotent on S?p = ,#) . Lastly note that 0 ^ 3?p(22° ® ^2°) e Jf so p is
not complete.

6.4 (Leavitt [12]). Let J / be the same universal class as in Example 6.3.
In this case, let J? = {0,22,22° © 22°,22 ®22

0}. We then have

N

pN

0

0

0

22

0

0

22o

22°
22o

22®22o

0

22o

22o®22°

0

22°®22o

K

22o

22o

K®22°

22o

22o® 22o

Then Jl has (F) (as above), Jt = J!, 31 p = {Q,22°} is hereditary and p is
idempotent. J? is not an r-class, not a CE^E-class, Jl^k^Jt and p is not r-
hereditary (since p(K®22

0)n(20®20) s 5 ? n 5 ? © 5 ? ^22°£Q = p(22°®
22)). Thus conditions (a) and (b) hold but not (c) (compare Proposition 4.1).
Once again we have 0?&p{N)ejr for iV e {22° © JgJ, K © ^2

0>-

6.5 Using Lemma 1 and Lemma 2 in Rjabuhin [20], construct rings A\,
A2, A3, A* such that At is the only proper ideal of Ai+X for i = 1,2,3
and A\ and 5,+i = Aj+i/Aj are non-isomorphic simple rings. Let jâ  :=
{0,^1,^2,^3,^4,52,53,54}. Then the lower KA-radical 31 in sf generated
by A2 is 3t = {0,A2,B2} with ^S? = {0,^i ,^4 ,53 ,54}. Both 31 and <5^
are non-hereditary, but 31 satisfies condition (c) of Proposition 4.1.

6.6 Let J / be the variety of associative rings. Leavitt [9] has given an
example of a class J! of simple prime rings, not all with an identity, such
that 31 p = %Jt is hereditary. Clearly J? is hereditary and fulfils (F) since
it consists of prime rings. Andrunakievic [2] has shown that a class 3£ of
simple rings consists of rings with identity if and only if y/S? is hereditary and
3£ = S? $£%'. Consequently, for our choice of JH', we have Jf c
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implying that p is not a KA-radical (compare Corollary 2.5) and thus not
idempotent and not r-hereditary. By Proposition 4.20 we obtain ^ ^ J?.
Trivially, Jf is not a CEL^E-class.

6.7 Let sf be the variety of all (right) near-rings and let Jt be the class
of all subdirectly irreducible near-rings. Since every non-zero near-ring has
a non-zero homomorphic image in J?, J[ is regular and by the well-known
Birkhoff theorem, ^ = stf. Thus p is the trivial radical, hence an ideal-
hereditary KA-radical. J? fulfils (G) but is neither hereditary nor subdirectly
closed nor does it fulfil (G): condition (G) for Jf would imply by Theorem
3.2 in [22] that ^ consists of semiprime near-rings which is certainly not the
case. We show now that J[ fulfils both (1') and Jfk c Jf;

To show (1') consider K<I<N es/ with 0 + I/K e JH'. Choose J<N
maximal with respect to / n / C K. Clearly N/J ^ 0; we show N/J is
subdirectly irreducible. Let {Ba/J}a be the class of all non-zero ideals of
N/J. By our choice of / , / D Ba <£ K for each a. Hence, for each a,
0 ^ ((/ n Ba) + K)/K < I/K and since I/K is subdirectly irreducible, there is
anx + K el/K with x <£ K and xeIf)Ba for all a. Thus 0 ^ x + J e Ba/J
for each a.

To show ^ C stf consider / < o]V with / subdirectly irreducible. If iV
is not subdirectly irreducible, there are ideals Ba< N such that f\ ^« — 0-
Without loss of generality, assume Ba ^ 0 for each a. Since / is an essential
ideal in N, 0 ^ / n Ba < I for each a, but f]a(I n Ba) = 0 which contradicts
our choice of / .

6.8 Leavitt [12]. Let H be the ring generated over Z^ by the commutative
symbols {x,y,z,u} with relations x2 = x, xy = x, y2 = uz = 0, xz = y,
yz = x, z2 = y, u2 = u, ux = x and uy = y. As usual, by (r) we denote
the ideal in H generated by r e H. The only non-trivial ideals in H are
A = (z), B = (M) and C = (x) = (y) and the only non-trivial ideal in (JC) is
D — {0, x}. The non-trivial homomorphic images of accessible subrings of H
are H/A = B/C=Z1 = D, H/B = A/C^ C/D = Z2° and H/C ^Z2® Z$.

Let K be the ring as defined in Example 6.3. Recall that K has only one
non-trivial ideal which is isomorphic to Z® an(^ K/-&2 — -%i-

Let s/ be the (universal) class of all homomorphic images of accessible
subrings of H and K, that is sf = {H,0,A,B,C,Z2,Z^,Z2®Z^,K}. In
this case, let Jf := {0,B,A,Z2

0}. Then

N

pN

H

B

0

0

0

0

A

0

0

B

0

0

c
-22

z2

Z2®Z2°

2-2

Z«

0

0

K

K

K
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Jt = J! is regular, fulfils (E') and ^£# f\^k ^ 0 . p is now idempotent (but
hereditarily idempotent on -#) , not s-hereditary and does not fulfil condition
(c) of Proposition 4.1 (p(pHnA) <£ p{A)). Note also that 31 p = {0,2r2,K} is
not hereditary, J? is not a CEL#E-class, does not fulfil (G) and pN <£ 3lp{N).

6.9 Leavitt [12]. Restricting Example 6.8 to the universal class stf' :=
j / - {K}, most of the properties carry over. The only differences are: 31 p :=
{0,22} is not hereditary, implying ^C# = f^J^k\ as before J[k <^J[ = J!'.

6.10 Leavitt [12]. Let X be the ring generated over JB3 by {f,y} where
f2 = / , fy = yf — y, y2 = 0. The only non-trivial ideal of X is (y) =
{0,y,y + y} = 2j>, and X/{y) = 23. Let sf be the (universal) class con-
sisting of all homomorphic images of ideals of X and K (where K is the
ring defined in Example 6.3), that is sf = {K,0,3$,3r2,X,3%,2i} Let

$ $ r 3 } Then

N

pN

0

0

0

K

K

K

2°

0

0 Z2

X

2°
0

2°

0

0

0

0

Since the relation of being an ideal is transitive in sf, Jf satisfies (F), J? is
hereditary, not a CE^E-class, ^C# n ^ ^ 0 and p satisfies condition (c) of
Proposition 4.1. However, p is not idempotent (in fact, pX <£ 3HP{X)) and
31 p = {0,K,3"2} is not hereditary.

6.11 Leavitt [12]. Let $/ be the universal class of all rings and let p be the
KA-radical with 31,, the class of all idempotent rings. As is well-known, both
31 p and S?p are non-hereditary. We show that p does not satisfy condition
(c) of Proposition 4.1. Indeed, consider the ring H from Example 6.8. Since
B2 = B and D2 = D, we have p{pH nA) = p(BnA) = pC = D but pA = 0.

6.12 Let stf be the class of all associative rings and let J? be a special class
(that is a hereditary class of prime rings which is closed under essential ex-
tensions). Since J[ consists of prime rings, it satisfies (F) and by Proposition
4.22 also (1'). Consequently p is an ideal-hereditary KA-radical. Clearly Jf
is not subdirectly closed.

6.13 Let sf be the class of all associative rings, Leavitt [11], Theorem 4,
has constructed a regular class J? in J / for which Jf = Jf^ but 31 p = ^£# is
not hereditary. J? does not satisfy (E') (compare Proposition 4.11). Using
Proposition 7 in [11] and the definition of the class ^f, it follows that J?
is not hereditary. Indeed, there is a ring A such that 2"® < oA from which
A G Jf follows. But / , which is a direct sum of n copies of 2® and is and
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ideal in A, is not in J!'. However, following Proposition 3.1(3), we can show
that p is s-hereditary: take / < N e Jt'. Then there is some index / with N
accessible in L € Jff, hence / is accessible in L. Then either / e J? or / has
3~p° as a proper direct summand. If / is a direct sum of -2^'s, then / e *#.
Otherwise, we may represent / as a direct sum of / a ' s with exactly one Ja

not containing Z® as a direct summand and all other / a ' s being isomorphic
to 2~p°. Thus all 7Q's are in Jf from which / e ^W follows.

6.14 Let srf be the class of all finite abelian groups. Then trivially every
subclassjulfils (F). Let J? := {c(2") | n = 1,2,3,...} U {c(2) x c(2)} U {0}.
Then J# consists exactly of all abelian groups of order 2", n = 1,2,3,
For any N e s/, we have two possibilities. If \N\ ^ 2" for all n, thenN is
the direct sum of cyclic groups, not all with order of the form 2k and the
elements of J? cannot be embedded in N as essential ideals. If \N\ = 2"
for some n, then N e Jt'. It thus follows that J!k c J[\ consequently Jf
satisfies (2'). But, for example, c(2) x c(2) is essential and ^f-representable
in c(4) x c(4) ^ J!'. Hence J? is not a CIL#E-class (and thus also ^ ^ J!).
J[=SPp'vs> hereditary; hence p is an ideal-hereditary KA-radical.

6.15 Let sf be the variety of all o-symmetric (left) near-rings. Let JV be
the nil radical class. As is well-known, yf is a hereditary (= /"-hereditary)
KA-radical class, but Kaarli [7] has shown that ^JV is not hereditary. Hence
Af does not satisfy the ADS-property. By Corollary 4.8, SW satisfies (/')
for / = 1,2,..., 6. Furthermore, by Proposition 4.11, SW fulfils (E'); hence
(E') does not imply (G), even for subdirectly closed classes. Moreover, by
Proposition 4.14, SW is closed under essential extensions.

6.16 By Leavitt [11], Corollary 2, there is a ring B with a single proper
such that B/D = F where F is a field of degree

°° * J? := {0,2Tp°

y [
ideal D = 2T° @ &°
3 over Zp. Let st :=_ J
Then obviously (G) is fulfilled, implying (E') for ̂ '. But there is no ideal of
B sending D into J?, hence (E') does not hold for Jt'. From the following
diagram, it can be verified that J? is not an r-class, p is idempotent and
JHk — J% c ^#; but J# is not closed under essential extensions (consider D
and B: D e ^ is essential in B).

N

pN

0

0

0

F

F

F

9-0

2-p°
3Tp°

0

D

0

D

B

B

B

In closing, the following remark seems to be in order. The examples 6.3 to
6.5, 6.8 to 6.10 and 6.16 may seem unnatural in view of the chosen universal

https://doi.org/10.1017/S144678870003562X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003562X


[27] Radicals and subdirect decompositions 197

classes sf. However, every example can easily be "blown up" to bigger uni-
versal classes 38 (2&) by considering in <% the class J[' := JP \J{&\srf).
A straightforward but somewhat tedious checking shows that if J?' (respec-
tively the corresponding //-radical p') has some property (JC) in 38', then J?
(respectively the corresponding //-radical p) has (x) in J / where (x) stand for
any property appearing in our scheme. Thus, no new properties can be added
by this way of blowing up an example. For other types of blowing up, this
is not the case (compare Examples 6.8 and 6.9). By the indicated method,
some properties may disappear, but a lot of properties (x) remain invariant
under blowing up. For convenience, we give the complete list of these (x):
(2'), closed under essential extentions, CE^E-class, ^ c J?', g£# = %J[k,
%J!' V\%J?k = 0, (V), r-hereditary, 31 p hereditary, p idempotent, (c), (E'),
pN c 3lp{N), p hereditarily idempotent on
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