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Gosset Polytopes in Picard Groups of
del Pezzo Surfaces

Jae-Hyouk Lee

Abstract. In this article, we study the correspondence between the geometry of del Pezzo surfaces Sr

and the geometry of the r-dimensional Gosset polytopes (r − 4)21. We construct Gosset polytopes

(r − 4)21 in Pic Sr ⊗ Q whose vertices are lines, and we identify divisor classes in Pic Sr corresponding

to (a − 1)-simplexes (a ≤ r), (r − 1)-simplexes and (r − 1)-crosspolytopes of the polytope (r − 4)21.

Then we explain how these classes correspond to skew a-lines(a ≤ r), exceptional systems, and rulings,

respectively.

As an application, we work on the monoidal transform for lines to study the local geometry of the

polytope (r−4)21. And we show that the Gieser transformation and the Bertini transformation induce

a symmetry of polytopes 321 and 421, respectively.

1 Introduction

The celebrated Dynkin diagrams appear as the key ingredients in many areas of math-

ematical research. In the geometry of polytopes, they represent the dihedral angles

between the hyperplanes generating the polytopes, and in the algebraic geometry of

surfaces, they are the intersections between the simple roots generating a root space.

In fact, the diagrams in each of above areas of research correspond to the relationships

presenting symmetry groups which commonly appear in each study on the objects

represented by the graphs. In particular, the Dynkin diagrams of the Lie groups Er,

3 ≤ r ≤ 8 correspond to both the Weyl groups W (Sr) of del Pezzo surfaces Sr and

the symmetry group of the r-dimensional semiregular Er-polytopes (r − 4)21, which

are also known as Gosset polytopes. Therefore, there is a natural correspondence

between the geometry of the del Pezzo surface and the geometry of the (r − 4)21

polytope. This article explores the correspondence between del Pezzo surfaces and

(r − 4)21 polytopes.

The del Pezzo surfaces are smooth irreducible surfaces Sr whose anticanonical

class −KSr
is ample. We can construct the del Pezzo surfaces by blowing up r ≤ 8

points from P2, unless it is P1 × P1. In particular, it is well known that there are 27

lines on a cubic surface S6 and the configuration of these lines is acted on by the Weyl

group E6 ([9, 10, 13]). The set of 27 lines in S6 is bijective with the set of vertices of a

Gosset 221 polytope, i.e., an E6-polytope. Similar correspondences were found for the

28 bitangents in S7 and the tritangent planes for S8. The bijection between lines in S6

and vertices in 221 was applied to study the geometry of 221 by Coxeter ([4]). And the

complete list (see [17]) of bijections between the divisor classes containing lines and

vertices is well known and applied in many different research fields. In particular, the
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124 J.-H. Lee

classical application can be found in the study of Du Val [11]. These divisor classes,

which are also called lines, play key roles in this article.

The study of lines in del Pezzo surfaces has developed in many different directions.

Recently, Leung and Zhang related the configurations of the lines to the geometry of

the line bundles over del Pezzo surfaces via representation theory [15, 16]. Other in-

teresting research regarding the lines in del Pezzo surfaces and their symmetry groups

can be found in [1, 12, 18].

A line in Pic Sr is equivalently a divisor class l with l2 = −1 and KSr
· l = −1. We

observe that the Weyl group W (Sr) acts as an affine reflection group on the affine hy-

perplane given by D ·KSr
= −1. Furthermore, W (Sr) acts on the set of lines in Pic Sr.

Therefrom, we construct a Gosset polytope (r − 4)21 in Pic Sr ⊗ Q whose vertices are

exactly the lines in Pic Sr. For a Gosset polytope (r − 4)21, faces are regular simplexes

except for the facets which consist of (r − 1)-simplexes and (r − 1)-crosspolytopes.

Since the faces in (r − 4)21 are basically configurations of vertices, we obtain natural

characterization of faces in (r − 4)21 as divisor classes in Pic Sr.

Now we want to use the algebraic geometry of del Pezzo surfaces to identify the

divisor classes corresponding to the faces in (r − 4)21. For this purpose, we consider

divisor classes which we call skew a-lines, exceptional systems, and rulings in Pic Sr.

A skew a-line is an extension of the definition of lines in Sr. We show that each

skew a-line represents an (a − 1)-simplex in an (r − 4)21 polytope. In fact, the skew

a-lines also satisfy D2 = −a and D · KSr
= −a. Furthermore the divisors with these

conditions are equivalently skew a-lines for a ≤ 3.

An exceptional system is a divisor class in Pic Sr whose linear system gives a regular

map from Sr to P2. As this regular map corresponds to a blowing up from P2 to Sr,

naturally we relate exceptional systems to (r − 1)-simplexes in (r − 4)21 polytopes,

which are one of two types of facets appearing in (r − 4)21 polytopes. We show that

the set of exceptional systems in Pic Sr is bijective to the set of the (r − 1)-simplexes

in (r − 4)21 polytopes for 3 ≤ r ≤ 7.

A ruling is a divisor class in Pic Sr that gives a fibration of Sr over P1. And we show

that the set of rulings in Pic Sr is bijective with the set of (r − 1)-crosspolytopes in

the (r − 4)21 polytope. Furthermore, we explain the relationships between lines and

rulings according to the incidence between the vertices and (r − 1)-crosspolytopes.

This leads us to the fact that a pair of proper crosspolytopes in the (r − 4)21 gives the

blowing down maps from Sr to P1× P1.

After proper comparison between divisor classes obtained from the geometry of

the polytope (r − 4)21 and those given by the geometry of a del Pezzo surface, we

arrive at the following correspondences.

del Pezzo surface Sr E-semiregular polytopes (r − 4)21

lines vertices

skew a-lines 1 ≤ a ≤ r (a − 1)-simplexes 1 ≤ a ≤ r

exceptional systems (r − 1)-simplexes (r < 8)

rulings (r − 1)-crosspolytopes

The nature of these correspondences is macroscopic, but we need a microscopic
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explanation of the correspondences to decode the local geometry of the (r − 4)21

polytopes. Thus, we consider the monoidal transform for lines on del Pezzo surfaces

and describe the local geometry of the (r−4)21 polytopes. This blowing up procedure

on lines can be applied to rulings to get a useful recursive description. This will be

discussed along with the corresponding geometry on the polytope (r − 4)21 in [14]

and a future article.

As another application, we consider the pairs of lines in Pic S7 (resp. Pic S8) with

intersection 2 (resp. 3) that are related to the 28 bitangents (resp. tritangent plane).

And we define the Gieser transformation (resp. Bertini transformation) on the poly-

tope 321 (resp. 421) and show that this is a symmetry.

Research on regular and semiregular polytopes along the Coxeter–Dynkin dia-

grams have a long history which may be well known only as facts. So we begin the

next section with preliminaries on the theories of the regular and semiregular poly-

topes.

2 Regular and Semiregular Polytopes

In this article, we deal with polytopes having highly nontrivial symmetries. Their

symmetry groups, along with the corresponding Coxeter–Dynkin diagrams, play key

roles. In this section, we revisit the general theory of regular and semiregular poly-

topes according to their symmetry groups and Coxeter–Dynkin diagrams. Especially,

we consider a family of semiregular polytopes known as Gosset figures (k21 according

to Coxeter). The combinatorial data of Gosset figures along with the group actions

will be used everywhere in this article. For further details about the theory, the reader

may consult Coxeter’s papers [5–8].

Let Pn be a convex n-polytope in an n-dimensional euclidean space. For each

vertex O, the midpoints of all the edges emanating from a vertex O in Pn form an

(n − 1)-polytope if they lie in a hyperplane. We call this (n − 1)-polytope the vertex

figure of Pn at O.

A polytope Pn (n > 2) is said to be regular if its facets are regular and there is

a regular vertex figure at each vertex. When n = 2, a polygon P2 is regular if it is

equilateral and equiangular. Naturally, the facets of regular Pn are all congruent, and

the vertex figures are all the same.

We consider two classes of regular polytopes.

(i) A regular simplex αn is an n-dimensional simplex with equilateral edges. For

example, α1 is a line-segment, α2 is an equilateral triangle, and α3 is a tetrahedron.

Note αn is a pyramid based on αn−1. Thus the facets of a regular simplex αn form

a regular simplex αn−1, and the vertex figure of αn is also αn−1. Furthermore, the

symmetry group of αn is the Coxeter group An with order (n + 1)!.

(ii) A crosspolytope βn is an n-dimensional polytope whose 2n-vertices are the in-

tersects between an n-dimensional Cartesian coordinate frame and a sphere centered

at the origin. For instance, β1 is a line-segment, β2 is a square, and β3 is an octa-

hedron. Note that βn is a bipyramid based on βn−1, and the n-vertices in βn form

αn−1 if a choice is made of one vertex from each Cartesian coordinate line. So the

vertex figure of a crosspolytope βn is also a crosspolytope βn−1, and the facets of βn

are αn−1. The symmetry group of βn is the Coxeter group Bn (or Cn) with order 2nn!.
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k Ek+4 order of Ek+4 k21-polytopes

−1 A1×A2 12 triangular prism

0 A4 5! rectified 5-cell

1 D5 245! demipenteract

2 E6 72 × 6! E6-polytope

3 E7 8 × 9! E7-polytope

4 E8 192 × 10! E8-polytope

Table 1: k21 Polytopes

Remark 1 Even though the full symmetry group of βn is the Coxeter group (or Cn),

the combinatorics of βn can be described in terms of the Coxeter group Dn with order

2n−1n!, and as the Dynkin diagram of Dn is naturally imbedded in that of E-type, we

choose Dn as the symmetry group of βn instead of Bn (or Cn).

A polytope Pn is called semiregular if its facets are regular and its vertices are equiv-

alent, namely, the symmetry group of Pn acts transitively on the vertices of Pn.

Here, we consider the semiregular k21 polytopes discovered by Gosset, which are

(k + 4)-dimensional polytopes whose symmetry groups are the Coxeter group Ek+4,

−1 ≤ k ≤ 4. Note that the vertex figure of k21 is (k − 1)21 and the facets of k21

are regular simplexes αk+3 and crosspolytopes βk+3. Table 1 contains the list of k21

polytopes.

The Coxeter groups are reflection groups generated by the reflections with re-

spect to hyperplanes (called mirrors), and the Coxeter–Dynkin diagrams of Coxeter

groups are labeled graphs where the nodes are indexed mirrors and the labels on

edges present the order n of dihedral angle π/n between two mirrors. If two mirrors

are perpendicular, namely n = 2, no edge joins two nodes presenting the mirrors

because there is no interaction between the mirrors. Since the dihedral angle π/3

appears very often, we only label the edges when the corresponding order is n > 3.

Each Coxeter–Dynkin diagram contains at least one ringed node which represents an

active mirror, i.e., there is a point off the mirror, and constructing a polytope begins

with reflecting the point through the active mirror.

We call the Coxeter–Dynkin diagram of αn (respectively βn and k21) with the Cox-

eter group An (respectively Dn and En) An-type (respectively Dn- and En-type), and

each Coxeter–Dynkin diagram of An, Dn and En-type has only one ringed node and

no labeled edges. Here, it is important to note that the full symmetry group of βn is

actually the Coxeter group Bn (or Cn), but as in Remark 1, we use the Coxeter group

Dn to describe the combinatorics of βn. For the above cases, the following simple pro-

cedure using the Coxeter–Dynkin diagram describes the possible faces and calculates

the total number of them (see also [6, 8]).

The Coxeter–Dynkin diagram of each face P ′ is a connected subgraph Γ contain-

ing the ringed node. And the subgraph obtained by taking off all the nodes joined

with the subgraph Γ represents the isotropy group GP ′ of P ′. Furthermore, the in-
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dex between the symmetry group G of the ambient polytope and isotropy group GP ′

gives the total number of such faces. In particular, by removing the ringed node and

transferring to the ring the node adjacent to it, we obtain the subgraph correspond-

ing to the isotropy group of a vertex, and in fact the isotropy group is the symmetry

group of the vertex figure.

Regular simplex αn with symmetry group An.

u u uhr r r

1 2 n

Coxeter–Dynkin diagram of 4αn.

The diagram of the vertex figure is An−1-type because it is represented by the sub-

graph remaining after removing the ringed node and transferring the ring to the

adjacent node, and the facet is only αn−1 because the subgraph of An−1-type is the

largest connected subgraph containing the ringed node in the graph of An-type. Fur-

thermore, since all the possible subgraphs containing the ringed node are Ak-type,

only regular simplexes αk, 0 ≤ k ≤ n − 1 appear as faces. And for each αk in αn, the

possible total number Nαn
αk

is

Nαn
αk

= [An : Ak × An−k−1] =
(n + 1)!

(k + 1)!(n − k)!
=

(

n + 1

k + 1

)

.

Cross polytopeβn with symmetry group Dn. Again, although Bn is the full sym-

metry group of βn, we consider Dn as in Remark 1.

u u uh

u

r r r

2 3 n

1

Coxeter–Dynkin diagram of βn.

The diagram of the vertex figure is Dn−1-type because the subgraph remaining

after removing the ringed node represents Dn−1, and the facet is only αn−1 since

the subgraph of An−1-type is the biggest subgraph containing the ringed node in

Dn-type. Only regular simplexes αk, k = 0, . . . , n − 1 appear as faces since the

possible subgraphs containing the ringed node are only Ak-type. And for each αk in

βn, the possible total number Nβn
αk

is

Nβn
αk

= [Dn : Ak × Dn−k−1] =
2n−1n!

(k + 1)!2n−k−2 (n − k − 1)!
= 2k+1

(

n

k + 1

)

.

In particular, each βn contains Nβn
α0

= 2n vertices, and these vertices form n-pairs

with the common center.
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Gosset polytope k21, a (k + 4)-dimensional polytope with symmetry group Ek+4,

−1 ≤ k ≤ 4.

u u u u uh

u

r r r

−1 0 1 k

Coxeter–Dynkin diagram of k21 k 6= −1.

For k 6= −1, the diagram of the vertex figure is Ek+3-type and the facets are the

regular simplex αk+3 and the crosspolytope βk+3, since the subgraphs of Ak+3-type

and Dk+3-type appear as the biggest subgraph containing the ringed node in Ek+3-

type. But all the lower dimensional faces are regular simplexes.

Case k = −1 is a bit different from other cases since there are two ringed nodes.

u uh

uh

−1

Coxeter–Dynkin diagram of −121.

The vertex figure is an isosceles triangle instead of an equilateral triangle because

the corresponding diagram is obtained by taking off a ringed node in the A2-type

subgraph. And the facets are the regular triangle α2 given by the A2-type subgraph

and the square β2 given by the subgraph taking off the unringed node.

As above, we can calculate the total number of faces in k21 by using Coxeter–

Dynkin diagrams. For instance, we calculate 221. After removing the ringed node

labelled 2 and transferring the ring to the node labelled 1, we obtain a subgraph of

E5-type, and therefore the vertex figure of 221 is 121. Since the subgraphs of A5-type

and D5-type are all the biggest possible subgraphs in the Coxeter–Dynkin diagram of

221, there are two types of facets in 221, which are 5-simplexes and 5-crosspolytopes,

respectively. And all other faces in 221 are simplexes for the same reason. In the

following calculation for 221, the nodes marked by empty nodes represent deleted

nodes.

u u u u uh

u

−1 0 1 2

Coxeter–Dynkin diagram of 221.
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(i) Vertices in 221: N221
α0

= [E6 : E5] = 27.

u u u u eh

u

q q q

−1 0 1 2

(ii) 1-simplexes(edges) in 221: N221
α1

= [E6 : A1 × E4] = 216.

u u u e uh

u

q q qq q q

−1 0 1 2

(iii) 2-simplexes(faces) in 221: N221
α2

= [E6 : A2 × E3] = 720.

u u e u uh

u

q q q q q q
q
q
q

−1 0 1 2

(iv) 3-simplexes(cells) in 221: N221
α3

= [E6 : A3 × A1] = 1080.

u e u u uh

e

q q q
q
q
q

q q q

−1 0 1 2

(v) 4-simplexes in 221: N221
α4

= [E6 : A4 × A1] + [E6 : A4] = 648.

u e u u uh

u

q q q q q q

−1 0 1 2

e u u u uh

e

q q q
q
q
q

−1 0 1 2

(vi) 5-simplexes in 221: N221
α5

= [E6 : A5] = 72.

u u u u uh

e

q
q
q

−1 0 1 2
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(vii) 5-crosspolytopes in 221: N221

β5
= [E6 : D5] = 27.

e u u u uh

u

q q q

−1 0 1 2

As we apply the same procedure to the other E-polytopes, we get the following

table.

Ek+4-polytope(k21) −121 021 121 221 321 421

βk+3 3 5 10 27 126 2160

vertex 6 10 16 27 56 240

α1 9 30 80 216 756 6720

α2 2 30 160 720 4032 60480

α3 5 120 1080 10080 241920

α4 16 648 12096 483840

α5 72 6048 483840

α6 576 207360

α7 17280

Table 2: Numbers of faces in k21

3 Del Pezzo Surfaces Sr

A del Pezzo surface is a smooth irreducible surface whose anticanonical class −KS

is ample. It is well known that a del Pezzo surface Sr, unless it is P1 × P1, can be

obtained from P2 by blowing up r ≤ 8 points in generic positions; namely, no three

points are on a line, no six points are on a conic, and for r = 8, not all of them are on

a plane curve whose singular point is one of them (see [9, 13, 17]).

Notation We do not use different notations for the divisors and the corresponding

classes in Picard group unless there is the possibility of confusion.

We denote such a del Pezzo surface by Sr and the corresponding blowup by

πr : Sr → P2. And K2
Sr

= 9 − r is called the degree of the del Pezzo surface. Each

exceptional curve and the corresponding class given by blowing up is denoted by ei ,

and both the class of π∗
r (h) in Sr and the class of a line h in P2 are referred to as h.

Then we have

h2
= 1, h · ei = 0, ei · e j = −δi j for 1 ≤ i, j ≤ r,
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and the Picard group of Sr is Pic Sr ≃ Zh⊕Ze1 ⊕· · ·⊕Zer with the signature (1,−r).

And KSr
= −3h +

∑r
i=1 ei .

For any irreducible curve C on a del Pezzo surface Sr, we have C · KSr
< 0 since

−KSr
is ample. Furthermore, if the curve C has a negative self-intersection, C must

be a smooth rational curve with C2 = −1 by the adjunction formula.

The ample −KSr
on a del Pezzo surface Sr is very useful for dealing with Pic Sr. The

inner product given by the intersection on Pic Sr induces a negative definite metric

on (ZKSr
)⊥ in Pic Sr where we can also define natural reflections.

To define reflections on (ZKSr
)⊥ in Pic Sr, we consider a root system

Rr := {d ∈ Pic Sr | d2
= −2, d · KSr

= 0},

with simple roots

d0 = h − e1 − e2 − e3, di = ei − ei+1, 1 ≤ i ≤ r − 1.

Each element d in Rr defines a reflection on (ZKSr
)⊥ in Pic Sr

σd(D) := D + (D · d)d for D ∈ (ZKSr
)⊥

and the corresponding Weyl group W (Sr) is Er, where 3 ≤ r ≤ 8 with the Dynkin

diagram

u u u u u

u

r r r

d1 d2 d3 d4 dr−1

d0

Dynkin diagram of Er r ≥ 3.

The definition of the reflection σd on (ZKSr
)⊥ can be used to obtain a transfor-

mation both on Pic Sr and on Pic Sr ⊗ Q ≃ Qh ⊕ Qe1 ⊕ · · · ⊕ Qer via the linear

extension of the intersections of divisors in Pic Sr. Here Pic Sr ⊗ Q is a vector space

with the signature (1,−r).

3.1 Affine Hyperplanes and the Reflection Groups

Later on, we deal with divisor classes D satisfying equations D · KSr
= α, D2 = β

that are preserved by the action of Weyl group W (Sr). Here we know that W (Sr) is

generated by the reflections on (ZKSr
)⊥ given by simple roots. To extend the action

of W (Sr) properly, we want to show that these reflections are defined on Pic Sr and

preserve the above equations. Furthermore, we see that W (Sr) acts as a reflection

group on the set of divisor classes with D · KSr
= α.

We consider an affine hyperplane section in Pic Sr ⊗ Q defined by

H̃b := {D ∈ Pic Sr ⊗ Q | −D · KSr
= b},
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where b is an arbitrary real number and an affine hyperplane section Hb := H̃b∩Pic Sr

in Pic Sr. Since −KSr
is ample, we are interested in b ≥ 0.

By the fact that K2
Sr
= 9 − r > 0, 3 ≤ r ≤ 8, and the Hodge index theorem,

0 = (KSr
· (D1 − D2))2 ≥ K2

Sr
(D1 − D2)2, D1,D2 ∈ Hb,

the inner product on Pic Sr induces a negative definite metric on Hb. As a matter

of fact, the induced metric is defined on Pic Sr ⊗ Q , and we can also consider the

induced norm by fixing a center −b
9−r

KSr
in the affine hyperplane section −D ·KSr

= b

in Pic Sr ⊗ Q . This norm is also negative definite.

Lemma 3.1 (i) Let H̃b (b ≥ 0) be an affine hyperplane section in Pic Sr ⊗ Q

defined above and let −b
9−r

KSr
be a center on the affine hyperplane section. The classes D

in Hb = H̃b ∩ Pic Sr with a fixed self-intersection are on a sphere with center −b
9−r

KSr
in

H̃b.

(ii) For each root d in Rr, the corresponding reflection σd defined on Pic Sr ⊗Q is an

isometry preserving KSr
and acts as a reflection on each hyperplane section H̃b with the

center −b
9−r

KSr
.

Proof (i) Consider

(

D −
−b

9 − r
KSr

) 2

= D2 +
2b

9 − r
D · KSr

+
b2

(9 − r)2
K2

Sr
= D2 −

b2

(9 − r)
≤ 0

and the last inequality is given by the Hodge index theorem,

b2
= (D · KSr

)2 ≥ D2K2
Sr
= D2(9 − r).

(ii) Each root d in Rr satisfies d· KSr
= 0 and d2 = −2. Therefore, we have

σd(KSr
) = KSr

+ (d · KSr
)d = KSr

,

and for each D1,D2 ∈ Pic Sr ⊗ Q

σd(D1) · σd(D2) = (D1 + (d · D1)d) · (D2 + (d · D2)d) = D1 · D2.

Furthermore, for each class D in Pic Sr ⊗ Q , the self-intersection D2 and D · KSr
are

invariant under σd. This implies σd acts on the hyperplane section H̃b. Moreover,

the hyperplane in Pic Sr ⊗ Q preserved by the action of σd is given by an equation

d ·D = 0 for D ∈ Pic Sr ⊗Q , and each center −b
9−r

KSr
of H̃b is in this hyperplane. And

because each class D in H̃b can be written as

D = D3 +
−b

9 − r
KSr

for some D3 ∈ H̃0,

we have

σd(D) = σd

(

D3 +
−b

9 − r
KSr

)

= σd(D3) +
−b

9 − r
KSr

∈ H̃0 +
−b

9 − r
KSr

= H̃b.

Since σd is a reflection on H̃0, we can derive a fact that the isometry σd acts as an

affine reflection on H̃b for the center −b
9−r

KSr
.
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Generically, the hyperplanes in Pic Sr ⊗ Q induce affine hyperplanes in H̃b and

they may not share a common point. But the reflection hyperplane of each reflection

σd in Pic Sr ⊗ Q gives a hyperplane in H̃b containing the center because it is given by

a condition KSr
· d = 0. Therefrom, the above lemma gives the following corollary.

Corollary 3.2 The affine reflections on H̃b given by simple roots in Rd generate the

Weyl group W (Sr).

Remark The Weyl group W (Sr), generated by the simple roots in Rd also preserves

the self-intersection of each divisor in Pic Sr and acts on each Hb = Pic Sr∩ H̃b as

an affine reflection group. According to [12], the Weyl group W (Sr) is the isotropy

group of KSr
in the automorphism group of Pic Sr.

4 Gosset Polytopes (r − 4)21 in Pic Sr ⊗ Q

In this section, we identify a special class in Pic Sr, which is known as a line, and

construct Gosset polytopes (r − 4)21 in Pic Sr ⊗ Q as the convex hull of the set of

lines. And we study the divisor classes representing faces in (r − 4)21.

4.1 Lines in del Pezzo surface Sr

The configuration of lines on a del Pezzo surface Sr has attracted much attention

because of its high degree of symmetry related to the Weyl group W (Sr) of Er-type.

When r ≤ 6, the anticanonical class −KSr
on the del Pezzo surface Sr is very ample

and its linear system gives an imbedding to P9−r, where K2
Sr
= 9 − r. And a smooth

rational curve C in Sr is mapped to a line in P9−r if and only if it is an exceptional

curve in Sr. Furthermore, the divisor class D containing the curve C satisfies D ·KSr
=

−1 = D2 and vice versa [17]. Since the last equation is true for each del Pezzo surface,

we also call the divisors with the these conditions in del Pezzo surfaces lines. As the

symmetry group of lines in the cubic is the Weyl group E6, the symmetry group of

lines in Sr is the Weyl group Er.

We define the set of lines on Pic Sr as Lr := {l ∈ Pic(Sr) | l2 = l · KSr
= −1}. By

the adjunction formula, a divisor in this class represents a rational smooth curve in

Sr. By going through a simple calculation, we can obtain the number of lines in Lr,

and, moreover, the number of lines in Pic(Sr) is the same as the number of vertices

in Gosset polytopes (r − 4)21.

del Pezzo Surfaces S3 S4 S5 S6 S7 S8

number of Lines 6 10 16 27 56 240

Gosset Polytopes (r − 4)21 −121 021 121 221 321 421

number of Vertices 6 10 16 27 56 240

In fact, this bijection between lines and vertices is a well-known fact ([10, 17]). In

this article, this fact induces significant implications after our construction of Gosset

polytopes in Pic Sr, where each vertex automatically represents a line.
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First of all, we need to consider intersections between lines and roots in Pic Sr.

The possible intersections of the lines in Pic Sr can be obtained by the Hodge index

theorem, (KSr
· (l1 ± l2))2 ≥ K2

Sr
(l1 ± l2)2. And we have

2

9 − r
+ 1 ≥ l1 · l2 ≥ −1.

Therefore, two distinct lines l1 and l2 in Pic Sr can have intersections such as

l1 · l2 =











0, 1 3 ≤ r ≤ 6,

0, 1, 2 r = 7,

0, 1, 2, 3 r = 8.

Furthermore, l1 · l2 = 2 for r = 7 and l1 · l2 = 3 for r = 8 satisfy the equalities in the

Hodge index theorem, and we have equivalences

l1 · l2 = 2 ⇐⇒ l1 + l2 = −KS7
for r = 7,

l1 · l2 = 3 ⇐⇒ l1 + l2 = −2KS8
for r = 8.

Recall that for a reflection σd given by a root d, if l is a line, σd(l) is also a line by

Lemma 3.1. Moreover we have σd(l) · l = (l + (l · d)d) · l = −1 + (l · d)2.
From the above possible numbers of the intersections of lines, the possible inter-

sections between a line l and a root d are given as

l · d =

{

0,±1 3 ≤ r ≤ 7,

0,±1,±2 r = 8.

Since σd(l) · l + 1 must be a square of these integers, it is easy to see that any two lines

l1 and l2 with l1 · l2 = 1 or 2 cannot be mapped to each other by a reflection σd given

by a root d.

Lemma 4.1 (i) For each line l in Sr, the reflection σd given by a root d preserves

the line l if and only if d · l = 0.

(ii) Any two distinct lines in Pic Sr (r ≤ 7) are skew if and only if there is a reflection

σd given by a root d that reflects these lines to each other. For S8, this statement is true

with an extra condition that a root d is chosen to have intersection 1 with one of the lines.

We say that distinct lines l1 and l2 are skew if l1 · l2 = 0.

Proof (i) Trivial from l = σd(l) = l + (d · l)d.

(ii) If l1and l2 are skew, namely l1 · l2 = 0, then l1 − l2 is a root, and the cor-

responding reflection σl1−l2 satisfies σl1−l2 (l1) = l2 and σl1−l2 (l2) = l1. Conversely,

when 3 ≤ r ≤ 7, if two distinct lines l1 and l2 satisfy l2 = σd(l1) = l1 + (d · l1)d, for

a root d with d · l1 6= 0, then l1 · l2 = −1 + (d · l1)2 = 0, according to above list of

possible intersections between a line and a root. The case r = 8 is similar to the other

once we add the condition that d · l1 = ±1.
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By Lemma 3.1, the action of Weyl group W (Sr) preserves the conditions l2 =

l · KSr
= −1, and therefore W (Sr) acts on the set of lines Lr on Sr. Furthermore, by

the following theorem, there is only one orbit of W (Sr) in the set of lines Lr, and it

implies that the bijection between the set of lines and the set of vertices in the above

is more than the correspondence between sets.

Theorem 4.2 For each del Pezzo surface Sr, the set of lines Lr on Sr is the set of vertices

of a Gosset polytope (r − 4)21 in a hyperplane section H̃1.

Proof Recall that the center of H̃1 is
−KSr

9−r
and the distance between a line and the

center in H̃1 is −1 − 1/(9 − r). Therefore, the set of lines Lr sits in a sphere in H̃1

with the center
−KSr

9−r
. Furthermore, the convex hull of Lr in H̃1 is a convex polytope.

We want to show that this polytope is a Gosset polytope (r − 4)21. We construct a

Gosset polytope (r − 4)21 in the convex hull of Lr, and we show that the convex hull

is same with the polytope (r − 4)21. By Lemma 3.1, the set Lr is acted on by the Weyl

group W (Sr). We choose a line er in Lr and consider the generators of W (S) given by

simple roots di (0 ≤ i ≤ r−1 ). Since di · er = 0 except when i = r−1, the reflection

given by dr−1 is only active among the generators. The line er and the generators

of W (Sr) give the Coxeter–Dynkin diagram of Er-type with a ringed node at dr−1.

Therefore, via the action of W (Sr) on er as in Section 2, we obtain a Gosset polytope

(r − 4)21 containing er in the convex hull of Lr. Now, as we know, the number of

vertices in (r − 4)21 is the same as the number of lines in Lr, therefore the polytope

(r − 4)21 and the convex hull of Lr are the same.

This theorem implies that the Weyl group W (Sr) acts transitively on Lr. We also

see that the integral classes representing lines in Pic(Sr) are honest vertices of (r−4)21

in an affine hyperplane H1. But we also denote a line l in Pic Sr by Vl if it is considered

as a vertex of (r − 4)21.

Corollary 4.3 The number of lines in the del Pezzo surface Sr is the same as the num-

ber of vertices of the Er-semiregular polytope. Furthermore, the Weyl group W (Sr) acts

transitively on the set of lines Lr on Sr.

Remark From Section 2, we know that the isotropy group of a vertex of (r − 4)21

is the same with the symmetry group of the vertex figure which is Er−1-type. We

can check this for the Gosset polytope (r − 4)21 in Pic Sr ⊗ Q . By Corollary 4.3,

we can choose an exceptional class er without losing generality. The generators of

the isotropy group of er are the simple roots in the Dynkin diagram of Er that are

perpendicular to er. And the relationships of these simple roots are presented as a

subdiagram of the Dynkin diagram of Er by taking off the node dr−1. Therefore,

the isotropy group of er in W (Sr) is the Weyl group of W (Sr−1) of Er−1-type, and

similarly the isotropy group of each line in Sr is conjugate to W (Sr−1).

4.1.1 Intersections of Lines and Configuration of Vertices

As the configuration of lines is our main issue, the intersections between lines char-

acterize how the corresponding vertices are related to the polytope (r−4)21. Here we
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discuss the relationship via the properties of the lines with fixed intersections. The

complete and uniform description will be given in the last section.

For a fixed line l, the isotropy group of l is Er−1-type, and, moreover, it is the same

with the symmetry group of the vertex figure of (r − 4)21. In fact, the vertex set of

vertex figures corresponds to the set of lines intersecting l at zero by the following

lemma.

Lemma 4.4 For distinct lines l1 and l2 in Pic Sr, the vertices Vl1 and Vl2 in the Gosset

polytope (r − 4)21 in H̃1 are joined by an edge if and only if l1 · l2 = 0.

Proof The semiregular polytope (r − 4)21 in H̃1 is the convex hull of its vertices.

Therefore, a fixed vertex and the vertices edged to it have the minimal distance among

the distance between vertices. Since the metric on the hyperplane H̃1 is negative

definite (see §3), the distance (l1 − l2)2 among lines in Lr is maximal if and only if

l1 · l2 = 0. Therefore we have the lemma.

Remark In fact, this lemma is one case of skew 2-lines of Theorem 5.1 in the next

subsection, which is proved by a different argument.

For a fixed line l in a del Pezzo surface Sr, 3 ≤ r ≤ 8, we consider the set

Nk(l, Sr) := {l ′ ∈ Lr | l ′ · l = k}. From the above lemma, we have |N0(l, Sr)| =
|Lr−1| = [Er−1 : Er−2], where the last equality is given by Theorem 4.2.

The simple comparison according to the above list of intersections of lines leads

us to the following useful lemma.

Lemma 4.5 For each line l in Pic Sr (4 ≤ r ≤ 8), |N1(l, Sr)| equals the number of

(r − 2)-crosspolytopes in the polytope (r − 5)21, i.e., [Er−1 :Dr−2].

Proof Since Weyl group W (Sr) acts transitively, we can choose an exceptional class

er, and the results on this line also hold for the other lines. When 4 ≤ r ≤ 6, a line

er intersects the other lines with 0 or 1. Since N0(er, Sr) is the number of lines in the

vertex figure, we have

N1(er, Sr) = |Lr| − |N0(er, Sr)| − |{er}| = |Lr| − |Lr−1| − 1.

So N1(e4, S4) = 3, N1(e5, S5) = 5, and N1(e6, S6) = 10. These are exactly the num-

bers of crosspolytopes in −121, 021, and 121, respectively.

For r = 7, a line e7 meets the other lines at 0, 1, or 2. As we saw above, −KS7
− e7

is the only line with intersecting e7 by 2. So we have

N1(e7, S7) = |L7| − |N0(e7, S7)| − |N2(e7, S7)| − |{e7}|

= |L7| − |L6| − 2 = 27

and this is the number of 5-crosspolytopes in 221.

For r = 8, a line e8 may have intersection 0, 1, 2, or 3 with other lines. Later, we

use a transformation between lines in Pic S8 defined by −(2KS8
+ l), for each line l in

L8. Observe that a line l intersects e8 at 0 if and only if −(2KS8
+ l) intersects e8 at 2.
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Therefore N0(e8, S8) = N2(e8, S8). Since −2KS8
− e8 is the only line in L8 intersecting

e8 at 3, we get

N1(e8, S8) = |L8| − |N0(e8, S8)| − |N2(e8, S8)| − |N3(e8, S8)| − |{e8}|

= |L8| − 2|L7| − 2 = 126.

and this is the number of 6-crosspolytopes in 321.

Remark The above results on Nk(l, Sr) appear again when we study the monoidal

transforms to lines in del Pezzo surfaces.

4.2 Faces in Gosset Polytope (r − 4)21

By Theorem 4.2, we construct the Gosset polytope (r − 4)21 in Pic Sr ⊗ Q , and we

want to characterize each face in (r − 4)21 as a class in Pic Sr. There are k-simplexes

0 ≤ k ≤ r − 1 and (r − 1)-crosspolytopes in (r − 4)21.

To identify each face in (r − 4)21, we want to use the barycenter of the face. By

Theorem 4.2, each vertex of the polytope (r − 4)21 represents a line in Sr, and the

true centers of simplexes (resp. crosspolytopes ) are written as (l1 + · · · + lk)/k (resp.

(l ′1 + l ′2)/2) in H̃1, which may not be elements in Pic Sr. Therefore, alternatively, we

choose (l1 + · · · + lk) as the center of a face so that (l1 + · · · + lk) is in Pic Sr.

4.2.1 Simplexes in (r − 4)21

Each a-simplex in (r−4)21 shares its edges with (r−4)21 and consists of a + 1 vertices

in (r − 4)21 joined with edges to each other. According to our understanding, these

vertices correspond to lines in Lr, where they are skew to each other, namely disjoint,

by Lemma 4.4. Therefrom, one can show that any set of (a+1) mutually disjoint lines

in Lr corresponds to an a-simplex in (r − 4)21. And we consider the set of centers of

a-simplexes 0 ≤ a ≤ r − 1 in (r − 4)21 defined by

Aa
r := {D ∈ Pic(Sr) | D = l1 + · · · + la+1, li disjoint lines in Lr}.

Thanks to convexity, we expect each center in Aa
r to represent an a-simplex in

(r − 4)21, and we prove this algebraically as follows. Therefrom, we have a bijection

between Aa
r and the set of a-simplexes in (r − 4)21.

Lemma 4.6 All the centers of a-simplexes in (r − 4)21 are distinct.

Proof Since a = 0 is trivial, we assume that 1 ≤ a ≤ r − 1. Let li , 1 ≤ i ≤ a + 1, be

skew lines of an a-simplex P in (r − 4)21, and assume there is another set of disjoint

lines l ′i , 1 ≤ i ≤ a + 1, of an a-simplex P ′ whose center is same with the center of P.

We observe that

(l1 + · · · + la+1) · l ′a+1 = (l ′1 + · · · + l ′a+1) · l ′a+1 = −1.

Therefore, l ′a+1 is one of the lines li , 1 ≤ i ≤ a + 1. And by induction, the choice of

lines la and the choice of lines l ′a are the same. Therefore, the a-simplexes P and P ′

are the same.
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Remark The referee pointed out that this lemma holds for any convex polytope,

namely, the center of a face F of a polytope P determines the face uniquely.

4.2.2 Crosspolytopes in (r − 4)21

An (r − 1)-crosspolytope consists of (r − 1) pairs of vertices, where all the pairs of

vertices share a common center that is also the center of the polytope. Furthermore,

a vertex in the polytope is joined to the other vertices by edges in the polytope except

for a vertex making the center with the given vertex. According to Theorem 4.2, an

(r − 1)-crosspolytope in Pic Sr is determined by (r − 1) pairs of lines. Since these

pairs share a common center, we consider two pairs of lines from the polytopes such

as (l1, l2) and (l ′1, l ′2) with l1 +l2 = l ′1 +l ′2. Because l1 is joined to l ′1 and l ′2, by Lemma 4.4

we have l1 · l2 = l1 · (l ′1 + l ′2 − l2) = 1. Therefore, each pair of lines in the crosspolytope

have intersection 1. In the following theorem, it turns out that a couple of lines with

intersection 1 characterize an (r − 1)-crosspolytope in (r − 4)21 . It is useful to note

that one can get li · l ′1 = 0 = li · l ′2, i = 1, 2, for the above pairs, and it implies that

any two pairs of lines with intersection 1 sharing a common center correspond to two

diagonal pairs of vertices in a square. Therefore, a center cannot be shared by more

than one (r − 1)-crosspolytope.

Theorem 4.7 For a del Pezzo surface Sr,

Br := {D ∈ Pic(Sr) | D = l1 + l2 where l1, l2 lines with l1 · l2 = 1},

is the set of centers of (r − 1)-crosspolytopes in (r − 4)21.

Proof From the above, we know each center of an (r − 1)-crosspolytope in (r − 4)21

gives an element of Br. Therefore, the cardinality of Br is at least the total number of

(r − 1)-crosspolytopes in (r − 4)21, which is [Er :Dr−1] (see § 2).

Now we want to show that |Br| = [Er :Dr−1] by calculating the number of pairs of

lines with intersection 1.

Since W (Sr) acts transitively on Lr, we can focus on a line er in Pic Sr . The isotropy

subgroup of er in W (Sr) is Er−1-type, as we saw in §§4.1. We choose another line

h − e1 − er with (h − e1 − er) · er = 1. Since W (Sr) preserves the intersection, the

isotropy subgroup Er−1 of er has an orbit of h− e1 − er such that each line in the orbit

has intersection 1 with er. The isotropy subgroup of h − e1 − er in Er−1 is generated

by the subgraph of Dynkin diagram which is perpendicular to h − e1 − er, i.e.,

u u u u

u

r r r

d2 d3 d4 dr−2

d0

.

Therefore it is of Dr−2-type, and moreover, the total number of elements in the orbit

is given by [Er−1 :Dr−2]. In fact, all the lines in Lr intersecting er by 1 are in this orbit
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by Lemma 4.5. Thus, we obtain that the number of lines intersecting by 1 with a fixed

line is [Er−1 :Dr−2].

Now the number of pairs in Lr with intersection 1 is given by

1

2
|Lr| · number of lines intersecting by 1 with a fixed line

=
1

2
[Er : Er−1] · [Er−1 :Dr−2] =

1

2
[Er :Dr−2].

On the other hand, the total number of pairs of lines with intersection 1 given by the

(r − 1)-crosspolytopes in (r − 4)21 is obtained from

1

2
|{(r − 1)-crosspolytope in (r − 4)21}|

× |{ pairs of lines with intersection 1 in an (r − 1)-crosspolytope}|

=
1

2
[Er :Dr−1] · [Dr−1 :Dr−2] =

1

2
[Er :Dr−2].

Therefore, all the pairs of lines with intersection 1 in Pic Sr are obtained from (r −
1)-crosspolytopes in (r − 4)21.

5 The Geometry of Gosset Polytopes in Pic Sr ⊗ Q

In this section, we explain the correspondences between faces of Gosset polytopes

(r − 4)21 and certain divisor classes in del Pezzo surfaces.

Here we consider the following divisor classes on a del Pezzo surface Sr satisfying

one of the following conditions.

(i) La
r := {D ∈ Pic Sr | D = l1 + · · · + la, li disjoint lines in Lr},

(ii) Er := {D ∈ Pic Sr | D2 = 1,KSr
· D = −3},

(iii) Fr := {D ∈ Pic Sr | D2 = 0,KSr
· D = −2}.

We call the divisor classes in La
r skew a-lines for each a. Note that a skew a-line D

satisfies D2 = −a and KSr
·D = −a. In fact, as we will see, skew a-lines are equivalent

to the divisors with D2 = −a and KSr
· D = −a, when 1 ≤ a ≤ 3.

The linear system of a divisor in the class D with D2 = 1, KSr
· D = −3 induces

a regular map to P2 ([10]). We call a divisor class in Pic Sr with these conditions an

exceptional system. As we will see, each choice of disjoint lines in Sr which produces

blowdowns from Sr to P2 gives one of these divisor classes, and the converse is also

true for r < 8. Note that for S6, each effective divisor D̃ with D̃2 = 1 and KSr
·D̃ = −3

corresponds to the twisted cubic surface (see [2]).

The divisor in class D in Fr with D2 = 0, KSr
D = −2 corresponds to the fiber

class of a ruling on Sr. Here a ruling is a fibration of Sr over P1 whose generic fiber is

a smooth rational curve. The rulings on the del Pezzo surfaces Sr play an important

role in research on line bundles on del Pezzo surfaces according to representation

theory (see [15, 16]). We also call the divisor classes in Fr rulings.
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5.0.1 Dual lattices and Theta Functions

The cardinalities of Lr, La
r , Er, and Fr are finite because each set is a compact and

integral subset of an affine hyperplane section in Pic Sr. Furthermore, one can obtain

them by solving the corresponding Diophantine equations. But when r ≥ 6, the

cardinalities are very big, so that we need another way to guarantee the validity of

our results of the simple calculation. The following argument deals with somewhat

different objects than we are aiming at. Thus we sketch the key ideas only and discuss

the details in another article. In the argument below, we follow the notation in [3].

First of all, we observe that the hyperplane section H0 in Pic Sr is the root lattice

Γr of the root system of Er, r ≥ 6. Here the set of minimal vectors in Γr is the set

of roots. We consider the translation of Hb = H̃b ∩ Pic Sr along the vector KSr
in

Pic Sr ⊗ Q . If b
9−r

KSr
is an integral vector, then Hb + b

9−r
KSr

in H̃0 is Γr. When r = 7

and b ∈ Z−2Z (resp. r = 6 and b ∈ Z−3Z), there is a glue vector v in H̃0 with norm

3/2 (resp. 4/3) such that v + Γr is Hb + b
9−r

KSr
. Therefore, for each b ∈ Z, Hb is

transformed into the union of v + Γr in H̃0, where v is a glue vector which can be the

origin. In fact, this union is the dual lattice of Γr. Now in order to figure out the total

number of integral solutions D ∈ Pic Sr satisfying D2 = a and D ·KSr
= −b, we send

D to H̃0 by D + b
9−r

KSr
and compute

−
(

D +
b

9 − r
KSr

) 2

= −a +
b2

9 − r
.

Then we look up the coefficient of degree −a + b2

9−r
in the theta series of dual lattices

of Γr. This gives us the number of solutions for the equations.

For example, to identify the number of elements in Lr via the theta series, we

observe

KSr
l = −1, l2 = −1

⇐⇒
(

l +
KSr

9 − r

)

· KSr
= 0,

(

l +
KSr

9 − r

) 2

= −1 −
1

9 − r
,

and the number of lines in Pic Sr is the same with the the coefficient of degree (1+ 1
9−r

)

in the theta series of the dual lattices of the root lattice of Er. If we consider L7, the

divisor classes in L7 are transformed into the dual lattice of Γ7 by D + 1/2KS7
with

norm 3/2. And the coefficient of the degree 3/2 in the theta series of the dual lattice

of E7 is 56 ([3]).

Note that the root lattice Γ8 of E8 is self dual, and the theta series of self dual lattice

Γ8 is given as

ΘΓ8
=

∞
∑

m=0

Nmqm, Nm = 240σ3

( m

2

)

,

where σr(m) =
∑

d|m dr. As we will see, lines and rulings in S8 correspond to lattice

points with norms 2 and 4, respectively. And the coefficients of q2 and q4 are 240 and

240(1 + 23) = 2160.
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5.1 Special Divisor Classes of del Pezzo Surface Sr and Faces of Gosset Polytope
(r − 4)21

In this subsection, we show La
r , Er, and Fr are bijective to faces in (r − 4)21. By

Lemma 3.1, the conditions in La
r , Er, and Fr are preserved by the action of W (Sr),

the Weyl group of the root spaces in Pic Sr. Therefore, the correspondences between

these divisor classes on del Pezzo surfaces and the faces in (r − 4)21 will be more than

numerical coincidences. Furthermore, since the geometry of faces in Er-semiregular

polytopes is basically configuration of vertices, it is natural to study the divisor classes

in Pic Sr with respect to the configurations of lines.

There are two types of faces in (r−4)21, which are a-simplexes(0 ≤ a ≤ r−1) and

(r−1)-crosspolytopes. In particular, the facets of (r−4)21 consist of (r−1)-simplexes

and (r − 1)-crosspolytopes. In this subsection, these top degree faces correspond to

the divisor classes representing rational maps from Sr to P2 and P1× P1, respectively.

5.1.1 Skew a-Lines and (a − 1)-Simplexes

In Subsection 4.2, we showed that Aa
r , the set of centers of a-simplexes in (r − 4)21, is

bijective to the set of a-simplexes in (r − 4)21. In fact the set Aa
r is the same as the set

of divisor classes so-called skew (a + 1)-lines,

La+1
r := {D ∈ Pic(Sr) | D = l1 + · · · + la+1, li disjoint lines in Lr}.

Therefore, we have the following theorem.

Theorem 5.1 The set of skew a-lines in Pic Sr, 1 ≤ a ≤ r is bijective to the set of

(a − 1)-simplexes, α(a−1), in the Gosset polytope (r − 4)21.

Remark • In particular, a skew 1-line is just a line in Lr that corresponds to the

vertices of Er-semiregular polytopes, and skew 2-lines represent edges in (r− 4)21.
• Since the vertices of an (a − 1)-simplex correspond to the lines consisting of a

skew a-line in Sr, each (a − 1)-simplex represents a rational map from Sr to

Sr−a obtained by blowing down the disjoint a-lines in Sr. In particular, each

(r − 1)-simplex in (r − 4)21 gives a rational map from Sr to P2.
• As the Weyl group W (Sr) act transitively on the set of (a − 1)-simplexes in the

Gosset polytope (r − 4)21, W (Sr) acts transitively on the set of skew a-lines.

It is easy to see that skew a-lines in Pic Sr satisfy D2 = −a and KSr
D = −a, which

are called a-divisors. The number of a-divisors in Sr, 2 ≤ a ≤ r, can be obtained

from the theta series of dual lattices of the root lattice of Er. First we observe

KSr
D = −a, D2

= −a

⇐⇒
(

D + a
KSr

9 − r

)

· KSr
= 0,

(

D + a
KSr

9 − r

) 2

= −a
(

1 +
a

9 − r

)

,

and according to [3], in Table 3 we have the table of the number of 2-divisors and

3-divisors.
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a S3 S4 S5 S6 S7 S8

2 6 30 80 216 756 6720

3 2 30 160 720 4032 60480

Table 3: Number of 2-and 3-divisors in Sr

In fact, the table gives the number of 1-simplexes and 2-simplexes in Gosset poly-

topes (r−4)21 (see §2). Therefore, by Lemma 4.6 and Theorem 5.1, the divisor classes

D in Pic Sr with D2 = −a and KSr
D = −a, 1 ≤ a ≤ 3 are skew a-lines. This gives the

following theorem.

Theorem 5.2 For 1 ≤ a ≤ 3, each divisor class D in Pic Sr with D2 = −a and

KSr
D = −a can be written as the sum of skew lines l1, . . . , la, where the choice is unique

up to the permutation.

5.1.2 Exceptional Systems and (r − 1)-Simplexes in (r − 4)21

Recall that (r − 1)-simplexes in (r − 4)21 are one of two types of facets in (r − 4)21,

and each (r − 1)-simplex in (r − 4)21 corresponds to disjoint r-lines in Pic Sr giving a

rational map from Sr to P2. But the above correspondence between (r − 1)-simplex

in (r−4)21 and skew r-lines in Pic Sr is somewhat coarse and we want to have another

approach. Here we consider classes which we called exceptional systems.

An exceptional system is a divisor class D on a del Pezzo surface Sr with D2 = 1

and D ·KSr
= −3, and the linear system of D gives a regular map from Sr to P2 ([10]).

We denote the set of exceptional systems in Pic Sr as

Er := {D ∈ Pic(Sr) | D2
= 1,KSr

· D = −3}.

When r = 6, each linear system with the above conditions contains a twisted cubic

curve and it is also known that there are 72 of such classes. In fact, according to the

correspondence between skew a-lines in S6 and (a − 1)-simplexes in 221, we can see

the number of exceptional systems in S6 equals the number of 5-simplexes. As we saw

in the remarks following Theorem 5.1, each (r − 1)-simplex in (r − 4)21 corresponds

to the rational map from Sr to P2. Therefore, it is natural to compare the set of

(r − 1)-simplex in (r − 4)21 and the set of exceptional systems. Here we explain that

each (r − 1)-simplex in (r − 4)21 is related to an exceptional system, and moreover,

two sets of these are bijective for 3 ≤ r ≤ 7.

First, we observe

D · KSr
= −3, D2

= 1

⇐⇒
(

D +
3KSr

9 − r

)

· KSr
= 0,

(

D +
3KSr

9 − r

) 2

= 1 −
9

9 − r

and from the theta series of dual lattice of root lattice of Er, the number of exceptional

systems can be listed as below. We observe that the numbers of exceptional systems
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del Pezzo Surfaces Sr S3 S4 S5 S6 S7 S8

number of exceptional systems 2 5 16 72 576 17520

(r − 4)21 −121 021 121 221 321 421

number of (r − 1)-simplexes 2 5 16 72 576 17280

Table 4:

in del Pezzo surfaces and the numbers of top degree subsimplexes in (r − 4)21 are the

same except r = 8.

To explain the correspondence, we define a transformation Φ from Er to Lr
r by

Φ(Dt ) =: KSr
+ 3Dt for Dt ∈ Er. It is well defined because

Φ(Dt ) · KSr
= (KSr

+ 3Dt ) · KSr
= −r, Φ(Dt )

2
= −r.

In the following theorem, the transformation Φ leads to a correspondence between

Er and Lr
r.

Theorem 5.3 When 3 ≤ r ≤ 8, each (r − 1)-simplex in (r − 4)21 corresponds to an

exceptional system in the del Pezzo surfaces Sr. Moreover, for 3 ≤ r ≤ 7 the Weyl group

W (Sr) acts transitively on Er, the set of exceptional systems in the del Pezzo surface Sr,

and Er is bijective to Lr
r, the set of skew r-lines in Pic Sr.

Proof First we observe that the above transformation Φ is injective and equivariant

for the action of the Weyl group W (Sr), by Lemma3.1. We consider a class h in Pic(Sr)

which is an exceptional system. Here Φ sends h to the sum of disjoint exceptional

classes e1 + · · · + er, which is a skew r-line representing one of (r − 1)-simplexes by

Theorem 5.1. And the orbit containing h in Er corresponds to the orbit containing

e1 + · · · + er in Lr
r. Since the action of W (Sr) on Lr

r is transitive, each skew r-line

representing an (r − 1)-simplex corresponds to an exceptional system. According to

Table 4, Er also acts transitively on W (Sr) for 3 ≤ r ≤ 7.

Remark When r = 8, the set of exceptional systems has two orbits. One orbit, with

17280 elements, corresponds to the set of skew 8-lines in S8, and the other orbit, with

240 elements, corresponds to the set of E8-roots, since for each E8-root d, −3KS8
+ d

is an exceptional system.

5.1.3 Rulings and Crosspolytopes

Now the crosspolytopes that are the other type of facets in (r − 4)21 are the only

remaining faces in (r − 4)21. In Subsection 4.2, the set of (r − 1)-crosspolytopes

in (r − 4)21 is bijective to the set of their centers, defined by Br. Observe that each

element in Br, l1 + l2 with l1 · l2 = 1 satisfies (l1 + l2)2 = 0 ,KSr
· (l1 + l2) = −2,

and we consider the divisor classes with these conditions. Furthermore, the divisor

classes correspond to the rational maps from Sr to P1× P1.

The divisor class f on del Pezzo surface Pic Sr with f 2 = 0, KSr
· f = −2 is called

a ruling since the divisor in it corresponds to a fibration of Sr over P1 whose generic
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fiber is a smooth rational curve. The set of rulings in Pic Sr is denoted as

Fr := { f ∈ Pic(Sr) | f 2
= 0,KSr

· f = −2}.

The number of rulings in Pic Sr can be obtained from the theta series of the dual

lattice of root lattice of Er as follows:

KSr
f = −2, f 2

= 0

⇐⇒
(

f +
2KSr

9 − r

)

· KSr
= 0,

(

f +
2KSr

9 − r

) 2

= −
4

9 − r
.

Furthermore, we get the following parallel list of the numbers of rulings in del Pezzo

surface Sr and the numbers of crosspolytopes in (r − 4)21.

del Pezzo Surfaces Sr S3 S4 S5 S6 S7 S8

number of rulings 3 5 10 27 126 2160

(r − 4)21 −121 021 121 221 321 421

number of (r − 1)-crosspolytopes 3 5 10 27 126 2160

Table 5:

To get a rough idea about these parallel lists of numbers, we consider the following.

By Lemma 3.1, the set of rulings in Sr is acted on by the Weyl group W (Sr). We

consider a ruling h− e1. The isotropy group of h− e1 is generated by the simple roots

perpendicular to h − e1 with the relationships represented as

e u u u u

u

r r rq q q

d1 d2 d3 d4 dr−1

d0

Thus it is Dr−1-type, and the number of elements in the orbit containing h − e1

is [Er :Dr−1]. This procedure is exactly the same as counting the number of (r − 1)-

crosspolytopes in an (r−4)21. As a matter of fact, the action of the Weyl group W (Sr)

on rulings is transitive from the following theorem. A part of following theorem

appears in [1, 15].

Theorem 5.4 For each ruling f in a del Pezzo surface Sr, there is a pair of lines l1 and

l2 with l1 · l2 = 1 such that f is equivalent to the sum of l1 + l2. Furthermore, the set

of rulings in Sr is bijective to the set of (r − 1)-crosspolytopes in (r − 4)21 and is acted

transitively upon by the Weyl group W (Sr).
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Proof From Subsection 4.2, Br (the set of centers of (r − 1)-crosspolytopes in

(r − 4)21) is already a subset of rulings Fr. Since Br is bijective to the set of (r − 1)-

crosspolytopes in (r − 4)21, |Br| = |Fr|. Therefore Br = Fr and each ruling can be

written as the two lines with intersection 1. This also shows that Fr is bijective to

the set of (r − 1)-crosspolytopes in (r − 4)21. Since this correspondence is naturally

equivariant for the Weyl group W (Sr) action and the set of (r − 1)-crosspolytopes in

(r − 4)21 acted transitively on by W (Sr), Fr is also transitively acted on by W (Sr).

According to Theorem 4.2, the vertices of an (r − 1)-crosspolytope must corre-

spond to lines in the linear system of a ruling. Here we consider the pairs of antipodal

vertices in the (r − 1)-crosspolytope and their correspondences in a ruling. The an-

tipodal vertices in the pair are the two bipolar points in the crosspolytope, which is a

bipyramid. The number of the pairs of antipodal vertices in an (r− 1)-crosspolytope

is (r − 1). Hence, we get the following corollary.

Corollary 5.5 For each ruling f in a del Pezzo surface Sr there are (r − 1)-pairs of

lines with 1-intersection whose sum is f . Furthermore, each of these pairs corresponds

to antipodal vertices of the (r − 1)-crosspolytope corresponding to f in (r − 4)21.

From the above corollary, we obtain the following useful lemma.

Lemma 5.6 For a ruling f and a line l in Pic Sr, the following are equivalent.

(i) f · l = 0.

(ii) f − l is a line.

(iii) The vertex represented by l in (r − 4)21 is one of the vertices of the (r − 1)-

crosspolytope corresponding to f .

Remark As the (r − 1)-simplex faces in (r − 4)21 are related to the blowing down

from Sr to P2, the crosspolytope which is the other type of facets in (r−4)21 gives the

blowing down from Sr to P1 × P1. Here we give an example of this blowing down.

This will be discussed further in another article.

For cubic surfaces S6, it is well known that there are two disjoint lines la and lb,

and five parallel lines li , 1 ≤ i ≤ 5 that meet both la and lb. Furthermore, for each

pair la (resp. lb) and li , there is a line lai (resp. lbi) intersecting la (resp. lb) and li .

Blowing down of five disjoint lines li gives a rational map from S6 to P1 × P1. From

the facts in this article, for each line li , lai + li produces the same ruling, namely, li and

lai for 1 ≤ i ≤ 5 correspond to ten vertices of a 5-crosspolytope. And the same fact

is true for lines li and lbi , 1 ≤ i ≤ 5. Therefore proper choice of 5-crosspolytopes in

a Gosset polytope 221 gives a blowing down from S6 to P1 × P1.

For example, we consider two disjoint lines e6 and 2h −
∑6

k=1 ek + e6 in S6. For

the line e6, there are five pairs of lines ei and h− ei − e6, 1 ≤ i ≤ 5, where e6 , ei , and

h − ei − e6 have 1-intersections to each other. Similarly, the line 2h −
∑6

k=1 ek + ei

has five pairs of lines 2h −
∑6

k=1 ek + ei and h − ei − e6, 1 ≤ i ≤ 5. And we find five

disjoint lines h − ei − e6, 1 ≤ i ≤ 5, that give a blowing down to P1 × P1. Here we

observe that the five pair of lines for e6 are from a ruling (h − ei − e6) + ei = h − e6

and correspond to the antipodal vertices in the crosspolytope in 221 corresponding
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to h − e6. Similarly the five pairs of lines for h − ei − e6 are from a ruling

(h − ei − e6) +
(

2h −

6
∑

k=1

ek + ei

)

= 3h −

6
∑

k=1

ek − e6.

This observation induces interesting relationships between the geometry of cubic

surfaces and the combinatorial data on a Gosset polytope 221. Furthermore, as each

del Pezzo surface blows down to P1 × P1, we can search the similar works on the del

Pezzo surfaces of the other degree and the corresponding Gosset polytopes.

6 Applications

6.1 Monoidal Transforms for Lines

In this subsection, we consider lines along the blowup procedure producing del Pezzo

surfaces to study the geometry of Gosset polytopes (r − 4)21 according to the above

correspondences.

This blowup procedure can be applied to rulings and other special divisor classes

in this article so as to obtain recursive relationships corresponding to faces in Gosset

polytopes (r − 4)21. Furthermore, we can also use this procedure by virtue of inter-

esting combinatorial relationships on faces in Gosset polytopes (r − 4)21, which are

also related to the Cox ring of del Pezzo surfaces [1]. This is explained in [14].

For a fixed vertex P in a Gosset polytope (r − 4)21, the set of vertices with the

shortest distance from P is characterized as the vertex figure of P by the action of

an isotropy group of Er−1-type. But the description of the set of vertices with greater

distance from P requires a rather indirect procedure. Here, we consider divisor classes

producing lines by blowup and apply these to study the set of vertices with greater

distance from P according to the correspondences between vertices and lines.

For a fixed line l in a del Pezzo surface Sr, 3 ≤ r ≤ 8, we consider a set

Nk(l, Sr) = {l ′ ∈ Lr | l ′ · l = k}

that also presents the set of lines in Sr with the same distance from l. In Section 4,

we described the local geometry of the polytope via case study on these sets of lines.

Here, by using blowup procedure on lines, we complete the description in a uniform

manner.

Since a del Pezzo surface Sr is obtained by blowing up one point on Sr−1 to a line

l in Sr, we can describe divisor classes in Sr−1 producing lines in Sr after blowing up.

In fact, the choice of the above line l can be replaced by the exceptional class er in Sr

which is the exceptional divisor in Sr given by a blowup of a point from Sr−1. The

proper transform of a divisor D in Pic(Sr−1) producing a line in Sr satisfies

(D − mer)
2
= −1, (D − mer) · (KSr−1

+ er) = −1

for a nonnegative integer m. Therefore, we consider a divisor D in Pic(Sr−1) with

D2
= m2 − 1, D · KSr−1

= −m − 1.
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By the Hodge index theorem we have

(m2 − 1)K2
Sr−1

= D2K2
Sr−1

≤ (D · KSr−1
)2

= (−m − 1)2,

which implies −1 ≤ m ≤ 1 + 2/(9 − r). Thus the list of possible m is

m =











0, 1 4 ≤ r ≤ 6,

0, 1, 2 r = 7,

0, 1, 2, 3 r = 8.

Definition 6.1 A line l in the Picard group of del Pezzo surface Sr obtained by

blowup from a divisor class D in Sr−1 is called an m-degree line if l = D − mer, where

er is the exceptional class produced by the blowup.

(i) 0-degree line in Sr, 4 ≤ r ≤ 8: Each 0-degree line in Sr corresponds to a line in

Sr−1 and the number of 0-degree lines equals the number of lines in Sr−1.

(ii) 1-degree line in Sr, 4 ≤ r ≤ 8: A divisor D in Sr−1 with D2 = 0 and D ·KSr−1
=

−2 corresponds to a 1-degree line in Sr. Therefore, Fr−1 the set of rulings in

Sr−1 is bijective to the set of 1-degree lines in Sr.

(iii) 2-degree line in Sr, r = 7, 8: When r = 7 (resp. r = 8), there are 2-degree

lines given by divisors in Pic S6 (resp. Pic S7) with D2 = 3 and DKS6
= −3. For

r = 7, by the Hodge index theorem, −KS6
is the only divisor in S6 with these

equations. For r = 8, we can transform the equations to (D + KS7
)2 = −1, and

(D + KS7
) · KS7

= −1, which represent lines in S7. Therefore, the number of

2-degree lines in S8 is the same as the number of lines in S7.

(iv) 3-degree line in S8: For r = 8, there are 3-degree lines obtained from divisors

in Pic(S7) with D2 = 8 and DKS7
= −4. These equations are equivalent to

(D + 2KS7
)2 = 0 and (D + 2KS7

) · KS7
= 0. Therefore, −2KS7

is the only divisor

in S7 producing a 3-degree line in S8.

Now we obtain the following theorem.

Theorem 6.2 Let l be a fixed line in a del Pezzo surface Sr, 4 ≤ r ≤ 8, and Vl the

vertex corresponding to the line l in the polytope (r − 4)21.

(i) N0(l, Sr), 4 ≤ r ≤ 8, is bijective to the set of lines Lr−1 in Sr−1, and equivalently,

it is also bijective to the set of vertices in the polytope (r − 5)21.

(ii) N1(l, Sr), 4 ≤ r ≤ 8, is bijective to the set of rulings containing l in Sr which is also

bijective to the set of rulings Fr−1 in Sr−1. Equivalently, it is also bijective to the

set of (r − 1)-crosspolytopes in the polytope (r − 4)21 containing Vl and the set of

(r − 2)-crosspolytopes in the polytope (r − 5)21.

(iii) N2(l, S8) is bijective to N0(−2KS8
− l, S8), the set of skew lines in S7 for a line

−2KS8
− l, and equivalently it is also bijective to the set of lines in S7.

(iv) N2(l, S7) = {−KS7
− l} and N3(l, S8) = {−2KS8

− l}.

Proof Since Nk(l, Sr) is equivalent to the k-degree lines in Sr, the above description

of blowups for lines and Theorem 5.4 give the theorem.
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Remarks For r = 3, |N0(l, S3)| = 3 and |N1(l, S3)| = 2.

For S7, each element l ′ in N1(l, S7) satisfies (−KS7
− l) · l ′ = 0. Therefore,

N1(l, S7) is bijective to N0(−KS7
−l, S7), and the theorem explains |F6| = |N1(l, S7)| =

|N0(−KS7
− l, S7)| = |L6|, namely, the number of lines and rulings in S6 are the same.

For S8, each line l ′ in S8 satisfies (−2KS7
− l) · l ′ = 2 − l · l ′. Thus we have

|N0(l, S8)| = |N2(−2KS8
− l, S8)| and |N1(l, S8)| = |N1(−2KS8

− l, S8)|.

6.2 Gieser Transform and Bertini Transform for Lines

Recall that for two lines l1 and l2 in S7, l1 · l2 = 2 is equivalent to l1 + l2 = −KS7
. In

fact, each pair of lines in S7 with a 2-intersection represents a bitangent of degree 2

covering from S7 to P2 given by | − KS7
|. Thus according to this relation, each line

in Pic S7 determines another line in Pic S7. Similarly, any two lines l ′1 and l ′2 in S8

with l ′1 · l ′2 = 3 equivalently hold l1 + l2 = −2KS8
and these two lines in S8 with

3-intersection are related to a tritangent plane of degree 2 covering from S8 to P2

given by | − 2KS8
|. Thus again each line in Pic S8 determines another line in Pic S8

with respect to the covering. Here the deck transformation σ of the covering is a

biregular automorphism of S7 (resp. S8). For a blowdown π : S7 → P2, πσ is another

blowdown, and the corresponding birational transformation (πσ)π−1 : P2 → P2 is

called a Gieser transform (resp. Bertini transform) (see [10, Chapter 8]). Therefore,

the Gieser transform corresponds to a transformation G on lines in S7 defined as

G(l) := −(KS7
+ l),

and we also call G the Gieser transform on lines or simply the Gieser transform. Simi-

larly a transformation B on lines in S8 defined as

B(l) := −(2KS8
+ l)

is referred as the Bertini transform on lines or simply the Bertini transform.

Since both the Gieser transform and the Bertini transform are defined on the set

of lines, we can extend the definition to any divisor written as a linear sum of lines.

Namely, for a divisor class D given as a1l1 + · · · + amlm in S7

G(D) := a1G(l1) + · · · + amG(lm),

and similarly in S8,
B(D) := a1B(l1) + · · · + amB(lm).

And for lines l1, l2 in Pic S7 and lines l ′1, l ′2 in Pic S8, we have

G(l1) · G(l2) = (KS7
+ l1) · (KS7

+ l2)

= K2
S7

+ (l1 + l2) · KS7
+ l1 · l2 = l1 · l2,

B(l ′1) · B(l ′2) = (2KS8
+ l ′1) · (2KS8

+ l ′2)

= 4K2
S8

+ 2(l ′1 + l ′2) · KS8
+ l ′1 · l ′2 = l ′1 · l ′2.
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Therefore, G and B preserve the intersections between lines; G and B are symmetries

on 321 and 421, respectively. Moreover, since all the regular faces we discussed in 321

and 421 are written as linear sums of lines, G and B act on the set of these faces. In

summary, we have the following theorem.

Theorem 6.3 The Gieser transform G on the set lines in Pic S7 and the Bertini trans-

form B on the set of lines in Pic S8 can be extended to a symmetry of 321 and 421, respec-

tively.

Naturally, further studies on Gieser transform G and Bertini transform B are per-

formed along the degree 2 coverings from S7 to P2 and from S8 to P2. This is contin-

ued in [14] and another article.

Remark The above pairs of lines are special cases of Steiner blocks related to the

inscribed simplexes in (r − 4)21. See [14].
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