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Abstract
Motivated by overcoming the existing utility-based choice modeling approaches, we
present a novel conceptual framework of multidimensional network analysis (MNA)
for modeling customer preferences in supporting design decisions. In the proposed
multidimensional customer–product network (MCPN), customer–product interactions
are viewed as a socio-technical system where separate entities of ‘customers’ and
‘products’ are simultaneously modeled as two layers of a network, and multiple types
of relations, such as consideration and purchase, product associations, and customer
social interactions, are considered. We first introduce a unidimensional network where
aggregated customer preferences and product similarities are analyzed to inform designers
about the implied product competitions andmarket segments.We then extend the network
to a multidimensional structure where customer social interactions are introduced for
evaluating social influence on heterogeneous product preferences. Beyond the traditional
descriptive analysis used in network analysis, we employ the exponential random graph
model (ERGM) as a unified statistical inference framework to interpret complex preference
decisions. Our approach broadens the traditional utility-based logit models by considering
dependency among complex customer–product relations, including the similarity of
associated products, ‘irrationality’ of customers induced by social influence, nested
multichoice decisions, and correlated attributes of customers and products.

Key words: user needs and preferences, network analysis, social influence, discrete choice
analysis, preference model

1. Introduction
Understanding customer preferences, interests, and needs is critically important
in developing successful products (Ulrich 2003). In the past decade, the theory
of decision-based design and various preference modeling techniques have been
continuously developed for this purpose (Shiau & Michalek 2009; Frischknecht
et al. 2010; Chen et al. 2013; Morrow et al. 2014). However, analytical modeling of
customer preferences in product design is inherently difficult as it faces challenges
in modeling heterogeneous human behaviors, complex human interactions,
and a large variety of product offerings. Motivated by overcoming the existing
utility-based choice models, we propose a novel multidimensional network
analysis (MNA) approach, rooted in social network analysis for modeling
complex customer–product relations. The focus of this paper is on presenting
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the conceptual framework of the proposed multidimensional customer–product
network (MCPN) together with the development of exponential random graph
model (ERGM) for preference data analysis. By using the network approaches
developed in this paper, designers could, in principle, gain a better insight into
the customers’ desires and preferences, the market structures, the competitive
landscape, the strength of social influence, and the key attributes of their own
and their competitors’ products. In new product development and future strategic
planning, the constructed networkmodel can be used to identify the right product
configurations for targeted group of customers in a new market.

In recent years, disaggregate quantitative models such as discrete choice
analysis (DCA) (Ben-Akiva & Lerman 1985; Train 2009) have been widely
studied by the engineering design research community for consumer preference
modeling. Following the random utility theory, the customer purchase decision
is captured by a utility function of product attributes/features and customer
attributes (e.g., social demographic and usage attributes) (Hoyle et al. 2010; He
et al. 2012). Even though DCA provides a probabilistic approach for modeling
customer heterogeneity, there are several major obstacles regarding their use in
practical design applications:

(i) Dependency of alternatives. Standard logit models usually ignore correlations
in unobserved factors over product alternatives by assuming observations are
independent, i.e., whether a customer chooses one product is not influenced
by adding or substituting another product in the choice set. This is also
known as the independence of irrelevant alternatives (IIA) property, whose
implication is not realistic for applications with similar product offerings.
Though advanced logit models have been developed to address this issue
by introducing certain correlation structures among the error terms, they
cannot accommodate any dependent decisions explicitly.

(ii) Rationality of customers. The utility-function-based choice modeling
approach assumes customers make rational and independent decisions.
However, in reality customers influence each other, and their socially
influenced decisions can sometimes be considered ‘irrational’. As such, it
is reasonable to expect that social effects, such as geographical proximity,
communication ties, friendship connections, and social conformity have
large influences on customer attitude and behavior.

(iii) Correlation of decisions. Correlated decisions often exist, such as in forming
a consideration set. It is important to realize that decisions in such situation
are often nested within one another. For example, the decision of how many
products and what products to consider could be nested. Unfortunately,
classical regression models ignore these correlations, and therefore, cannot
estimate the influence of correlated decisions.

(iv) Collinearity of attributes. To evaluate the underlying preference for each
product attribute (feature), it is often desirable that preference data used for
modeling has little to no collinearity. However, revealed preference data is
very vulnerable to collinearity as the data is drawn directly from the real
market. For example, low price vehicles are more possible to have smaller
engine capacity and as a result, low fuel consumptions. However, it is hard
to tell whether customers are buying cars because they are low price or
because they are fuel efficient. The presence of collinearity implies that
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Figure 1. Customer–product relations as a complex network system, with five types
of relations and two types of nodes.

the contribution of each attribute is difficult to evaluate separately using
utility-based logit models.

Our goal in this work is to overcome the limitations of existing quantitative
methods for modeling customer preferences in engineering design. We aim to
develop a preference model that broadens the utility-based DCA by considering
complex customer–product relations, including the similarity of associated
products, ‘irrationality’ of customers induced by social influence, nested
multichoice decisions, and correlated attributes of customers and products. To
this end, we propose a novel MCPN framework as shown in Figure 1. As seen,
customer–product interactions form a complex socio-technical system (Trist
1981), not only because there are complex relations between the customers (e.g.,
social interactions) and amongst the products (e.g., market segmentation or
product family), but also because there exist multiple types of relations between
customers and products (e.g., ‘consideration’ versus ‘purchase’). Our research
premise is that, similar to other complex systems exhibiting dynamic, uncertain,
and emerging behaviors, customer–product relations should be viewed as a
complex socio-technical system and analyzed using social network theories
and techniques. The structural and topological characteristics identified in
customer–product networks can reveal emerging patterns of customer–product
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relations while taking into account the heterogeneities among customers and
products.

In the literature, network analysis has emerged as a key method for analyzing
complex systems in a wide variety of scientific, social, and engineering domains
(Wasserman & Faust 1994). The approach provides visualization of complex
relationships depicted in a network graph, where nodes represent individual
members and ties/links represent relationships between members. Built upon
conventional network analysis, social network analysis views social relations in
terms of network theories, and the links in the observed network are explained
by the underlying social processes such as self-interest, collective action, social
exchange, balance, homophily, contagion, and co-evolution (Monge &Contractor
2003).

Most existing applications of network analysis are unimodal or unidimensional
that contain a single class of nodes (either human or non-human artifact)
and a single type of relation. For example, our previous research characterizes
customer consideration preferences over a decision set of products through
a unidimensional product association network, where the link represents the
customer consideration decision and the node represents the product offering.
Even though the analysis of unidimensional network structures has been used
in our early research to understand product competitions (Wang et al. 2015),
and predicting heterogeneous choice sets using DCA (Wang & Chen 2015), the
preference analysis can only be performed in the aggregated level representing
the average preference decision across the customer population. A more complex
structure is the bipartite network, which contains both human and non-human
technological elements as nodes, and a single type of relation connecting the two
sets of nodes. With the addition of the second type of node (consumer) into
the network, researchers can model preferences at the disaggregated individual
level as opposed to the aggregated group level preferences studied in our previous
work (Wang et al. 2015; Wang & Chen 2015). In the literature, recent social
network researchers put more emphasis on the development ofmultidimensional
networks (Contractor et al. 2011), which include multiple types of nodes, as well
as multiple types of relations represented by non-directed or directed links at
multiple levels (see Figure 2). It has been recognized that the multidimensional
structures can be useful in studying how technologies can simultaneously shape
and be shaped by the social structures into which they are introduced, because
technology and people are modeled in two separate layers of a network. On one
hand, the social structures can influence how people conceive a new technology
(or a product), as well as whether and how they will use it (Rice & Aydin 1991;
Kraut et al. 1998; Karahanna et al. 1999). On the other hand, new technologies
(or products) could bring changes to social and communication relationships
among people (Dimaggio et al. 2001). To the authors’ knowledge, this paper
represents the first attempt to introduce MNA into engineering design. The
complex customer–product interactions are represented as a multidimensional
network where multiple relationships are considered, including social network
relations among customers, association relations among products, as well as
preference relations between customers and products.

Beyond most existing network analyses that are descriptive in nature, our
research introduces the exponential random graph model (ERGM) as a unified
statistical inference framework for MNA. Exponential random graph model is
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Figure 2. Development of network structures.

increasingly recognized as one of the central approaches in analyzing social
networks (Robins et al. 2007; Lusher et al. 2012; Wang et al. 2013). Exponential
random graph models account for the presence (and absence) of network links
and thus provide a model for analyzing and predicting network structures.
Exponential random graph models have several advantages over the utility-based
logit models: (1) network links are modeled to be interdependent in ERGM rather
than assumed to be independent; (2) ERGMs can incorporate binary, categorical,
and continuous nodal attributes to determine whether they are associated with
the formation of network links, (3) ERGMs are capable of characterizing local
and global network features; (4) ERGMs can be applied in flexible ways to
many different types of networks and relational data; (5) data used for fitting
ERGMs can be cross-sectional or longitudinal (changes with time), and a dynamic
model can be built to study the emergence and dynamics of a network; (6) in
contrast to a machine learning model that focuses on prediction, ERGM is an
explanatory model whose results can be used to derive behavioral theories and
design implications.

This paper employs MNA for the study of customer–product relations as
a complex MCPN in the context of engineering design. While the proposed
MCPN is expected to be widely applicable for characterizing any type(s) of
preference relations (e.g., consideration decision, purchase decision), the detailed
development in this paper is devoted to modeling consideration decisions
among product alternatives. Our emphasis in this paper is on demonstrating
the uniqueness and potential of the MNA approach rather than testing the model
prediction capability per se. Examining how to improve the prediction accuracy
of such network models to improve the quality of design decisions belongs to
future work. The rest of the paper is organized as follows. Section 2 introduces the
technical background and recent accomplishments in social network research.
Section 3 describes the conceptual framework of the proposed approach and
illustrate the development of MCPN progressively from a unidimensional
structure to a multidimensional structure with multiple types of nodes and links.
Section 4 develops two network implementations using the vehicle preference
data in China market – a descriptive approach for a unidimensional network
and a statistical inferential technique for a multidimensional network. Finally,
Section 5 presents the pros and cons of the MNA approach and the opportunities
for future research.
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2. Technical background
2.1. Network analysis in product design and market study
Network analysis has attracted considerable interest in product design andmarket
study. In product design, network analysis has been used to characterize a
complex product as a network of components that share technical interfaces or
connections. Using the network metrics such as ‘centrality’, Sosa et al. (2007)
defined three measures of modularity as a way to improve the understanding
of product architecture. Based on Sosa’s work, Fan et al. (2013) developed
a bottom-up strategy for modular product platform planning. A recent work
by Sosa et al. (2011) found that proactively managing the use of network
structure (such as hubs) may help improve the quality of complex product
designs. Network analysis has also been applied to studying designers’ network
for understanding organizational behavior (Contractor et al. 2011) and improving
multidisciplinary design efficiency (Cormier et al. 2012). In market study, text-
mining apparatus has been integrated into a network analysis framework to
understand customers’ top-of-mind associative network of products based on a
large-scale, customer generated dataset on theWeb (Netzer et al. 2012). However,
all the aforementioned product/feature networks are unidimensional, without
including customers and their (preferences) relations to products in the same
network. In contrast to the existing unidimensional product network analysis
approaches, our multidimensional customer–product network (MCPN) is built
with both product and customer nodes, together with product feature associations
and customer social network, to understand how customer decision-making
interacts with product attributes and how social influence affects individual
decisions for new products.

2.2. Modeling the impact of social influence
There is growing recognition that modeling the impact of social influence is
important in product design (Aral & Walker 2011). A comprehensive study of
how peer influence affects product attribute preference was provided by Narayan
et al. (2011) who modeled three different mechanisms of social influence. By
combining traditional conjoint analysis on product features with peer influence,
their work showed that peer influence causes people to change perspective on
product importance, and that someproduct attributes aremore sensitive to change
than others. However, the approach requires a strict format of survey data to
evaluate the attitude change before and after exposure to peer influence.

In modeling social influence in customer vehicle choices, a simulation-based
approach has been developed in our earlier research to capture the dynamic
influence from social networks on the adoption of hybrid electric vehicles (He
et al. 2014). The social network impact is captured via introducing ‘social influence
attributes’ into the discrete choice utility function. The effects of these attributes
are assessed through the social network simulation, where the network was
constructed based on the ‘social distances’ measured by the dissimilarities of
customers’ social profiles. This approach was demonstrated through a vehicle case
study where a customer’s decision in choosing an eco-friendly alternative fuel
vehicle could be influenced by neighbors and friends modeled as a small-world
network. Similar treatments of using a small-world network for capturing social
influence have also been found inWatts & Strogatz (1998) and Delre et al. (2007).
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In this research, a multidimensional network approach is proposed to measure
simultaneously customer–customer social interactions together with customer–
product preference relations for assessing social impact on preference decisions.
A simulation-based social network construction approach, similar to He et al.
(2014), is applied to convert customer attribute vectors into relational data in
constructing the social network as a part of the MCPN which takes into account
the interdependence of attributes and the interactions between customers and
products.

2.3. Advances in social network analysis
In the past decade, social network scholarship has made a concerted effort
to move from describing a network to developing techniques that explain the
emergence and dynamics of networks. Development of analytical techniques to
explain the emergence of networks is often motivated by the multitheoretical
multilevel (MTML) framework (Monge & Contractor 2003). Social network
models are multitheoretical because of the growing recognition among social
network researchers that the emergence of a network can rarely be adequately
explained by a single theory. Therefore, social network models combine disparate
theoretical generative mechanisms, such as self-interest, collective action, social
exchange, balance, homophily, proximity, contagion, and co-evolution. Social
network models have multilevel interpretations because the emergence of a
network can be influenced, for instance, by theories of self-interest that refer to
characteristics of actors (at the individual level), theories of social exchange that
describe links between pairs of actors (at the dyadic level), theories of balance that
explain the configuration of links among three actors (at the triadic level), and
theories of collective action that explain configurations among larger aggregates of
actors (at the group or network level).

Among the network modeling techniques, the ERGM provides the statistical
inference framework for MNA. Technically, we can define matrix Y as a random
graph in which rows and columns represent customers and products, respectively.
Yi j = 1 refers to a relation, such as the preference (consideration or purchase)
decision between customer i and product j , and 0 otherwise. Exponential random
graph models have the following form:

Pθ (Y = y) =
1

c(θ)
exp{θTz(y)}, (1)

where (i) y is the observed network, a random realization of Y; (ii) z(y) is a vector
of network statistics corresponding to network characteristics in y, and the settings
of product and consumer attributes; (iii) θ is a parameter vector indicating the
effects of the network statistics; (iv) c is the normalizing constant that ensures the
equation is a proper probability distribution. Eq. (1) suggests that the probability
of observing any particular graph (e.g. MCPN) is proportional to the exponent of
a weighted combination of network characteristics: one statistic z(y) is more likely
to occur if the corresponding θ is positive. Examples of possible z(y) statistics used
in MCPN are detailed in Section 3.3. Our research aims to interpret the meaning
of these network effects z(y) in order to understand customer–product relations
for product design.
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Figure 3. Multidimensional customer–product network.

3. A multidimensional network approach for
preference modeling

3.1. The multidimensional customer–product network (MCPN)
framework

In this paper, we recast the problem of modeling customer preferences as network
modeling of customer–product relations. We view engineering products as an
inherent part of the expanded social network along with human actors. Figure 3
describes the structure of the MCPN framework, which is characterized by two
classes of nodes at two layers (‘product’ and ‘customer’) and multiple types of
relations within and between the two layers.

The product layer contains a collection of engineering products P (e.g.,
vehicles, electronics and appliances, software). Products are connected by various
links which can be either directed or non-directed. Directed links often involve
product hierarchy or preference, while non-directed links imply product similarity
or association. Product attributes or features, quantitative (e.g., fuel efficiency,
horsepower) or qualitative (e.g., safety, styling), can be taken into account as
nodal attributes. Similar attributes/features between products are represented as
association links in the product network. Alternatively, product associations can
be identified by their co-consideration relations from customers. The customer
layer describes a social network consisting of a customer population C who make
decisions or take actions. Each customer has a unique profile (e.g., socioeconomic
and anthropometric attributes, purchase history and usage context attributes,
etc.) which potentially affects customer preference decisions. Links between two
customers represent their social relations, such as friendship or communication.
The structural tendencies of these social relations reflect the underlying social
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processes for creating and maintaining links such as homophily and proximity
(Monge & Contractor 2003). Much of the developed literature in social network
analysis can be employed here to construct a customer social network. Customer–
product relations are indicated by various human activities such as purchase and
consideration decisions. The customer–product links are created between two sets
of nodes from two adjacent layers, representing customer preferences. As shown
in Figure 3, if a customer purchases a product, there is a solid line linking the
customer and product nodes. If a customer considers a product, the link between
the twonodes ismarked as a dashed line. As noted, a customer can consider several
products at the same time while the final purchase is only one or none. These
preference links can be flexibly constructed by various sources of data, e.g., survey
data, transaction data, and user-generated text data.

As seen, the proposed MCPN framework can capture rich information on
dependency in a complex socio-technical system so as to assist product design
decision-making. A combined analysis of all relations mentioned above allows
designers to evaluate product decisions not in isolation, but with expectation that
the market system will react to the planned decisions, and any design change may
easily affect other connected entities across the network in ways that were initially
unintended.

3.2. Unidimensional network analysis of product associations
Our development of MCPN started with the unidimensional network analysis
to a single layer network with only product nodes and associations. The
unidimensional network can be viewed as a compressed but simplified version
of the more complicated bipartite (customer–product) networks by projecting
it to a single layer (Wasserman & Faust 1994). The unidimensional network
enables designers to explore the use of descriptive metrics in identifying
aggregated product associations that can reveal the implied product similarity
and diversity, product market competence, product market segmentation, and
other opportunities for design improvements.

The links in a product association network can be constructed in many
ways. For example, using the customer preference data, a customer-driven product
association network can be established, where the links between products reflect
the proximity or similarity of two products in customers’ perceptual space.
Standardmeasures of association rules, such as the ‘lift’, can be used to quantify the
strength of the connection (Tan et al. 2004) between two products based on how
often they are in the same consideration set. Alternatively, a feature-driven product
association network can be established with the help of product specification data,
where the association between products can be determined by measuring the
similarity of product attributes/features from designers’ point of view. Distance
measures commonly used in content-based recommender systems, such as
Jaccard index (Real & Vargas 1996), Cosine similarity (Chowdhury 2010), Gower
similarity (Gower 1971) etc., can be applied to assess the strength of connections.

The descriptive network analysis involves the computation of topological
measures to assess the position of nodes and the implication of structural
advantages. Examples for analyzing customer-driven product associations are
provided in Table 1. Centrality (Freeman 1979; Wasserman & Faust 1994)
measures a product’s competitiveness, indicated by its level of connectivity to other
products. As an example in Figure 4(a), a vehicle network is constructed based on

9/28

https://doi.org/10.1017/dsj.2016.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.11


Table 1. Examples of descriptive network analysis for analyzing customer-driven product associations.

Network analysis Solution techniques Network topology

Centrality Centrality involves the
identification of the ‘most
competitive’ products in the
network (Wasserman & Faust
1994). We assume that more
central (or more connected)
products have higher levels
of survivability in market
competitions as a result of its
structural advantages

Measuring centrality can be
based on various properties of
a node, e.g., number of direct
connections to all other nodes
(degree), minimum distance
to all other nodes (closeness),
and maximum occurrence on
the path of two other nodes
(betweenness) (Wasserman &
Faust 1994)

Figure 4(a)

Community Community refers to the
occurrence of groups of nodes
that are more densely connected
internally than with the rest
of the network (Newman &
Girvan 2004). If appropriate
communities are detected, the
network can be collapsed into a
simpler representation without
losing much useful information

The modularity maximization
method (Newman & Girvan
2004) can be used as the objective
function to capture the quality
of a network structure. The
problem is solved as an NP-hard
optimization problem

Figure 4(b)

Hierarchy Hierarchy is formally defined as a
strict partially ordered set which
can be represented as a directed
network (Corominas-Murtra
et al. 2013), where each element
of the set is a node and the partial
ordering (P1 < P2) gives an edge
from P1 to P2. The directed link
reflects customers’ aggregated
preference across the population

To find local hierarchies of nodes,
centrality metrics can be applied
as well to a directed network
configuration. To bring global
order to the nodes, heuristic
search algorithms, e.g. Google’s
PageRank (Page et al. 1999), can
be employed to find the best
hierarchy in a polynomial time.

Figure 4(c)

co-consideration data, indicating if two vehicles are co-considered by themajority
of customers. As seen, Toyota Camry is more ‘central’ to other vehicles, implying
it has the potential to satisfy a broader range of customers. Honda Civic SDN and
Lincoln MKX are the next widely considered cars in customers’ minds. Network
community (Clauset et al. 2004; Newman & Girvan 2004) analysis identifies
products in the same community based on the link strengths and connections.
In Figure 4(b), two distinct communities (‘compact vehicles’ in green dots and
‘high-performance midsize vehicles’ in orange dots) are found in the vehicle
co-consideration network. The emergent product communities can be used to
detect consumer choice set and potential product competitions (Wang & Chen
2015). ‘Crossover’ vehicles that belong to multiple (overlapping) communities
can also be identified through this analysis (Palla et al. 2005; Gregory 2007).
Network hierarchy (De Vries 1998; Gupte et al. 2011; Corominas-Murtra et al.
2013) is illustrated by the directional network links in Figure 4(c) which encode
preference ranking based on both consideration and purchase data. Products with
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(a) (b) (c)

Figure 4. (a) Vehicle centrality in network, constructed based on co-consideration data, (b) vehicle
community in network, constructed based on co-consideration data, (c) vehicle hierarchy in network,
constructed based on co-consideration and purchase data.

Figure 5. Multidimensional network considering product associations.

high preference ranks (e.g., Camry with many incoming edges) are shown in
darker colors. Note that in analyzing feature-driven product association networks
where products are linked based on shared features, centrality, community, and
hierarchy have different implications. For example, community implies product
families where common features are shared among products.

Although the unidimensional network approach can describe interdependen-
cies in relational data, the method cannot provide quantitative assessment of
the impact of product attributes for a particular group of customers of interest.
Further, the unidimensional network analysis studies customers’ averaged
(aggregated) preference across the population. Advanced network modeling
approaches that capture disaggregated preference behaviors of individual
customers are needed as examined next.

3.3. Analyzing multidimensional network considering product
associations

Tomodel heterogeneous customer preferences in productswith close associations,
we integrate the product association links with customer–product preference
relations as a multidimensional network (see Figure 5), including two classes of
nodes (customers and products), multiple types of customer preference relations,
and association relations among products. By introducing the information from
the second mode (i.e., customers), we aim to develop a network model capable of
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capturing customer preference heterogeneity and multiple dependent decisions,
while considering product feature associations.

Beyond existing network approaches that are mostly descriptive in nature,
we use ERGM as a unified statistical framework to analyze the MCPN. In
ERGMs, the observed network is considered one realization of an underlying
probabilistic distribution, without assuming the independence of nodes or links.
A local topological configuration in the network, i.e., a set of connected nodes and
links, is regarded as an exploratory variable representing the structural features of
potential interest. Networks in the distribution are assumed to be ‘built up’ from
the localized patterns represented by the structural features. Exponential random
graph model literature has established more than 20 different types of effects
(Lusher et al. 2012) for describing the various forms of dependence that exist in the
relational data within social networks. Examples of effects, their configurations,
and interpretations are provided in Table 2. Our focus is to interpret the meaning
of these effects to understand customer–product relations for product design.

The network effects fall into three categories: pure structural effects,
attribute-relation effects involving product/customer attributes, and cross-level
effects involving both between-level and within-level relations. Pure structural
effects are related to the well-known structural regularities in the network
literature (e.g., effects [A] to [C] in Table 2); attribute-relation effects assume
the attributes of products/customers can also influence possible tie formations
in a given structure. At the two-node level (effects [A], [D], [E]), interpretation
resembles the attribute effect in a logistic regression [121, 122]. The main effect
(effect [D]) can be used to test how attractive a product attribute is. The interaction
effect (effect [E]) captures whether certain features are favored by a particular
group of customers or not. Beyond conventional logistic models, the network
approach also evaluates higher-order effects such as at the levels of three-node
(effect [F]) and four-node (effect [G]). The product association relations can be
captured by the cross-level effects (effect [H]) that integrate customer preferences
with product similarities. In this way, the analysis can explain whether certain
types of customers tend to consider product alternatives associated with a specific
set of attributes.

Once the network effects of interest are identified, their significance can be
determined by estimating the model parameters of an ERGM via likelihood
maximization, given the observed network data. As the exact maximization of
the likelihood function requires a summation over all possible configurations of
the network and is computationally demanding, approximation techniques, e.g.,
maximum pseudolikelihood (Frank & Strauss 1986) or Markov Chain Monte
Carlo maximum likelihood (Geyer & Thompson 1992) can be employed to
determine the estimates of effects.

Compared to a unidimensional network (Section 3.2), a multidimensional
network provides a more natural way to model relations between two different
classes of nodes (customers and products) and the non-hierarchical association
relations between products. Moreover, its capacity to preserve two types of
nodes allows designers to parse out the unique contribution of different types
of nodes to the overall network structure. Its ability to integrate product networks
and customer–product relations allows designers to model interdependent
product relations and correlated preference decisions explicitly, without specifying
complicated error structures as often done in DCA.

12/28

https://doi.org/10.1017/dsj.2016.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.11


Table 2. Examples of network effects in MCPN, with graphical configurations and design interpretations.

Configuration Interpretation

Pure structural effects

[A] Density This effect captures the baseline propensity of forming a link.
It is similar to the intercept in a regression model

[B] Alternating k-stars
for products

This effect measures the dispersion of the degree distribution.
Alternatively, it can be thought as a test of the ‘rich get
richer effect’. Example: A positive parameter indicates that the
network links are centralized around a few high-degree nodes
of products

[C] Alternating k-cycles
for customers

This effect captures the propensity of customers to engage
in closed structures. Example: Two customers considered the
same product also consider some other products together

Attribute-relation effects

[D] Main effect

This effect captures whether the binary attribute or higher
scores on a continuous attribute tend to express more links.
Example: A significant negative parameter for vehicle fuel
consumption means fuel efficient cars are more likely to be
considered by customers.

[E] Interaction effect

This effect captures the interaction of the nodes between
different types. Example: A significant positive coefficient for
family size of customers and vehicle size of products suggests
customers from large families tend to consider large size cars.

[F] Two-paths difference
effect

This effect captures the differences of continuous attributes on
the ends of a 2-path. Example: For ‘price’, a negative significant
estimate suggests that two carswith little price differences tend
to be considered together by the same customer.

[G] Four-cycle difference
effect

This effect captures whether closed structure is more likely to
occur involving two customer nodes with similar attributes.
Example: For ‘income’, a negative significant coefficient means
that customers with similar income tend to share many cars in
consideration.

Cross-level effects

[H] Association based
closure effect

This effect captures whether a closed structure is more likely
to occur involving two product nodes with an association
link. Example: A negative significant coefficient means that
customers do not tend to consider two cars with many
common features at the same time.

Product w/attributes Customer w/attributes Product w/o attributes Customer w/o attributes

3.4. Analyzing multidimensional network incorporating social
influence

To account for the effect of social influence on customer preference decisions,
we further expand the multidimensional network structure to simultaneously
measure within-layer social relations, within-layer product associations, and
between-layer customer–product relations (Figure 6).
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Figure 6. Multidimensional network considering social interactions.

Table 3. Examples of social influence effects in multidimensional network.

Social influence effects Config. Interpretation

Crowd effect on purchase

When comparing two products under
consideration, a customer is more
likely to purchase the one favored by
the majority of customers

Peer effect on purchase

Customers tend to purchase the
product that their ‘peers’
recommended, either through
use or discussion.

Product w/o attributes Customer w/o attributes

The proposed multidimensional network allows the evaluation of both the
‘peer effect’ and the more general ‘crowd effect’ (Urberg 1992), depending on
how product associations and social relations are defined. Relations between
customers are used to model ‘peer effect’ on customer attitudes and preferences.
The term ‘peer’ has a broad meaning which may include ‘friends’, ‘neighbors’,
‘experts’, ‘relatives’ or even ‘online reviewers’ with whom customers may exchange
information about new products. The preference hierarchies among products, as
defined in Section 3.2, can be used to capture the effect of ‘social crowd’. The
evaluation of social influence is done by assessing the structural tendencies of
networks informed by social influence theories (Table 3). Using ERGMs, one can
quantify the effects of social influence by statistically estimating the extent to
which structural tendencies implied by social theories influence the probabilities
of the observed network. Similar to the network effects in Table 2, customer and
product attributes can be incorporated into the social influence structures for
investigating how social influence varies across customers and products.

14/28

https://doi.org/10.1017/dsj.2016.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.11


Due to the complexity of data collection, customer social network data is often
not collected in consumer surveys. An alternative is to construct social relations
through network simulations (He et al. 2014), based on certain hypotheses
of network structure and ‘social distance’ measured by the collected customer
profiles. For example, based on the theory of homophily (Mcpherson et al. 2001),
we can assume that two nodes with shorter social distance (similar customer
attributes) are more likely to be connected. Unlike the prior research that
incorporates social influence as customer attributes, this research employs the
ERGM to assess the social influence effects. In theory, compared to the use of
DCA, one should draw more reliable conclusions based on the results from the
network approach, because of its capability of handling correlated node attributes
and interdependent link relations, which avoids faulty inferences on covariates
(Cranmer & Desmarais 2011).

4. Case study – vehicle preference modeling
In this section, two implementations on modeling vehicle preferences in the
growing China market are presented to demonstrate the proposed methodology.
From simple to complex, our research first examines the use of unimodal
networks in Section 4.1, studying the product associations from customer’s point
of view, and identifying product co-considerations and preference hierarchies.
In Section 4.2, a multidimensional network is constructed where the ERGM
is applied for analyzing customer preferences towards vehicle products, while
assessing simultaneously the impact of customer social interactions and product
associations. The examples are developed to illustrate the new insights that can be
gained but cannot be addressed using the traditional DCA, as well as the flexibility
and broad applicability of network analysis to modeling the individual-level
preference data.

4.1. Using unidimensional network for modeling vehicle
associations and hierarchies

In the first implementation, we demonstrate the unidimensional network
analysis (Section 3.2) for identifying aggregated product associations and
hierarchical preference relations. Beyond existing literature, our work utilizes
both consideration and purchase data in market surveys to derive relationships
among vehicle products for understanding customer preferences and product
competitions. We develop two types of product association networks – a vehicle
association network with undirected links showing the similarity of products, and
a vehicle hierarchal network with directed links indicating preference hierarchies.

The two vehicle association networks are constructed using the 2013 New
Car Buyers Survey (NCBS) data provided by an independent research institute in
China. The dataset contains 49,921 new car buyers who considered and purchased
from a pool of 389 vehicle models in 2013. Both the set of considered vehicles and
the final purchase are recorded for each customer. Customer demographics and
product information are also reported by respondents.

The vehicle association network is created to aid the analysis of customer
consideration decisions by linking any pair of vehicles if both vehicles are
considered by most consumers in his (her) consideration set. The association
link is viewed as a form of similarity or closeness between any two vehicles in
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customers’ minds. The link strength is quantified by lift to reflect how often
the two products are compared by a population of customers. The lift between
product i and product j is defined as the probability of co-consideration over the
probability that they are being considered individually, see Eq. (2). The probability
value is approximated by the percentage of product (co)occurrence recorded in the
NCBS data.

lift(i, j) =
Pr{co-consider i and j}

Pr{consider i} · Pr{consider j}
. (2)

To prune the network links, a thinning threshold at 1 is chosen for the lift
value; a lift greater than 1 has a precise statistical meaning showing a positive
association between the two products (Tan et al. 2004). For example, Honda
Guangzhou Odyssey and Mazda FAW 8 are positively associated, as shown in
Figure 7(a). The association link implies that the two products have a high chance
of being co-considered. From the customer’s perspective, it means that a customer
considers Odyssey is also very likely to consider Mazda 8 at the same time.

As a measure of network centrality, the node degree calculates the number
of links attached to a node. In the vehicle association network, products with
a higher-degree centrality are those frequently co-considered with many other
vehicles by customers. Examples of high-degree centrality vehicles include GM
SGMChevrolet Sail, Audi FAWQ5, and Kia Dongfeng Yueda K2. One interesting
observation is that most of the high-centrality vehicles are also among the most
popular vehicles considered by customers, though the two quantities are not
equivalent in definition. Another observation is that the node degrees are not
uniformly distributed such that some vehicles are consideredmore frequently than
others.

For the constructed vehicle network, the product community analysis is
employed following Newman’s modularity method to determine groups of
interconnected vehicles. In Figure 7(a), the seven identified communities are
marked in different colors. The product communities inform designer the
marketing coverage of a brand family and marketing competence across several
brands. For example, the yellow community includes most domestic entry-level
sedans (e.g., BYD F6, Chery QQ, etc.), while the green community is featured
by premium SUVs by foreign manufacturers (e.g., Jeep Grand Cherokee, Land
Rover Discovery, etc.). It is also observed that a product line’s marketing success
is highly influenced by its product positioning strategy. The successful product
lines in the market generally cover more network communities. For example, as
two marketing leaders in China, Volkswagen and GM have covered 6 out of the 7
network communities, implying a great diversity of their vehicle products across
multiple segments.

As a refinement to the above undirected network, a directed network is
constructed where a link direction is determined through both consideration and
purchase data in NCBS. If for any pair of vehicles, a customer considers both
vehicles but chooses one over the other, the link direction will point towards
the purchased vehicle. The lift metric shown in Eq. (3) is slightly modified to
accommodate the evaluation of directed link strength.

lift(i → j) =
Pr{co-consider i& j, purchase j}

Pr{consider i}Pr{consider j}
. (3)

Again, the links are trimmed to highlight positive associations, where the link
direction captures the preference hierarchy between the two linked products.
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(a) Centrality and Community in Vehicle Association Network

(b) In-degree Hierarchy in Hierarchical Preference Network

Figure 7. Unimodal vehicle networks constructed from NCBS 2013. Nodes are sized
by network degrees (or in-degrees) and colored by network communities. Network
layout is computed by the Fruchterman–Reingold force-directed algorithm based on
aesthetic criteria (Fruchterman & Reingold 1991). Link strength is not specified and
has no relation to the distance of nodes. (a) Centrality and community in vehicle
association network. (b) In-degree hierarchy in hierarchical preference network.
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For example, a bi-directional (mutual) link between Toyota Alphard and
Mercedes Fujian Viano can be interpreted as the intense competition between
the two products (Figure 7(b)), because both vehicle models attract significant
percentages of customers in considerations. Nevertheless, Viano gains a slight
upper hand in market competition, because the strength of the link in that
direction is stronger.

With a directed network, graph metrics indicating node hierarchy, such as
node in-degree, can be computed to reflect customers’ aggregated preferences
across the population. The in-degree of a node computes the number of incoming
links pointed to that node. A node with a high in-degree value implies the
corresponding vehicle is very likely to be consideredwith other vehicles and is also
more preferred in customer choice (purchase) decisions. For example, Audi FAW
Q5 and Ford Kuga are popular vehicles in choice, which are ranked high in both
degree centrality and in-degree hierarchy. In contrast, Volvo V40 and Ford Edge
have been frequently considered (high-degree centrality in undirected network),
but fall behind in customers’ final choices (low in-degree hierarchy).

Our illustrative example shows that descriptive network analysis may serve
as a useful tool for designers to determine product positioning and product
priorities in the phase of design planning. Centrality, community, and hierarchy
allow designers to uncover the root causes of the differences in vehicle sales
under a specific market. These efforts may reveal issues that a design team could
work on, e.g., product recognition (low centrality rank), coverage and diversity
of product lines (products not appearing in certain communities), product
competence (several vehicles in the same community), and product configuration
(low hierarchy rank).

While analyzing the structural information of a unidimensional network can
be useful in describing product associations, there is a need for an approach
to quantitatively evaluate customer heterogeneous preferences while addressing
issues such as dependent alternatives, multiple decisions, social influence, and
correlated observations. To demonstrate such capabilities of a network model,
our next example employs ERGM in the MCPN framework with various nodes,
relations and attributes included.

4.2. Using MCPN for modeling luxury vehicle preferences in
Central China

Our second implementation demonstrates the use of inferential network
technique (ERGM) for analyzing the vehicle MCPN framework (Sections 3.3
and 3.4). This network implementation also draws from the 2013 NCBS data
to understand customer preference trends in China. With a focus on the luxury
vehiclemarket, we examine respondents who live in the central provinces of China
and consider only luxury imported vehicle models in their decision journey.
This focused interest results in a subset data of 378 customers and 65 luxury
vehicle models for modeling and evaluation. As reported by McKinsey, the top
reasons for Chinese customers to choose a luxury vehicle are: ‘reflection of social
status’, ‘self-indulgence’ and ‘business credibility’. Therefore, we expect that socially
influenced decisions are more common in luxury vehicle buyers in China. In
addition, the Chinese auto market is renowned for its complexity and volatility.
Strong regional differences exist as a result for brand accessibility and lifestyle
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needs. Because of these hidden reasons beyond the functionality and design of a
vehicle itself, quantifying the attractiveness of a vehicle attribute in such conditions
becomes even more difficult.

The proposedMCPN integrates a feature-driven product association network,
a customer–product network, and a customer social network as a unified entity
for analysis. The implementation of the proposed approach goes beyond the
descriptive analysis and consists of three major steps: network construction,
ERGM specification, and ERGM interpretation; each of these steps is explained
in the remainder of this section.

4.2.1. Data transformation & network construction
4.2.1.1. Product associations.

Depending on the product complexity and the purpose of analysis,
product associations can be built using either the ‘complete set of features’ or
‘subsets’. In this example, product association links in the product layer of the
multidimensional network are constructed using the complete set of attributes
considered, including vehicle price, engine capacity, fuel consumption, and the
existence of turbo. The association link is viewed as a form of overall product
similarity from the perspective of engineering design. By converting the similarity
of vehicle attributes as product association links, our emphasis in ERGM analysis
is on testing whether customers tend to consider two vehicles withmany common
design features at the same time. Within the association network construct,
the Gower’s coefficient (Gower 1971) is calculated to determine the existence
of a link between any product pair. Gower’s coefficient has the capability to
appropriately handle continuous, ordinal, nominal and binary variables as inputs.
Each continuous attribute is standardized by dividing each entry over the range
of the corresponding attribute, after subtracting the minimum value; as a result,
the Gower’s similarity score has a range of [0, 1] exactly. Based on the empirical
results, a global thinning threshold at 0.05 is chosen, which means the connected
vehicles have similar levels across all attributes considered. This threshold also
gives a reasonably dense network that ensures the estimated ERGM estimates are
reliable (Lusher et al. 2012).

4.2.1.2. Preference relations.
We use the between-layer links connecting a product and a customer tomodel

customers’ consideration decisions over vehicle models. The structure of these
links is precisely defined by NCBS data. In the survey, respondents are asked to
report a list of vehicles that they seriously considered, including the purchased
one. The number of consideration number ranges from 1 to 3. No customer listed
more than 3 vehicles, even though the actual number might be higher.

4.2.1.3. Social relations.
Unlike the product association links which can be flexibly determined, the

social links between customers have more specific meanings in social theories.
Using the same strategy in our previous work on network simulation (He et al.
2014), a social space is constructed based on customer geographical locations
and selected social attributes (age, income, education). Based on the homophily
assumption that two customers with shorter distance in the social space are more
likely to be connected, a global threshold is chosen to determine if a social link
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(a) Product relations only (b) Preference links added (c) Social relations added

Figure 8. Progressive construction of MCPN using NCBS 2013 data. Products as blue squares and customers
as red disks. (a) Product relations only, (b) preference links added, (c) social relations added.

exists or not. To mimic the properties of real world networks, we then adjust
the social links using the small-world model (Watts & Strogatz 1998; Delre et al.
2007) to assure the high transitivity (‘one’s friends are likely to be friends’) and
low average path length (‘six degrees of separation’ between any two individuals).
The small-world mechanism provides a viable way to represent social links
through both close and distant connections, implying that customers are not only
influenced by their nearest neighbors in their social space but also a small number
of remote contacts outside their regular social proximity.

Integrating the three types of network relations together, a visualization of
the construction process for the MCPN structure is presented in Figure 8. The
complexity of network progressively increases from product association only in
Figure 8(a), to adding customer–product relations in Figure 8(b), to adding the
customer–customer relations in Figure 8(c). As noted, we only include one type of
preference link (consideration) and one type of product association link (feature-
driven) for demonstration. All links are binary-valued and undirected.

4.2.2. Specification of ERGMs for multidimensional networks
With the constructed MCPN structure, the conditional form of ERGM is
employed to address the question of how one or more dimensions of networks
would affect the structures of other networks. Specifically, our research focus
is on demonstrating the relevance and the feasibility of the network modeling
technique. As presented in Table 4, the examined network effects are restricted to
a subset of cross-level configurations and product/customer attributes of different
forms. The choice of which network effect to include depends on the social
theory, hypothesis, and the specific research questions to answer. Nevertheless,
the demonstrated example serves as guidance for possible effects to consider in
vehicle preference modeling for vehicle design.

4.2.3. Comparisons and interpretations of ERGMs
Estimating the model coefficients for ERGM network effects is equivalent to
fitting a model that gives maximal support to the data. However, the maximum
likelihood estimates cannot be derived analytically due to the intractable constant
in Eq. (1) for a reasonable number of nodes. Thus, we employ a stochastic
approximation (Snijders 2002) that relies on MCMC simulations of graphs.

The results of the ERGM estimates for various specifications are presented in
Table 4. The significant coefficient estimates are shown in bold font, meaning
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Table 4. Comparison of three specifications of ERGMs. For each considered network effect, the graphical
configuration z(y) is presented accompanied by the estimated coefficient (θ) and the standard error.

Model 1 Model 2 Model 3
Configurations Interpreted effects Est. coeff. (Std. err.) Est. coeff. (Std. err.) Est. coeff. (Std. err.)

Pure structure effect
Density −7.0314 (0.398) −9.1009 (0.495) −8.9648 (0.477)
Product
popularity

6.4955 (0.644) 6.5123 (0.631)

Consideration
range

−1.4036 (0.516) −1.3199 (0.522)

Attribute-relation main effect
Price paid to the
dealer (in 100K
RMB)

−0.0346 (0.020) −0.0194 (0.019) −0.0182 (0.018)

Turbocharger
(dummy)

1.2796 (0.109) 1.0617 (0.122) 0.9056 (0.118)

Engine capacity
(in cc)

0.2809 (0.134) 0.2356 (0.129) 0.1871 (0.119)

Fuel consumption
(in L/100 km)

0.1581 (0.039) 0.1270 (0.036) 0.1162 (0.035)

First-time buyer
(dummy)

−0.2343 (0.096) −0.9745 (0.215) −0.9744 (0.214)

Monthly household
income (in 100K
RMB)

0.0027 (0.002) 0.0102 (0.003) 0.0125 (0.003)

Cross-level effect
Customer considers
similar products

0.9930 (0.209) 0.9704 (0.212)

Peer influence 0.4524 (0.076)

Model fit
Null Deviance 34061 34061 34061
Residual Deviance 4847 4831 4773
AIC 5148 4851 4795
BIC 5205 4932 4884
Bolded coefficients are different from null at the 95% confidence interval.
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that the corresponding configurations are significant at the 95% confidence
interval. We compare three model specifications based on the same dataset to
highlight the benefits of the ERGM approach. Model 1 formulates a bipartite
ERGM analogous to a logistic model that contains only the attribute-relation
effects composed by attributes of customers and products. This model allows
the testing of influencing customer/product attributes in customer preference
decisions, assuming that endogenous pure structural effects do not exist. Model 2
parameterizes a bipartite ERGM similar to Model 1 but with the addition of
the pure structural effects and the cross-level product association effect. By
comparingModels 2 and 1, one can test whether the addition of the pure structural
effects and product association effect modify some of the attribute-relation effects
in explaining customer preferences. The specification of Model 3 is the most
completemodel that includes all three types of ERGMeffects.With the integration
of the cross-level social influence effect, peer influences on preference decisions
can be evaluated together with other product attributes, customer demographics,
and structural patterns within the same model. Two penalized-likelihood criteria
–AIC andBIC – are also provided inTable 4. The twomeasures decrease gradually
as the addition of the considered structural effects, suggesting improved fits from
Model 1 to Model 3.

The interpretation of Model 1 is similar to that for a logistic model. The
vehicle price has a negative significant sign, implies that lower price is preferred in
consideration of luxury vehicles. The significant positive turbocharger and engine
capacity indicate that the presence of the turbocharger and the increased size of
the engine would increase the probability for a customer to consider a particular
vehicle model. The statistically negative first-time buyer suggests that first-time
buyers are unlikely to enter the luxury vehicle market even though three out of
four new cars are purchased by first-time buyers in China. The fuel consumption
has a significant positive coefficient, meaning that fuel economy is less important
for customers who decide to purchase a luxury vehicle. Interestingly, the decision
of how many luxury vehicles to consider is less relevant to the household income,
as seen by the insignificant income in the table. As noted, most model coefficients
in Model 1 agree with our prior understanding about China’s luxury market.
This means that including attribute-related effects alone can capture an essential
component of the process underlying the MCPN structure.

In Model 2, the addition of the pure structural effects and the cross-level
customer considers similar products effect considerably changes the interpretation
of the underlying preference data. The significant positive product popularity
indicates a dispersed degree distribution of product nodes. This implies
customers’ consideration decisions mostly concentrate on only a few vehicle
models in the market. In contrast, the degree distribution is more centered
for customer nodes, as shown by the negative consideration range coefficient,
because customers only consider a limited number of vehicles (1–3) in NCBS
data. The customer considers similar products effect is an indicator of how likely
a customer may co-consider two vehicles that share similar design attributes.
The significant positive coefficient means most people would judge a vehicle
by its engineering attributes and consider multiple vehicles with similar levels
of performances and prices. Concerning the attribute-relation effects, all the
product effects (turbocharger, engine capacity, fuel consumption) generate smaller
coefficients in magnitudes to their counterparts in Model 1 and the price is no
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longer significant. The change of price coefficient implies that price is actually not
a decisive factor to consider for luxury vehicle buyers. In contrast, the customer
effects of first-time buyer and income becomemore obvious. This is partly because
the number of decisions (degree of customer nodes) has been controlled by the
consideration range.

The coefficients ofModel 3 are largely consistent with those inModel 2, except
that the previously insignificant income becomes significant, while the previously
significant engine capacity becomes insignificant. The significant positive peer
influence indicates that a customer is likely to become ‘irrational’ in decision-
making and simply considers what his/her peer has considered.Modeling the peer
influence is a unique contribution of our work as such effect cannot be modeled
either theoretically or computationally without the MCPN framework.

By comparing the above three models, several interesting findings can be
summarized about the preference modeling in a multidimensional network
context. First, including the attribute-relation main effects alone (Model 1) can
explain a large part of the formation of preference links. This observation
is consistent to the foundational theory of many attribute-based preference
modeling approaches, such as DCA. Second, a model with only attribute-relation
effects but no other relevant structural effects may ignore some of the underlying
social structures represented by the structural patterns; therefore, such a model
may produce biased results even if a researcher is only interested in a subset
of product/customer attributes. For example, a popular product may attract a
larger or smaller percentages of customers than we expected. This is captured
by the product popularity (alternating k-stars) effect as a measure of node
degree dispersion in a network model, but not possible in classical regression
models. Finally, the peer influence effect (Model 3) introduces another layer
of dependencies between two customers into the structure of the network.
The significant positive estimate reflects the importance of social influence in
explaining customer behavior andmodeling product demand. Overall, the results
of this example suggest that the nodal attributes (representing customer and
product attributes) and network structures (representing product associations,
social influences, and other underlying effects) are indispensable elements playing
together in shaping the preferences of customers.

5. Discussion and conclusion
While DCA has been widely used to predict the influence of design decisions
on customer preference and firm profit, in this paper, we introduce a conceptual
framework of a drastically different approach using MNA for modeling customer
preferences in supporting engineering design decisions. We demonstrated the
progression of a simple unidimensional network that contains only product
associations, to a multidimensional network that considers product associations
together with customer preference decisions, and finally to a more complete
multidimensional structure that integrates product associations, customer social
influence, and preference decisions as one network entity.

The descriptive network analysis as presented in the unidimensional network
example offers a convenient tool to summarize key facts about the customer
preference data. Through descriptive network measures, nodes can be clustered
into subsets (community) or organized in ranks (centrality, hierarchy) to
reflect structural positions in a network. When complex product association

23/28

https://doi.org/10.1017/dsj.2016.11 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.11


relationships are converted into market segments and competitive rankings,
designers can better monitor product positions within a brand or between brand
competitors. Next, the inferential network analysis with ERGMas illustrated in the
MCPN framework enables the detailed modeling of both the network structures
and customer/product attributes in a rigorous statistical sense. Compared to
traditional logit models, the ERGM for MNA approach can handle complex
relational data whose properties cannot be reduced to only the attributes. This
capability resolves many issues in traditional preference models, as summarized
as follows:

(i) Product associations can be modeled explicitly. In ERGM, product
alternatives are no longer mutually exclusive, but interdependent in a
network structure to influence customer’s preference decisions.

(ii) Evaluation of social influence is enabled. By constructing customer social
links in the customer layer, ERGM allows the social network effect to be
statistically assessed and compared with other factors within a single model.

(iii) Nested decisions can be analyzed through structural modeling. The model
estimates can uncover not only a customer’s taste for a particular product,
but also the relationship between several preference decisions as well as the
number of decisionsmade, as represented by the correlated structural effects.

(iv) Correlated product/customer attributes can be evaluated. Since ERGM
assumes the observed network as a single realization from a multivariate
distribution, no independence assumptions are necessary over the
explanatory variables. Correlated product/customer attributes can be treated
as structural terms and evaluated simultaneously.

(v) Coefficient estimates are highly interpretable and the ERGM results can
be easily integrated into an engineering design optimization problem. The
model estimates in ERGM resemble closely the outputs of DCA, enabling the
assessment of various product configurations and their impacts on customer
preferences.

The network-based preference model is superior in reducing design
uncertainties, because it takes into account both customer and product attributes
at the disaggregated level, and integrates customer decisions with product
associations and social influences. In addition, the proposedmodeling framework
provides plentiful opportunities in engineering design research. The results of
the China’s luxury vehicle study have direct impacts on understanding customer
consideration decisions over heterogeneous products in vehicle design. It can
help automakers produce more competitive products in shorter times to market,
considering not only the engineering requirements but also the heterogeneous
preferences as well as the underlying social impacts. Although our approach is
demonstrated for vehicle designs, the same principles and framework can be
extended to other product designs and infrastructures involving consideration
of many alternative options and heterogeneous customer preferences, such as
designing electronic devices, software, transportation systems, energy supplies,
etc. Designers can easily assess customers’ willingness to choose innovative
products over traditional products under social influence, and evaluating the
benefits of introducing new designs to the market.

Though powerful and flexible, MNA has certain characteristics that need
careful attentions when implemented for preference modeling in the context of
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product design. Depending on the purpose of the analysis, the size of a network
model can vary from a few nodes to hundreds or thousands of nodes containing
a diverse set of products. However, the network model could be sensitive to the
issue of missing data and influenced by how links are defined (Kossinets &Watts
2006). In addition, for a poorly specified model, degeneracy may occur in model
estimation and cause the Markov chain to move towards an extreme graph of all
or no edges (Snijders 2002). This issue can be solved by incorporating curved
exponential family terms that exhibit more stable behavior in model construction
(Snijders et al. 2006).

As this paper is focused on developing the conceptual framework of the
proposed approach, our next step is to enrich the case study by introducing more
complex structural effects. The current MCPN application will be extended to
incorporate other types of relations, e.g., directed association links for products
and purchase decision links between customers and products. Examples of
research questions to be answered may include how product associations and
social relations may impact customers’ preference decisions, and how customer
preference decisions will in turn affect market competitions implied by product
associations. In addition, wewill devotemore efforts to the tasks of networkmodel
evaluation and prediction. The use of network analysis for prediction is a new
topic in the network research community. We will extend the multidimensional
network model presented in this paper to predict customers’ consideration sets
and product choices. Changes of customer preference decisions will be forecasted
under newdesign scenarios andmarket settings in order to translate the developed
ERGM into methods suitable for design decision support.
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