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Abstract. I review the evolution of binary supermassive black holes and focus on the stellar-
dynamical mechanisms that may help to overcome the final-parsec problem – the possible stalling
of the binary at a separation much larger than is required for an efficient gravitational wave
emission. Recent N -body simulations have suggested that a departure from spherical symmetry
in the nucleus of the galaxy may keep the rate of interaction of stars with the binary at a
high enough level so that the binary continues to shrink rather rapidly. However, a major
problem of all these simulations is that they do not probe the regime where collisionless effects
are dominant – in other words, the number of particles in the simulation is still not sufficient
to reach the asymptotic behavior of the system. I present a novel Monte Carlo method for
simulating both collisional and collisionless evolution of non-spherical stellar systems, and apply
it for the problem of binary supermassive black hole evolution. I show that in triaxial galaxies
the final-parsec problem is largely non-existent, while in the axisymmetric case it seems to still
exist in the limit of purely collisionless regime relevant for real galaxies, but disappears in the
N -body simulations where the feasible values of N are still too low to get rid of collisional effects.
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1. Introduction
Most galaxies are believed to host central massive black holes (MBH) (Ferrarese &

Ford 2005; Kormendy & Ho 2013). In the hierarchical merger paradigm, galaxies in the
Universe typically experience several major and multiple minor mergers in their lifetime,
and every such merger results in the eventual formation of MBH binary. The evolutionary
stages of MBH binary were outlined in Begelman et al. (1980):
• The merger of two galaxies creates a common nucleus; both MBH sink to the center

of the merger remnant due to dynamical friction and form a binary (distance a ∼ 10 pc,
all estimates are given for a 108 M� black hole). The two black holes are considered a
binary when they start to “feel” each other (their mutual gravitational force is larger
than the force from the rest of the galaxy).
• Three-body interactions between the MBH binary and the stars of galactic nucleus

eject stars from the vicinity of the binary, and form a depleted zone, or “mass deficit”
(Milosavljević et al. 2002), in the nucleus (which indeed has been identified in several
galaxies, see e.g. Dullo & Graham 2014). The initial stage of this process is very rapid and
leads to a decrease of the binary’s semi-major axis a by a factor of few to ten (a ∼ 1 pc).
• Once the binary becomes hard and expels almost all stars that ever come close to

the binary, its subsequent shrinking could slow down considerably, and could even last
longer than the Hubble time – a situation that has been called the “final-parsec problem”
(Milosavljevic & Merritt 2003a).
• If, despite all troubles, the binary shrinks to a separation � 10−2 pc, the emission

of gravitational waves (GW) becomes the dominant mechanism that extracts the energy
from the binary, leading to its rapid coalescence (a ∼ 10−5 pc).
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A star passing at a distance � 2a from the binary will experience a complex 3-body
interaction which results in ejection of the star with a larger velocity than it had before the
interaction (the slingshot effect). These stars carry away energy and angular momentum
from the binary, so that its semi-major axis a decreases: d

dt (1/a) ≈ 16Gρ/σ ≡ Hfull
(Quinlan 1996). Thus, if density of field stars ρ remains constant (their velocity dispersion
σ usually does), the binary hardens with a constant rate. However, the reservoir of low
angular momentum stars (so-called loss cone – stars that have small enough pericenter
distances and can be ejected) is finite and is depleted rather quickly. The subsequent
evolution depends on the rate of the loss-cone repopulation.

2. Loss-cone theory in spherical and non-spherical systems
The classical loss-cone theory was developed in application to the problem of star

capture by a single MBH (e.g. Frank & Rees 1976; Lightman & Shapiro 1977, see also a
recent review in Merritt 2013). In the case of a binary MBH, the loss-cone boundary is
defined by the radius of binary’s orbit rather than the radius of capture of tidal disruption
(and therefore is much larger). In terms of angular momentum L of a star, the boundary
corresponds to LLC ≡

√
2κGMbin a, with κ � 1; most stars entering the loss cone are on

highly eccentric orbits (LLC � Lcirc , where the latter quantity is the angular momentum
of a circular orbit with the same energy). The stars inside the loss cone are eliminated
within one orbital period Torb . The crucial parameter for the evolution is the timescale
for repopulation of the loss cone. In the absence of other processes, the repopulation time
is a small fraction of the two-body relaxation time:

Trep ∼ Trel
L2

LC

L2
circ

, where Trel =
0.34σ3

G2 m� ρ� ln Λ
. (2.1)

If Trep � Torb , the loss cone is full (refilled faster than orbital period). In real galaxies,
however, the opposite regime applies – the empty loss cone. In this case the hardening
rate is much lower: H ≡ d

dt (a
−1) � Hfull Torb/Trep . Relaxation is too slow for an efficient

repopulation of the loss cone: in the absence of other processes the binary would not
merge in a Hubble time.

There are several possible ways to enhance the loss-cone repopulation and hardening
rate of the binary:
• Brownian motion of the binary enables its interaction with a larger number of stars

(Milosavljević & Merritt 2001; Chatterjee et al. 2003; Milosavljević & Merritt 2003b).
• Time-dependent solution of the Fokker-Planck equation describing the diffusion of

stars in angular momentum generally yields a higher loss-cone repopulation rate at the
initial stage of evolution due to steeper gradients in the phase space distribution of stars
(Milosavljević & Merritt 2003b).
• Secondary slingshot allows stars scattered by the binary with velocities lower than

escape velocity to return to the galaxy center and interact with the binary more than
once (Milosavljević & Merritt 2003b), although this effect seems to be suppressed in non-
spherical systems due to non-radial trajectories of ejected stars (Vasiliev et al. 2014).
• Gas in the circumbinary accretion disk may increase the dissipation of binary’s bind-

ing energy, however, its effect may be rather difficult to model and it is not guaranteed
to solve the hardening problem (Lodato et al. 2009; Roškar et al. 2014); moreover, this
factor does not apply for dry mergers (gas-poor galaxies) which are the subject of this
study.
• Perturbations from a possible third black hole (e.g. Iwasawa et al. 2006; Amaro-

Seoane et al. 2010) may increase the binary eccentricity due to the Kozai-Lidov
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mechanism, thereby driving it into GW-dominated regime sooner; other massive objects
such as giant molecular clouds (Perets & Alexander 2008) may substantially increase the
two-body relaxation rate and efficiently scatter stars into the loss cone.
• Non-spherical shape of the merger remnant gives rise to torques that change stars’

angular momenta and have been proposed as a possible mechanism that keeps the loss
cone full (Yu 2002; Merritt & Poon 2004; Holley-Bockelmann & Sigurdsson 2006).

Let us explain the last point in more detail. If the distribution of stars and the gravita-
tional potential that they generate is not exactly spherical, then the angular momentum
L of any star is not conserved, but experiences oscillations due to torques from the
non-spherical potential. The period of these oscillations is a few times Torb , and their
amplitude depends on the degree of flattening, as well as on the average value of L (stars
with L � Lcirc tend to have larger variations in L). Therefore, due to non-spherical
torques, a much larger number of stars can attain low values of L and enter the loss
cone at some point in their (collisionless) evolution, regardless of two-body relaxation.
In the axisymmetric potential, one component of L parallel to the symmetry axis (Lz ) is
conserved, therefore the total angular momentum cannot become smaller than Lz ; still,
there are many more stars with Lz < LLC than stars in the loss cone (with the instanta-
neous value of L < LLC), and a large fraction of them can eventually attain L < LLC . In
the triaxial case, there is an entire population of centrophilic orbits such as pyramids and
chaotic orbits (e.g. Poon & Merritt 2001, Figure 1g,a), that can achieve arbitrary low
values of L – all of them could eventually enter the loss cone, although not all manage
to do so in a Hubble time. These considerations have led to a conclusion that the loss
cone should remain full in axisymmetric and especially triaxial systems.

3. N -body simulations and their limitations
Simulations of binary MBH evolution initially focused on the spherical case, starting

the evolution from a near-equilibrium stellar system with two embedded black holes
before or just after the formation of the binary. At present, it seems impossible to evolve
an N -body system with a number of particles comparable to that of a real galactic
nucleus (N� � 108), therefore all studies to date used a much smaller number of particles
N � 106 and extrapolated the results to a real galaxy. From the analytical estimates
outlined above, it is clear that the evolution of the binary MBH in a real galaxy of
spherical shape should occur in an empty-loss-cone regime. In this case, we expect the
hardening rate of the binary (proportional to the repopulation rate of the loss cone) to
scale with the number of particles in the simulation as T−1

rel ∝ N−1 . However, it is worth
noting that the empty-loss-cone regime is not so easy to achieve – N should be large
enough so that even a very small fraction of the relaxation time is still much longer than
the dynamical time (see Harfst et al. 2007, Figure 15, for quantitative estimates of the
minimum required N). In the early studies (Quinlan & Hernquist 1997; Milosavljević
& Merritt 2001), this was not possible and the hardening rate was almost independent
of N – a signature of the full-loss-cone regime. Later simulations with a larger N have
confirmed that the hardening rate drops with N if it is large enough (Makino & Funato
2004; Berczik et al. 2005; Merritt et al. 2007). At the same time, studies that considered
a flattened model for the nucleus (Berczik et al. 2006) or a merger simulation that
resulted in a non-spherical remnant (Preto et al. 2011; Khan et al. 2011) indicated
no dependence of the hardening rate on N , which was found to be rather close to the
full-loss-cone hardening rate. It was inferred that the departure from spherical symmetry
was strong enough that the enhanced rate of angular momentum mixing sustains a full
loss cone.
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Figure 1. Binary hardening rates d(a−1 )/dt as functions of the number of particles N in
simulations done in three geometries: spherical (red circles), axisymmetric (green squares) and
triaxial (blue triangles). This figure is an updated version of the one presented in Vasiliev et al.
(2014), which in additions includes the results of simulations with N = 2× 106 . It demonstrates
that in all three cases the hardening rate does depend on N , although less so for non-spherical
systems; there is a hint for leveling off at the highest N in the triaxial case. In all three cases it
remains substantially lower than the full-loss-cone rate for high enough N .

However, it remains to be proved that the apparent N -independence of the hard-
ening rate in merger simulations is the result of non-spherical shape and not of some
other physical process, such as an initially enhanced fraction of stars on radial orbits, or
incomplete mixing of the large-scale structure of the merger remnant that could create
time-dependent variations in the potential, again enhancing the angular momentum mix-
ing. Recently, two papers attempted a “controlled experiment” by exploring the binary
evolution in a system constructed to be initially in equilibrium. Rather disappointingly,
they have reached conflicting conclusions: while Khan et al. (2013) have found the hard-
ening rate in their axisymmetric models to be N -independent, Vasiliev et al. (2014) have
shown the rate to depend on N quite significantly in the axisymmetric and even triaxial
geometry, although not as strongly as in the spherical case (Figure 1). The reasons for this
discrepancy remain obscure, but may have something to do with the different methods
used for preparing the initial conditions for the models: “adiabatic squeezing” technique
(Holley-Bockelmann & Sigurdsson 2006) in the former paper and Schwarzschild modeling
in the latter one.

The latter paper also have demonstrated that it is indeed very difficult to properly
isolate the effect of loss-cone repopulation caused by non-spherical torques, because in
an N -body simulation with a feasible number of particles (N � 106) it is strongly con-
taminated by the artificially enhanced two-body relaxation, thought to be unimportant
in real galaxies. Thus a robust extrapolation of the result of simulation to much higher
N remains a very challenging task. For instance, can we trust the hints of leveling off of
N -dependence of hardening rate in the triaxial model at N � 106 in Figure 1? These
simulations have also been conducted for a much shorter interval of time than is neces-
sary to lead the binary into the GW-dominated regime, and it is not certain that the
hardening rate stays constant with time. Therefore, unless we can afford much higher
values of N and longer simulation intervals, the answer to the question whether the final-
parsec problem exists in non-spherical galaxies would remain elusive. It is clear that at
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present time conventional N -body simulations cannot reach the required regime in which
collisional (relaxation) effects are minor compared to collisionless (non-spherical) ones.

4. The novel Monte Carlo method
Fortunately, there exist a technique that allows to reliably model the collisional evolu-

tion of stellar systems with much cheaper computational demand than a direct N -body
simulation. This is the Monte Carlo method of stellar dynamics, pioneered by Spitzer &
Hart (1971) and Hénon (1971). It is based on the standard two-body relaxation theory,
which predicts the statistical effect of many individual encounters on the trajectory of a
given star, without the need to simulate these encounters explicitly. These methods have
been continuously developed up to the present time and are successfully applied to var-
ious problems of dynamical evolution of star clusters (Giersz et al. 2013; Pattabiraman
et al. 2013) and galactic nuclei (Freitag & Benz 2002). The mentioned independent im-
plementations are based on the Hénon’s formulation of the Monte Carlo method, which
relies substantially on the assumption of spherical geometry; the alternative Spitzer’s
formulation is free from this assumption, although historically has been used only in a
spherical case.

We have developed a novel Monte Carlo method based on Spitzer’s work, which can
be applied in any geometry and can explicitly distinguish the collisionless and collisional
effects. The detailed description of the method is given in Vasiliev (2015), here we outline
its main features. The evolution of an N -body system is followed by a hybrid approach
combining a temporally smoothed extension of the self-consistent field method (Hernquist
& Ostriker 1992) with a prescription for relaxation in terms of position-dependent ve-
locity perturbations, based on Spitzer’s original formulation of the Monte Carlo method.
The orbits of particles are followed in a smooth, non-spherical potential represented by
a suitable basis-set expansion (cf. Brockamp et al. 2014; Meiron et al. 2014), with
a high-accuracy adaptive-timestep orbit integrator. After each integrator timestep, the
particle velocity is perturbed using velocity diffusion coefficients computed from a spher-
ical isotropic distribution function that approximates the true distribution of particles.
The amplitude of this perturbation can be scaled to mimic the relaxation rate of a target
stellar system that is composed of N� stars; this number is not related to the actual
number of particles in the simulation and can be set at will, in particular, turning off
the relaxation entirely corresponds to N� = ∞. Orbits of all particles are integrated in
parallel, independently from each other, for an interval of time (“episode”) that can be
comparable or even much longer than Torb , although should be � Trel . At the end of the
episode, the system state (coefficients of expansion of the non-spherical potential, and
the spherical approximation to the distribution function) is updated using trajectories of
particles sampled during the entire episode. The main advantages of the algorithm are
the much lower computational demand than a full N -body simulation (it scales linearly
with N , since the motion of each particle depends only on the mean-field potential and
the global distribution function, but not on explicit interactions with other particles),
the possibility of scaling the relaxation rate to the desired level independently from N ,
and the ability to deal with potentials of arbitrary shape.

The application of this method to the problem of binary MBH evolution is based
on the conservation approach (Sesana et al. 2007; Meiron & Laor 2012). During each
episode, particles are moving in the combined potential of the stellar cluster and the time-
dependent potential of the binary MBH. At each close encounter of the particle with the
binary, we record the change of energy and angular momentum of the particle; at the end
of the episode, these changes are summed up, and the orbit of the binary is adjusted using
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Figure 2. The evolution of inverse binary semi-major axis a−1 in N -body simulations of Vasiliev
et al. (2014) (red curve, extending up to t = 100) and in Monte Carlo calculations which
included relaxation at the amplitude corresponding to the N = 106 particle system from the
N -body simulation (green curve, upper) or without relaxation (blue curve, lower). The thick
red dot marks t = 30 as the initial moment for the Monte Carlo calculations. Top row shows
short-term evolution, which demonstrates the qualitative agreement between Monte Carlo and
N -body simulations; bottom row is for long-term evolution. Left, central and right panels show
three geometries – spherical, axisymmetric, and triaxial. Only in the latter case the binary
continues to shrink at an appreciable rate even without relaxation, although this rate is several
times lower than the full-loss-cone rate shown as dot-dashed line. In the other two cases, the
binary evolution without relaxation stalls at a separation just a few times smaller than the
initial value of a, due to depletion of loss-cone orbits. On the other hand, with the relaxation
rate corresponding to N = 106 (state-of-the-art N -body simulations), there is considerable
evolution in all three geometries, demonstrating that the N -body simulations cannot yet reach
the dynamical regime relevant for real galaxies.

the conservation law for energy and angular momentum. This procedure captures most
relevant dynamical processes in the nucleus, such as the depletion and repopulation of
the loss cone, secondary slingshot, and change of shape of the stellar potential, although
it does not account for the influence of Brownian motion of the binary. In this preliminary
study, we focus on equal-mass binaries on circular orbits and do not follow the evolution
of the eccentricity, which is expected to remain low throughout the evolution for these
conditions (e.g. Sesana 2010).

5. Results
We start our Monte Carlo simulations from snapshots taken at t = 30 in the N -body

simulations of Vasiliev et al. (2014), when the hard binary has already formed. We follow
the evolution of the system in three cases (spherical, axisymmetric, and triaxial, with the
last two systems having initial axis ratios of 1:1:0.8 and 1:0.9:0.8), with two choices of
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the relaxation rate: corresponding to a N = 106 particle system (the same as the original
simulations) and without relaxation (the situation relevant to real galaxies). The results
of this calculation, in terms of the evolution of inverse semi-major axis of the binary, are
presented in Figure 2.

First of all, it confirms that the Monte Carlo method yields consistent results with
direct N -body simulations, if the relaxation amplitude is scaled to the same level as
in these simulations. Second, in the presence of relaxation the evolution continues with
roughly the same hardening rate for much longer intervals of time, and there is indeed
only a factor of two difference between three geometries at N = 106. Third, and most
importantly, it suggests that without relaxation, in the spherical and axisymmetric cases
the evolution of binary semi-major axis a slows down and eventually stalls at a distance
only a few times smaller than the initial value of a, although it occurs later and at
smaller distance in the axisymmetric case. By contrast, in the triaxial case the evolution
continues without any relaxation at a rate which is just twice lower than the rate at
N = 106.

The difference between the geometries is explained by the properties of orbits: as
mentioned above, in the axisymmetric case there are more orbits that can enter the loss
cone due to the variation in angular momentum caused by non-spherical torques than in
the spherical case, where no such torques exist. However, the minimum value of angular
momentum for any orbit is still non-zero in the axisymmetric geometry, and as the size of
the loss cone shrinks proportionally with the binary separation, eventually all such orbits
are depleted. By contrast, in the triaxial case the population of genuinely centrophilic
orbits, all of them being able to achieve arbitrary low values of angular momentum, is
large enough to sustain a steady influx of stars into the loss cone. It is remarkable that the
hardening rate in this case is about an order of magnitude lower than the full-loss-cone
rate; nevertheless, scaled to real galaxies, it appears to be sufficient to drive the binary
to the merger in a time much shorter than the Hubble time.

6. Conclusions
We have reviewed the evolution of binary massive black holes in gas-free galaxies,

focusing on the final-parsec problem – the difficulty to keep the shrinking rate of the
binary at a high enough level for it to merge in a Hubble time. This problem is connected
to the rate of repopulation of the loss cone – region of phase space occupied by stars that
are able to interact with the binary. In non-spherical galaxies this repopulation occurs
both due to collisionless effects – variations of angular momentum of stars due to torques
from the global potential, and to collisional effects – two-body relaxation. In real galaxies,
collisional effects are supposed to play a very small role, however, in existing N -body
simulations their contribution is greatly enhanced due to a limited number of particles.

We have introduced a novel Monte Carlo method that is suitable for the dynamical
evolution of non-spherical galactic nuclei and can explicitly adjust the relaxation rate.
Preliminary calculations for equal-mass binary on a circular orbit suggest that in the
absence of relaxation, the shrinking of the orbit stalls (the final-parsec problem exists)
in spherical and axisymmetric systems, but not in the triaxial ones. In the future, we are
going to apply the method for unequal-mass binaries, which are expected to develop sub-
stantial eccentricity that accelerates the transition to the GW-dominated regime (Sesana
2010; Meiron & Laor 2012; Khan et al. 2012). An open question is why merger simu-
lations seem to imply the evolution rate comparable with the full-loss-cone rate, while
our isolated systems never approach this rate for sufficiently high N ; we are going to ad-
dress it by running Monte Carlo simulations using merger remnants as initial conditions.
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Another interesting question is the rate of tidal disruptions of stars by either component
of the binary at different evolutionary stages (e.g. Chen et al. 2009; Wegg & Bode 2011);
this process can also be included in the Monte Carlo code.

This work was partly supported by the National Aeronautics and Space Administration
under grant no. NNX13AG92G. I thank David Merritt for comments on the manuscript,
and Alberto Sesana for fruitful discussions.
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Hénon, M., 1971, Ap&SS, 13, 284
Hernquist, L. & Ostriker, J. 1992, ApJ, 386, 375
Holley-Bockelmann, K. & Sigurdsson, S. 2006, arXiv:astro-ph/0601520
Iwasawa, M., Funato, Y., & Makino, J. 2006, ApJ, 651, 1059
Khan, F. M., Just, A., & Merritt, D. 2011, ApJ, 732, 89
Khan, F. M., Preto, M., Berczik, P., Berentzen, I., Just, A., & Spurzem, R. 2012, ApJ, 749, 147
Khan, F. M., Holley-Bockelmann, K., Berczik, P., & Just, A. 2013, ApJ, 773, 100
Kormendy, J. & Ho, L. 2013, ARA&A, 51, 511
Lightman, A. & Shapiro, S. 1977, ApJ, 211, 244
Lodato, G., Nayakshin, S., King, A., & Pringle, J. 2009, MNRAS, 298, 1392
Makino, J. & Funato, Y. 2004, ApJ, 602, 93
Meiron, Y. & Laor, A. 2012, MNRAS, 422, 117
Meiron, Y., Li, B., Holley-Bockelmann, K., & Spurzem, R. 2014, ApJ, 792, 98
Merritt, D., 2013, Classical & Quantum Gravity, 244005
Merritt, D., Mikkola, S., & Szell, A. 2007, ApJ, 671, 53
Merritt, D. & Poon, M.-Y. 2004, ApJ, 606, 788
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Milosavljević, M., Merritt, D., Rest, A., & van den Bosch, F. 2002, MNRAS, 331, L51
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