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A VARIATIONAL CHARACTERIZATION 
OF CONTACT METRIC MANIFOLDS 

WITH VANISHING TORSION 

D. E. BLAIR AND D. PERRONE 

ABSTRACT. Chern and Hamilton considered the integral of the Webster scalar cur
vature as a functional on the set of C/?-structures on a compact 3-dimensional contact 
manifold. Critical points of this functional can be viewed as Riemannian metrics as
sociated to the contact structure for which the characteristic vector field generates a 
1-parameter group of isometries i.e. ^-contact metrics. Tanno defined a higher di
mensional generalization of the Webster scalar curvature, computed the critical point 
condition of the corresponding integral functional and found that it is not the ^-contact 
condition. In this paper two other generalizations are given and the critical point condi
tions of the corresponding integral functionals are found. For the second of these, this 
is the ^-contact condition, suggesting that it may be the proper generalization of the 
Webster scalar curvature. 

1. Introduction In [6] Chern and Hamilton considered the integral of the Webster 
scalar curvature as a functional on the set of CR-structures on a compact 3-dimensional 
contact manifold. The critical points of this functional can be viewed as Riemannian 
metrics associated to the contact structure for which the characteristic vector field gen
erates a 1-parameter group of isometries i.e. a ^-contact structure, a structure which is 
also characterized by the vanishing of a torsion tensor introduced in [6]. Note that in 
dimensions > 3, the notion of a contact metric structure is wider than the notion of a 
strongly pseudo-convex (integrable) C/?-structure. As a generalization of the Webster 
scalar curvature, Tanno [10] defined the generalized Tanaka-Webster scalar curvature, 
W\, on a contact metric manifold and considered E\ (g) = JM W\ dV as a functional on 
the set A of metrics associated to the underlying contact form on the compact contact 
manifold M. He computed the critical point condition for E\ (g) but it is not the A'-contact 
condition. The situation in dimension 3 is quite special and the Webster curvature can 
be written in more than one way suggesting other generalizations. We first give such 
a generalization to higher dimensions, W2, and compute the critical point condition of 
Ei(g) - SM W2 dV on A. We observe that if a metric is critical for both E\ and £2 it is 
^-contact. 

The main result of this paper is to define a third generalization of the Webster scalar 
curvature, W3, as the average of W\ and W2 and to show that the critical point condition 
of Ei(g) = JM W3 dV is precisely the ^-contact condition, thus W3 may be the proper 
generalization of the Webster scalar curvature. 

This work was done while the first author was a visiting professor at the University of Lecce. 
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After giving some preliminaries in Section 2, we develop this theory in Section 3. 

2. Preliminaries By a contact manifold we mean a (2n + l)-dimensional C°° man
ifold M together with a global 1-form 77 such that 77 A (drj)n ^ 0. Given a contact form 77, 
it is well known that there exists a unique vector field £, called the characteristic vector 
field, such that dri(^X) - 0 for all vector fields X and normalized by 77(C) = 1. At each 
point m e M, let #m = {X G TmM | rç(X) = 0}; then B = UBm is called the contact 
subbundle on M. Note that if M is 3-dimensional, each Bm is a plane and we can speak 
of its sectional curvature with respect to a Riemannian metric which we denote simply 
by K(B). 

A Riemannian metric g is said to be an associated metric if there exists a tensor field 
</> of type (1,1) such that dr](X, Y) = g(X, <j>Y)9 r/(X) = g(X, 0 and (f>2 = - / + 77 <g> £ and 
we refer to M with this structure as a contact metric manifold. For a given form 77, the 
set A of all such metrics is infinite dimensional. Moreover each associated metric has 
the same volume element, viz. dV = ^ f r ç A (drj)n. 

Given a contact metric structure ((/>, £, 77, g), define a tensor field /iby/i = îî̂ </> where 
2 denotes Lie differentiation, h is a symmetric operator, /i£ = 0 

(2.1) # + /i(/> = 0, 

and /i = 0 if and only if £ is Killing, i.e. £ generates a 1 -parameter group of isometries. A 
contact metric structure for which £ is Killing is called a K-contact structure. Moreover 
h is related to the covariant derivative of £ by 

Vx£ = -(t>X-(t>hX. 

We also define a tensor field I by IX = Rx^, where 7? is the curvature tensor of g. 
Other formulas for a general contact metric structure that we will need are 

(2.2) (Vk<t>ipW = <PkP(Vp4>ij) + rijfa - 7ijhkm<t>mi + 2(^77; 

(see [8]), 

(2.3) V,V*</>/ + V,VyW = Rtati + fy^' + 2n{hkm<j>mj + A;«<A) 

(see [4]) and 
(2.4) Ric(0 = 2rc-tr/72 

On a contact metric manifold the *-Ricci tensor and ^-scalar curvature are defined 
by 

R*j=RUl4>ke4/, K*=Rf. 

The idea behind the derivation of critical point conditions, is to differentiate the 
functional in question along a path of metrics in A. Let g(t) be a smooth curve in A and 
let 
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We also write D for the tensor field of type (1,1) corresponding to Ay via g = g(0) and 
let 4> be the fundamental collineation as above corresponding to g. Then D is tangent to 
a path g(t) in A at g if and only if 

(2.5) D<j) + (t>D = 0, D£ = 0 

as is shown in [1,2]. The following lemma is proved in [4]. 

LEMMA. Let Tbe a second order symmetric tensor field on M. Then 

[ TijDijdV = 0 
JM J 

for all D satisfying (2.5) if and only if T and </> commute when restricted to B, i.e. 
</>T — T<j> - r] <S> <t>T^ — (77 o T(f>) (g) £ or equivalently 

Tij = TMWW + TjrCm + Tirfrij - (TrsCOmrij. 

3. Main results On a 3-dimensional contact metric manifold the Webster scalar 
curvature W was defined by Chern and Hamilton [6], p. 284, as 

W = ^ ( R i c ( 0 + 2tf(fl) + 4) 

or since the scalar curvature R = 2 Ric(£) + 2K(B) 

W = i ( t f - R i c ( 0 + 4). 

Tanno [10], not including the factor of 1/8, defined the generalized Tanaka-Webster 
curvature W\ by 

WX=R- Ric(0 + An. 

We now state the theorem of Chern and Hamilton [6], an alternate proof of which was 
given in [9], and the theorem of Tanno [10] and sketch their proofs simultaneously. 

THEOREM (CHERN-HAMILTON). Let M be a compact 3-dimensional contact manifold 
and A the set of metrics associated to the contact form. Then g G A is a critical point of 
E\ (g) = JM W\ dV if and only if g is K-contact. 

THEOREM (TANNO). Let M be a compact contact manifold and A the set of metrics 
associated to the contact form. Then g G A is a critical point ofE\ if and only if 

{Q<i> ~ <t>Q) ~ W - <t>0 = 4 # - 7] 0 <t>Qi + {T]oQ(t>)^i 

where Q is the Ricci operator. 
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PROOFS. Clearly it is enough to consider JM{R — Ric(£)} dV and differentiate along 
a path g(t) G A, g(0) = g. Having differentiated R and Ric(£) separately in [4] and [2] 
respectively, we have 

jJM{R- Ric(0} dV\^ = jM{-Rki + HJi"1* + &„'?? - 2hik)Dik dV. 

Thus by the Lemma and (2.4) we see that the critical point condition is 

(3.1) (Q<j> - <t>Q) - (l<t> - <t>l) = 4 # - 7] <g> 0 Q Ç + (r/ o Q<j>) ® £ . 

Now in dimension 3, the Ricci operator determines the full curvature tensor, i.e. 

RXYZ = g(Y, Z)QX - g(X, Z)QY + g(QY, Z)X - g(QX, Z)Y 

(3.2) -*(g(Y,Z)X-g(X,Z)Y). 

Thus the operator I is given by 

iX=QX- r1(X)Q^ + g(QZ, OX - g(QX, Oi -\(X~ *7(*)£) 

from which 

(3.3) £<£ - <^ = G<£ - <£G + ?7 ® <£Q£ ~ 0 / ° Q<\>) ® £. 

Combining (3.1) and (3.3) we have 4<\>h = 0 and hence, since h£> = 0,h = 0. m 

Now on a general contact metric manifold Olszak [8] showed that 

(3.4) R-R* - An2 = ~ | V</>|2 +2rc - tr/i2 < 0 

with equality if and only if the structure is Sasakian and from the form (3.2) of the 
curvature tensor in dimension 3 

|Vc/>|2 = 4 + 2tr/z2. 

Combining these with (2.4), in dimension 3, we have 

R-R* = 2 Ric(0-

Thus the Webster scalar curvature can be written as | (/?* + Ric(£) + 4) = ± (R + \ | V012) 
which in arbitrary dimension becomes £(/?* + Ric(£) + 4n2). Thus we define another 
generalization of the Webster scalar curvature W2 by 

W2 = /T+Ric(0 + 4rc2 

THEOREM I. Let M be a compact contact manifold and A the set of metrics associated 
to the contact form. Then g G A is a critical point ofEiig) = JM W2 dV if and only if 

(Q<t> ~ <t>Q) ~ W " <t>0 = -4 (2" - 1 ) # + (TI ° Q<t>) ® £ - 1 ® </>££• 
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PROOF. We compute ^ f j ^ for a path g(t) in A with g(0) = g. In [4], R* was 
differentiated along such a path and we indicate each of these by square brackets in the 
following integral formula 

dE2 

dt t=o 
= f{[-2nh!1 - V,(<A"V^) - J?*"] 

JM 

+ [-Hmhmt - R(
rJCe + 2He]}Dje dV. 

Thus from the Lemma we see that the critical point condition is 

2(1 - n)hil - \Vi(4>klVk^ + <j>kjVk<j>u) - l-(R*'1 + R*V) - Hmhmt - ReJC? 

= 2(1 - n)tf«4Jp4>l
q - ^ ( V i ( ^ V t ^ + ^ V t ^ ) ) ^ 

_ 1 
~ 2 

pV q 

{R*Pq+B?w)<pp<t>tq _ vjrvvrft - * v * T ^ ' * 
- ^ V / ^ V ^ + ^ V ^ - ^ ' 

+ £V| 4 W ' W + /'v,<n - ljr< 

-e^f-^v^v^+^v^) ^ 5 

As in [4] it is easy to see from the definition of R^ that all terms involving the *-Ricci 
tensor vanish. Expanding the terms involving covariant derivatives of </>, the several 
terms containing products of first derivatives cancel as in [4] mainly by virtue of (2.2). 
Similarly a computation using (2.3) and also done in [4] yields 

+ ^ T - ^ R i c ( 0 ^ 

+ 2W + ^W"V,-V^fr. 

Substituting this into the critical point condition, using <j>h + h<\> = 0 and simplifying, we 
have 

0 = 4(2/1 - 1)A>< + * V £ T - RqrsPiris^P<t>'q ~ Rj" +Rpq<tJP<t>l
q 

Applying <j> to this we have 

0 = A(2n - 1 ) # + </>l - 1<I> - <\>Q + Q<j> - (// o Q<j>) ® £ + 77 <g> </>£>£ 

completing the proof. • 
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We remark that if g is a critical point of both E\ and Ei then g is a ^T-contact metric. 
Our goal is to seek a single functional whose critical points are the A -̂contact metrics. To 
this end we define a third generalization of the Webster scalar curvature which in view 
of the result may be the proper generalization. We define W3 to be the average of W\ and 
W2, i-e. 

W3 = -(/? + /?*+4n(n+l)). 

THEOREM II. Let M be a compact contact manifold and & the set of metrics associated 
to the contact form. Then g G !Ais a critical point ofE^{g) = JM ^3 dV if and only if g is 
K-contact. 

PROOF. Clearly it is enough to consider SM{R + ̂ *} dV. Again having differentiated 
the terms separately in [4], we have 

jtfu{R + **} ̂ U = JM{[-RJt] + [-2nh!e - V ,# W V^) - R?Jt]}DJt dV 

and hence the critical point condition is 

= - # V > < , - 2nh^p<t>'q - - (Vi^Vrf* + <^ V*< )̂)<^ pv q 

-\{R*pq+R*qpWP<t>'q 

+i^r{-Rjr - \vi(tkrvkr + < '̂v,<n - ^ ) 

- £/ Ê T - /T - IVi^Vkfi' + ^Vkt*) VrVs 

Terms involving the *-Ricci tensor and products of first derivatives of <j> cancel as in 
the previous theorem. Terms involving the second derivatives are also treated as in the 
previous theorem. The critical point condition then reduces to —2nh/E = — 2nhpq <\j q<\>1

 q + 
2nUl + 2nhlJ which since (j)h + h(j> - 0 yields h = 0 as desired. • 

REMARK 1. A contact manifold is said to be regular if every point has a neighborhood 
such that any integral curve of £ passing through the neighborhood passes through only 
once. The celebrated Boothby-Wang Theorem [5] states that a compact regular contact 
manifold is a principal circle bundle over a symplectic manifold of integral class. In 
[2,3], it was shown for a compact regular contact manifold, g G Si is a critical point 
of L(g) = JM Ric(£) dV if and only if g is ^-contact, but that without the regularity a 
counterexample can be given. In particular the standard contact metric structure on the 
tangent sphere bundle of a compact surface of constant curvature —1 is a critical point 
of L but is not A^-contact. 
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REMARK 2. We note that the average of W\ and W2 is the best linear combination 
of W\ and W2 to take for the purpose of achieving a functional whose critical points 
are the ^-contact metrics. In fact the critical point condition for JM(aW\ + bW2) dV, a, b 
constants, not both zero, is 

(-Snb+4(b-a))(^h-(b-a)(Q(l)-^Q)=(b-a)[r]^(j)Q^-(71oQ^)^^-(£(f>-(l)l)l 

Now since h = 0 implies I = I — 77 0 £, we see that if h = 0, then either a = b or 
<2</> — <t>Q = —T] ® <t>Q£ + (77 o g(/>) 0 £ and in general one would not want to restrict 
oneself to the latter alternative from the outset. 

If g is a Sasakian metric, then it is a critical point of the functional 

E(g)= [ (aWl+bW2)dV, 
JM 

for all a and b\ in fact g Sasakian implies that h = 0 and that Q(j> — <\>Q = 0. The converse 
implication is an open question. On the other hand there are ^-contact manifolds which 
are not Sasakian. To see this let TV be a compact symplectic manifold with symplectic 
form ft (i.e. ft" ^ 0 and dft = 0) such that [ft] G H2(N, Z), then there is a compact 
regular contact manifold M which is an Sl -bundle over N by the Boothby-Wang fibration 
([5]). Since N admits an almost Kâhler structure (/, G) with ft as its fundamental 2-form, 
this almost Kâhler structure induces on M a ̂ -contact structure which is Sasakian if and 
only if (/, G) is Kâhlerian. Since there exist compact almost Kâhler manifolds whose 
fundamental 2-forms, ft, determine an integral cohomology class and which are not 
Kâhler (see e.g. [7,12]), we conclude that there exist A -̂contact manifolds which are not 
Sasakian. 

REMARK 3. By a B-homothetic deformation (often called a D-homothetic deforma
tion) [11] we mean a change of structure tensors of the form 

77 = 077. £ = -£ , <̂> = </>, g = ag + a(a-\)r]®r] 
a 

where a is a positive constant. It is well known and easy to see that (</>, £, 77, g) is a contact 
metric structure. By direct computation one shows that, R, Ric(£) and R* transform in 
the following manner. 

1 1 — a . M ^ f a — \ \ 2 

R=-R + —=- Ric(0 - 2/i( 
a a1 \ a J 

Rk(0 = ^(Ric(0 + 2«(a2-l)) 

/r = - / r + —— RiC(o + 2n 2/i ( — + —5— 
a az \ \ a ) a1 ) 

From these we see that W,- = - W/, / = 1, 2, 3. In particular this also justifies the choice of 
constants depending on dimension in the definitions of the W/'s. 
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REMARK 4. From (2.4) and (3.4) we note that Wt > R + 2w, / = 1,2,3. For Wx 

equality holds if and only if the structure is ^-contact and for Wi, i = 2, 3, equality holds 
if and only if the structure is Sasakian. 
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