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Normal Subloops
in the Integral Loop Ring of an RA Loop
Edgar G. Goodaire and César Polcino Milies

Abstract. We show that an RA loop has a torsion-free normal complement in the loop of normalized
units of its integral loop ring. We also investigate whether an RA loop can be normal in its unit loop.
Over fields, this can never happen.

1 Introduction

Suppose L is a loop (perhaps a group) which has an alternative loop ring over the ring
Z of rational integers. The loop of units (invertible elements) in ZL is a Moufang loop
which contains L and it is of interest to see how L sits inside U(ZL). If there exists
a normal subloop N of U(ZL) such that L ∩ N = {1} and U(ZL) = ±LN, then N

is called a normal complement of L. The search for a normal complement which is
torsion-free is of great interest in group rings since the existence of such a subgroup
implies a positive solution to the isomorphism problem: ZG ∼= ZH implies G ∼=
H. (See Theorem 2.4 in this paper.) On the other hand, the two problems are not
equivalent since, for example, the answer is “true” to the isomorphism problem for
metabelian groups [Whi68] but “not true” to the existence of a torsion-free normal
complement [RS83].

In Section 2 of this paper, we show that in the alternative loop ring of a Moufang
loop L which is not associative, L indeed has a torsion-free normal complement. This
has long been suspected and indeed has been established in the case that L/L ′ has
exponent 2, 3, 4 or 6 [JL93], [GJM96, Proposition XII.4.1]. (While [GJM96] says
“exponent at most 4”, the result is true for exponent 6 as well since the proof requires
only that the units of Z[L/L ′] be trivial.)

In Section 3, we investigate a related question. Can L ever be a direct factor of
its unit loop? The answer is “never” for loop algebras over fields and “almost never”
over the integers. See Theorems 3.4 and 3.1 respectively.

We now sketch briefly those facts about Moufang loops, alternative rings and loop
rings which are required in this paper. Virtually all proofs can be found in the mono-
graph [GJM96], but we endeavour also to cite original sources as much as possible.

An alternative ring is a ring which satisfies the identities (yx)x = yx2 and (xy)y =
xy2 and a Moufang loop is a loop which satisfies the identity

(xy · z)y = x(y · zy).(1.1)
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28 Edgar G. Goodaire and César Polcino Milies

Any group is a Moufang loop and any associative ring is alternative. The converses
are “nearly” true. Alternative rings and Moufang loops are diassociative: the subring
(or subloop) generated by any pair of elements is associative. In fact, if three elements
in an alternative ring (or Moufang loop) associate, then they generate an associative
ring (or a group).

If L is a loop and R is a commutative, associative ring with 1, the loop ring RL
is defined just as in the case that L is a group. If RL is an alternative ring, then L is
necessarily Moufang, but the converse is not true in general. By definition, an RA
loop is a Moufang loop whose loop rings are alternative, but not associative, over any
ring R [GJM96, Corollary IV.1.2]. The basic properties of RA loops are described in
Section II.5.2 and Chapter IV of [GJM96]. See also [CG86] and [GP87].

Let G be a nonabelian group with commutator subgroup G ′ = {1, s} of order 2,
centre Z(G) and G/Z(G) ∼= C2 ×C2, the Klein 4-group. Defining

g∗ =

{
g g ∈ Z(G)

sg g /∈ Z(G)
(1.2)

one can show that g 	→ g∗ is an involution of G (that is, an antiautomorphism of
order 2). Let L = G∪Gu for some indeterminate u and extend the product in G to L
by the rules

g(hu) = (hg)u

(gu)h = (gh∗)u(1.3)

(gu)(hu) = g0h∗g

where u2 = g0 ∈ Z(G). Then L is an RA loop which we denote M(G, ∗, g0). Of
fundamental importance is the fact that a loop is RA if and only if it is a loop of the
form M(G, ∗, g0) [GJM96, Theorem IV.3.1, Theorem III.3.3, Proposition III.3.6]. See
also [CG86] and the introduction to [GP87]. We also note that if L = M(G, ∗, g0)
is RA, then the centres Z(L) and Z(G) of L and G, respectively, coincide and �2 ∈
Z(L) for all � ∈ L. Moreover, the unique nonidentity commutator of G is a unique
nonidentity commutator and a unique nonidentity associator of L.

A torsion element in a loop is an element of finite order. In an RA loop, the set of
torsion elements forms a locally finite normal subloop which is actually finite if L is
finitely generated [GJM96, Lemma VIII.4.1], [GM95, Lemma 2.1]. A loop is torsion
if every element is a torsion element and torsion-free if it has no nonidentity elements
of finite order.

The set of units (invertible elements) of an alternative ring with 1 is a Moufang
loop. In an integral loop ring ZL, the elements±�, � ∈ L, are clearly units. These are
known as trivial units. A classical theorem of Higman says that if G is a torsion group,
the units of ZG are all trivial if and only if G is an abelian group of exponent 1, 2, 3, 4
or 6, or a hamiltonian 2-group [Hig40]. This theorem can be generalized to torsion
loops L for which ZL is an alternative ring [GJM96, Theorem VIII.3.2], [GP86].

Of significance in this paper is the alternative vector matrix algebra Z(F) of Max
Zorn. Here F is a field and the elements of Z(F) are 2× 2 matrices of the form

[ a x
y b

]
,
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a, b ∈ F, x, y ∈ F3. Such matrices are added in the obvious way, but multiplied
according to the following variation of the usual rule,[

a1 x1

y1 b1

] [
a2 x2

y2 b2

]
=

[
a1a2 + x1 · y2 a1x2 + b2x1 − y1 × y2

a2y1 + b1y2 + x1 × x2 b1b2 + y1 · x2

]
,

where · and× denote the dot and cross products respectively in F3.
Zorn’s algebra comes with a determinant function,

[ a x
y b

]
	→ ab − x · y, and the

units of Z(F) are precisely those matrices whose determinant is not zero. These units
form a loop which is denoted GLL(2, F) and called the general linear loop. It was first
studied by Paige [Pai56] who showed that the centre is ±

[
1 0
0 1

]
and that, modulo its

centre, GLL(2, F) is simple (and not associative).
Let A denote a quaternion algebra over a field F of characteristic different from 2.

Let α be a nonzero element of F and u an element not in A. Let C = A + Au with
obvious addition, but multiplication defined by the rule

(a + bu)(c + du) = (ac + αd∗b) + (da + bc∗)u(1.4)

where a, b, c, d ∈ A and q 	→ q∗ denotes any involution in A. The algebra C is called a
Cayley-Dickson algebra. Such an algebra is alternative, but not associative; moreover,
it is known that every such algebra is either a division algebra or isomorphic to Zorn’s
vector matrix algebra over F [GJM96, Corollary I.4.17], [ZSSS82, Theorem 2.4.7].

2 Main Results

Let R be a commutative and associative ring with 1. Let A be a normal subloop of an
RA loop (or a group) L and let εA : RL → R[L/A] denote the linear extension to RL
of the natural homomorphism L→ L/A. This map is a ring homomorphism whose
kernel is the ideal

∆(L,A) =
{∑

a∈A

αa(a− 1) | αa ∈ RL
}
.

Since εA is surjective, we have R[L/A] ∼= RL/∆(L,A). In the special case A = L,
we write ε = εL, calling this the augmentation map on RL and the element ε(α) the
augmentation of α ∈ RL. Note that ε(α) =

∑
α� for α =

∑
α�� ∈ RL. The ideal

∆(L) = ∆(L, L) is called the augmentation ideal of L. The identity �1(�2 − 1) =
(�1�2 − 1)− (�1 − 1) shows that

∆(L) =
{∑
�∈L

α�(�− 1), α� ∈ R
}
.

If A is a normal subloop of L, ∆(L,A) = (RL)∆(A). We refer the reader to Sec-
tion VI.1 of [GJM96] where the ideas of this paragraph are explained in more detail.

In the remainder of this section, we take R = Z, the ring of rational integers.

Lemma 2.1 Let A be a normal subloop of an RA loop L and let δ ∈ ∆(L,A). Then
there exists a ∈ A such that δ ≡ a− 1

(
mod∆(L)∆(A)

)
.
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Proof The identity

ab− 1 = (a− 1)(b− 1) + (a− 1) + (b− 1)

and its consequence

a−1 − 1 = −(a− 1)− (a− 1)(a−1 − 1)

imply that an − 1 ≡ n(a− 1)
(

mod∆(A)2
)

for any a ∈ A and n ∈ Z. Thus, for any
integers n1, n2, . . . , nk, and any a1, a2, . . . , ak ∈ A,

k∑
i=1

ni(ai − 1) ≡
( k∏

i=1

ani
i

)
− 1
(

mod∆(A)2
)
.(2.1)

Let δ ∈ ∆(L,A) and write δ =
∑

i, j δi j�i(a j − 1), δi j ∈ Z, �i ∈ L, a j ∈ A. Since

�(a− 1) = (�− 1)(a− 1) + (a− 1) ≡ a− 1
(

mod∆(L)∆(A)
)
,

we have δ ≡
∑

j δ j(a j − 1)
(

mod∆(L)∆(A)
)

, δ j =
∑

i δi j . So δ ≡ a −

1
(

mod∆(L)∆(A)
)

, a =
∏

a
δ j

j , by (2.1).

Lemma 2.2 Let L be an RA loop with centre Z. Then L ∩
(

1 +∆(L)∆(Z)
)
= {1}.

Proof We first remark that L∩
(

1 +∆(L,Z)
)
= Z. On the one hand, for any a ∈ Z,

a = 1 + (a − 1) with a − 1 ∈ ∆(L,Z) implies that Z ⊆ 1 +∆(L,Z). On the other
hand, if � ∈ 1 +∆(L,Z), then � − 1 ∈ ∆(L,Z) maps to 0 under the map εZ. Since
the image of �− 1 is �̄− 1̄, we have �̄ = 1̄, so � ∈ Z.

Next, we define an abelian group homomorphism
(
∆(L,Z),+

)
→ Z. To do so,

we find a special way to represent the elements of∆(L,Z). First write L =
⋃

q∈Q Zq
as the disjoint union of cosets of Z. Without loss of generality, we may assume that 1
is in the transversal Q. Any δ ∈ ∆(L,Z) is an integral linear combination of terms of
the form �(a− 1), � ∈ L, a ∈ Z. Writing � = qb, with q ∈ Q and b ∈ Z, we have

�(a− 1) = qb(a− 1) = q(ba− 1)− q(b− 1).

(In this calculation, we may associate freely since elements of Z associate with all
other elements of ZL.) It follows that

δ =
∑

i, j

δi jqi(a j − 1),(2.2)

a j ∈ Z, δi j ∈ Z and qi ∈ Q. Since qia j = qras implies qiZ = qrZ and hence qi = qr,
a j = as, it is easy to see that the coefficients δi j in (2.2) are unique. Thus the map
ϕ : ∆(L,Z)→ Z defined by∑

i, j

δi jqi(a j − 1) 	→
∏

j

a
δ j

j , δ j =
∑

i

δi j ,
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is well-defined and a homomorphism from the abelian group
(
∆(L,Z),+

)
to Z.

Under ϕ, the element

(qb− 1)(a− 1) = q(ba− 1)− q(b− 1)− (a− 1)(2.3)

maps to (ba)b−1a−1 = 1; thus∆(L)∆(Z) ⊆ kerϕ.
Now suppose � ∈ 1 + ∆(L)∆(Z) and write � = 1 + δ, δ ∈ ∆(L)∆(Z). We have

ϕ(δ) = 1. On the other hand, since ∆(L)∆(Z) ⊆ ∆(L,Z), the point made in the
first paragraph gives � ∈ Z and so, by definition of ϕ, ϕ(δ) = ϕ(�−1) = �. It follows
that � = 1.

Since the augmentation map ε : ZL→ Z is a homomorphism, if µ ∈ ZL is a unit,
ε(µ) = ±1. We call µ normalized if ε(µ) = +1. The set U1 of normalized units
in ZL is a loop (containing L) and U(ZL) = ±U1. It follows that if N is a normal
complement for L in U1, then N is a normal complement for L in the full unit loop.

In the proof of the theorem which follows, it is convenient to employ the term
“support”. If α =

∑
�∈L α��, α� ∈ R, is in a loop ring RL, the support of α is the set

supp(α) = {� ∈ L | α� �= 0}.

Theorem 2.3 Let L be a finite RA loop with centre Z. Then

N =
(

1 +∆(L)∆(Z)
)
∩ U1(ZL)

is a torsion-free normal complement for L in the loop U1 of normalized units in ZL.

Proof The set ∆(L)∆(Z) is an ideal of ZL because ∆(L) is an ideal and ∆(Z) is
central. This implies that N is a normal subloop of U1. By Lemma 2.2, it remains
only to prove that LN = U1 and that N is torsion-free.

Let εZ : ZL→ Z[L/Z] denote the ring homomorphism which is the linear exten-
sion to ZL of the natural loop homomorphism L→ L/Z which maps � to Z� = �̄. Let
ᾱ denote the image in Z[L/Z] of α ∈ ZL under the homomorphism εZ. Let µ ∈ U1.
Since L/Z ∼= C2×C2, the units in Z[L/Z] are trivial by Higman’s Theorem. Thus the
image µ̄ of µ in ZL/∆(L,Z) ∼= Z[L/Z] is an element of the form ±�̄, � ∈ L, and, in
fact, +�̄ since the augmentation of µ̄ is +1. So µ− � ∈ ker εZ = ∆(L,Z) and we have
µ = �(1 + δ) for some δ ∈ ∆(L,Z). By Lemma 2.1, δ ≡ a − 1

(
mod∆(L)∆(Z)

)
for some a ∈ Z, so, for some δ1, δ2 ∈ ∆(L)∆(Z), we have µ = �(1 + a − 1 + δ1) =
�(a + δ1) = �a(1 + δ2) ∈ LN. Thus LN = U1.

We now show that N is torsion-free. Because a torsion unit with a central element
in its support is necessarily an element of L [GJM96, Corollary VIII.1.2], [GM89,
Corollary 2.2] and in view of Lemma 2.2, it suffices to show that each element of
1 + ∆(L)∆(Z) has a central element in its support. Let then α ∈ 1 + ∆(L)∆(Z).
Using (2.3), we may write

α = 1 +
∑

q∈Q,a∈Z

αqaq(a− 1) +
∑
b∈Z

βb(b− 1),(2.4)
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αqa, βb ∈ Z, a, b ∈ Z and Q a transversal of Z in L containing 1. In the right hand
side of (2.4), a fixed a0 ∈ Z, a0 �= 1, has coefficient α1a0 +βa0 . Thus, if α1a0 +βa0 �= 0,
then a0 is in the support of α and we have the desired result. On the other hand, if
α1a + βa = 0 for all a ∈ Z, then the coefficient of 1 on the right side of (2.4) is

1−
∑
a∈Z

α1a −
∑
b∈Z

βb = 1 �= 0,

so 1 is in the support of α.

The original proof of the following “isomorphism theorem” appeared in [GM89].
See also [GJM96, Theorem IX.1.1].

Theorem 2.4 Let L and L1 be finite RA loops and suppose that ZL1
∼= ZL. Then

L1
∼= L.

Proof Note first that L and L1 have the same order, since each is the rank of the
same free Z-module. Suppose ϕ : ZL1 → ZL is the given isomorphism and let N

be a torsion-free normal complement for L1 in U1(ZL1). Then ϕ(N) is torsion-
free in U1(ZL) and so L ∩ ϕ(N) = {1}. Since [U1(ZL) : ϕ(N)] = |L1| = |L| =
[Lϕ(N) : ϕ(N)], we have U1(ZL) = Lϕ(N). Thus

L1
∼=

U1(ZL1)

N
∼=

U1(ZL)

ϕ(N)
∼=

Lϕ(N)

ϕ(N)
∼=

L

L ∩ ϕ(N)
= L.

3 Related Questions

In view of Theorem 2.3, it is natural to ask if L can ever be a direct factor of U1. As
we shall see, with L finite, this happens only when U1 = L.

Theorem 3.1 Let L be a finite RA loop. Then L is normal in U(ZL) if and only if
U(ZL) is itself an RA loop and this occurs if and only if U(ZL) = ±L.

Proof If U(ZL) is an RA loop, then the torsion units form a subloop of ZL, so the
loop T of torsion elements in L is either an abelian group or a hamiltonian Moufang
2-loop [GJM96, Corollary XII.2.14], [GM95, Theorem 3.1]. Here, T = L is a hamil-
tonian Moufang 2-loop. In this case, the generalization of Higman’s Theorem to
alternative loop rings says U(ZL) = ±L, so L is certainly normal in U(ZL).

Conversely, assume that L is normal in its unit loop. If ν ∈ U(ZL) and � ∈ L, then
ν−1�ν is an element of the finite set L. It follows that each µ =

∑
�∈L µ�� ∈ U(ZL)

has just finitely many conjugates of the form ν−1µν. Such a loop is called FC and it is
known that if U(ZL) is FC, then U(ZL) is RA [GJM96, Corollary XII.2.14], [GM95,
Theorem 3.3].

The final part of the proof follows from the fact that if L is finite, then U(ZL) is RA
if and only if L is a hamiltonian Moufang 2-loop [GJM96, Corollary XII.2.14] and so
U(ZL) = ±L [GJM96, Theorem VIII.3.2] [GP86, Theorem 7].
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Remark 3.2 The condition that U(ZL) be RA is equivalent to many other condi-
tions on this unit loop, including nilpotency and the n-Engel and FC properties
[GJM96, Corollary XII.2.14], [GM95, Theorem 3.3].

Example 3.3 There do indeed exist RA loops L with U(ZL) �= ±L also RA. By
Corollary XII.2.14 of [GJM96] (see also [GM95, Theorem 3.3]), it is sufficient to
construct an RA loop with a torsion subloop T which is an abelian group with the
property that if x ∈ L does not centralize T, then x−1tx = t−1 for all t ∈ T. To
construct such an L, let A = 〈s〉 × 〈b〉, s2 = 1, be the direct product of a cyclic group
of order 2 and an infinite cyclic group 〈b〉. Let G be the group generated by A and
elements x, y subject to the relations

ax = xa, ay = ya for a ∈ A, x2 = s, y2 = b, (x, y) = s.

Then G ′ = {1, s}, Z = A and G/Z = 〈x〉 × 〈y〉 ∼= C2 ×C2. The loop M(G, ∗, b) =
G ∪ Gu, where u2 = b, is RA with torsion subloop T = 〈s, x〉 and y−1x−1 y =
(y, x)x−1 = sx−1 = x.

As we now show (Theorems 3.4 and 3.6), in contrast to Theorem 3.1, L is never
normal in the unit loop of a loop algebra over a field F and U(FL) is never RA.

Theorem 3.4 Let L be a finite RA loop and let F be a field. Then L is not normal in
U(FL).

Proof Assume that L is normal in U(FL). As in the proof of Theorem 3.1, U(FL)
must be an FC loop, so F is finite [GJM96, Theorem XIII.3.5], [GM96a], say of char-
acteristic p > 0. Since L is finite, we can write L = L2 × L2 ′ as the direct product
of an RA 2-loop L2 and an abelian group L2 ′ [GJM96, Proposition V.1.1], [CG86,
Theorem 6]. If � ∈ L2 and µ ∈ U(FL), then µ−1�µ is a 2-element of L and hence in
L2. It follows that we may assume that L is a 2-loop.

Let Fp denote the field of p elements and suppose first that p �= 2. Then FL
is semisimple and hence the direct sum of fields Fi and Cayley-Dickson algebras Ai

[GJM96, Corollary VI.4.8] [GM96b, Theorem 2.8], so U(FL) is the product of the
unit loops of these Fi and Ai . Since each Ai is finite, it is not a division algebra. (A
finite alternative division ring is commutative by Wedderburn’s Theorem, since the
subring generated by any two elements is a finite division ring, and hence associative
[ZSSS82, Theorem 3, p. 143].) Thus each Ai is a Zorn’s vector matrix algebra over a
field K and the projection of±L in Ai is a subloop of the unit loop U(Ai) of Ai . Since
L is normal in U(FL), the projection of ±L is normal in U(Ai) which, as explained
in the introduction, is the general linear loop GLL(2,K). Since ±

[
1 0
0 1

]
is the only

nontrivial normal subloop of GLL(2,K), either the image of ±L is GLL(2,K) or it
is central (perhaps trivial). The first possibility cannot occur, however, since G is a
nonabelian normal subloop in L and there are no such subloops of GLL(2,K). The
second possibility cannot occur either since the image of L in U(FL) is not central.
Thus p = 2.

Let F2 denote the field of 2 elements. Clearly F2L ⊆ FL and L is normal in U(F2L).
Let ε : F2L → F2 be the augmentation map. Since ε is a ring homomorphism, if α ∈
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F2L is a unit, necessarily ε(α) = 1. On the other hand, ifα ∈ F2L has augmentation 0,
then α lies in the augmentation ideal∆(L) which is known to be nilpotent [Goo95],
[MZ, Theorem 3.4]. In particular, α is not a unit. Thusα ∈ F2L is a unit if and only if
ε(α) = 1. Let g, h ∈ L be two elements which do not commute. Then µ = 1 + g + h is
a unit in F2L which does not commute with g, so µ−1gµ = t ∈ L. We have gµ = µt ,
implying g + g2 + gh = t + gt + ht . Now g2 �= g, g2 �= gh and g2 �= gt ; thus g2 = t
or g2 = ht . If g2 = t , then t is central (the square of any element of L is central) and
so is g = µtµ−1 = t , a contradiction. So g2 = ht which, after cancellation, gives
g + gh = t + gt and g ∈ {gh, t, gt}, which is not true.

Remark 3.5 Let R be any commutative associative ring with 1 and of characteristic
p > 0. Since R contains Fp, the proof of Theorem 3.4 shows that L is never normal
in U(RL). Such is not the case with group rings over finite rings; for example, the
symmetric group S3 is normal in U(F2S3) [Seh78, Section 6.2, p. 215].

Theorem 3.6 Let L be a finite RA loop and F a field. Then U(FL) is not RA.

Proof Suppose U(FL) is an RA loop. Since L contains an RA 2-loop, we may assume
that L itself is a 2-loop.

Suppose that the characteristic of F is different from 2. Again, U(FL) is the product
of the unit groups of fields and Cayley-Dickson algebras. Let A be one of the Cayley-
Dickson algebras and U = U(A) its unit loop. As a subloop of the RA loop U(FL), U

is clearly RA too. If A has zero divisors, then A is a Zorn’s vector matrix algebra and
U is a general linear loop. This loop is not RA for a variety of reasons; for instance,
it contains the general linear group and hence does not possess a unique nonidentity
commutator. On the other hand, if A is a division algebra, then U = A\{0} contains
Q8, the quaternion group of order 8. In Q8, the unique nonidentity commutator is
−1, so this is the unique nonidentity commutator in U. Since i + j and i do not
commute, we would have (i + j)i = −i(i + j), giving 2i2 = 0, a contradiction. Thus
char F = 2.

Let F2 denote the field of 2 elements. Since F2L ⊆ FL, U(F2L) is an RA loop. In
particular, this unit loop has a unique nonidentity commutator-associator which is
necessarily the unique nonidentity commutator-associator, s, of L. As noted in the
proof of Theorem 3.4, α ∈ F2L is a unit if and only if ε(α) = 1, where ε : F2L → F2

is the augmentation map. Let g and h be two elements of L which do not commute.
Thus hg = sgh. Then 1 + g + h is a unit which does not commute with g, so the
commutator of these two elements is also s. The equation (1 + g + h)g = sg(1 + g + h)
implies g + g2 = sg + sg2 and hence 1 + g = s + sg, an impossibility since g �= 1, g �= s
and g �= sg.
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Added in proof S. O. Juriaans has recently informed us that Theorems 2.3 and 2.4
also appear in a paper of his with L. G. X. de Barros [dBJ97].
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