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ON THE STATISTICAL INTERPRETATION OF SOME
BACTERIOLOGICAL METHODS EMPLOYED IN
WATER ANALYSIS.

BY M. GREENWOOD, JUNE, AND G. UDNY YULE.

(Lister Institute of Preventive Medicine.)

(With 3 Charts.)

WE were recently consulted by an officer serving on the Western
Front as to the significance attaching to ordinary bacteriological methods
of gauging the potability of waters. He wished to know what was the
probability that a given water supply did not contain more than a
certain proportion of bacteria in the unit volume, it having been found
that particular samples tested showed no growth while, perhaps, larger
samples had done so, or that so many out of a series of samples of the
same size had given positive results. Having obtained what seemed
to us a reasonable solution of the particular problem proposed, we
thought that the results might interest other officers and bacteriologists
who have to do similar work. A survey of the criteria actually used
by bacteriologists when they form an opinion as to the purity of waters
seems to us to emphasise the need for some discussion.

So far as we can learn, the standard method is to find the minimum
quantity of water from which a culture of the organism in question is
obtained, usually at a single trial. It is also generally held that a
useful indicator of pollution is furnished by the B. coli group; the differ-
ence between such highly refined techniques as that of the Metropolitan
Water Board's experts and the rapid Field Service method introduced
by Lieut.-Colonel P. S..Lelean is that the former envisage a carefully
defined and limited group of organisms, while the latter merely deter-
mines the presence of such as ferment lactose, when grown in MacConkey's
bile salt broth, within 24 hours. It will be remembered that Houston
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has expressed positive results in terms of the numbers of tubes con-
taining "flaginacs," i.e. organisms which:

(1) give greenish fluorescence (fl) in neutral-red broth,
(2) acid and gas (ag) in lactose-peptone,
(3) indol (in) in broth,
(4) acidity (ac) and clotting of litmus-milk.

Whether this rigorous examination really excludes many organisms
which, although passing the lactose fermentation test, ought not to be
admitted into the B. coli fold, is a question we are incompetent to
answer.

With respect to standards, Dr Savage, who has worked in the
Metropolitan Water Board's, laboratory, writes that any deep well or
spring water which contains B. coli (rigidly denned by such methods
as that above detailed) in a sample of 100 c.c. or less should be regarded
with great suspicion. In the case of surface supplies and shallow wells,
he writes: " If no B. coli are present in 50 c.c, the water may probably
be safely passed as satisfactory, as far as conditions actually present
are concerned." "For rivers used as sources of drinking water, without
artificial purification, similar standards are applicable1."

Colonel Lelean's standard is not defined. In practice he appears to
have used 7 tubes containing respectively 20, 15, 10, 5, 2, 1 and \ c.c.
of water to be tested2. The total volume of water so used is said to
have been 50 c.c. (in reality, as it appears, 53 | c.c.) and the tests "giving
all negatives'were recorded as having fractors in 75 c.c. instead of 50 c.c,
while the all-positive results were given a value of fractors in \ c.c.
instead of \ c.c." This novel statistical approximation does not, how-
ever, seem to have been uniformly employed by Colonel Lelean, for
the number 50, and also the number 25, is frequently to be found in the
column of his tables headed " Minimal number of c.c. containing lactose
fractors." As no single tube of his series contained either 50 or 25 c.c.
it is not obvious how these results were reached.

Nor is Colonel Lelean the only writer from the perusal of whose
lucubrations the student may rise with some sense of bewilderment.
Professor Hewlett3 states that for the examination of an ordinary

1 Savage, The Bacteriological Examination of Water Supplies, pp. 185-6. London,
1906.

2 Bacteriological Examination of Waters in the Field. Journ. Royal Army Medical
Corps. Sept. 1914.

3 Manual of Bacteriology, 5th Edition. London, 1914.
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38 Bacteriological Water Analysis

drinking water he usually employs five tubes with ] c.c. of the water
in each, two tubes (double strength) with 10 c.c. in each, and one tube
(double strength) with 25 c.c." (p. 584). Then later he remarks (p. 587)
"The detection and enumeration of B. coli are regarded by all as
perhaps the most important part of water examination. The number
of B. coli is estimated from the amounts of water that have been added
to the tubes of media, which, however, assumes that the organism is
regularly distributed throughout the sample, and this must so far as
possible be ensured by thorough mixing. The results generally come
out fairly concordantly, though irregularities exceptionally occur .which
can only be obviated by making duplicate sets of cultures. It is better
to state the result as "B. coli present in ... c.c. of water" rather than
to say that so many B. coli are present, though as a matter of fact the
latter statement is approximately correct. Adopting the writer's
method for B. coli (p. 584), if none of the tubes contains B. coli, we say
that "B. coli is absent from 50 c.c."; if the 25 c.c. tube contains B. coli,
but not the remainder, " B. coli is present in 25 c.c. but not in less,
and so on."

"If nothing is known about the water, the following standards may
be adopted:

(a) Waters of good quality. B. coli absent in 50 c.c. of the
water.

(b) Wafers of medium quality. B. coli present in 50 c.c. but absent
in 25 c.c.

(c) Waters of poor quality. B. coli present in 50 c.c. and 25 c.c,
but absent in 10 c.c.

(d) Waters of suspicious quality. B. coli present in 50 c.c, 25 c.c
and 10 c.c, but absent in 1 c.c.

(e) Waters unfit for drinking. B. coli present in 1 c.c. or less."

In following paragraphs there is some qualification of the standards
here laid down, it being pointed out that in upland surface waters a
high degree of contamination may only be due to pollution by the
excreta of animals and therefore not dangerous, while in the case of
spring or deep well water B. coli should be absent from at least 50 c.c.

In the passage cited from p. 587 it is not explained how " the number
of B. coli is estimated from the amounts of water that have been added
to the tubes of media" even on the assumption of regular distribution,
nor how any amount of stirring can ensure regular results, any more
than stirring up the tickets in a bag containing equal numbers of black
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and white cards can ensure that one will always draw five black and
five white out of ten. It is not clear how duplicate sets of cultures
can obviate irregularities, when two or more sets may give different
results. The student will agree that when he fails to get a positive in
any one of the author's series of tubes " B. coli is absent from 50 c.c."
But if the 25 c.c. tube gives a positive but none of the remainder, he
may legitimately object to the statement "B. coli is present in 25 c.c.
but not in less," seeing that what has really been found is that B. coli
is present in one lot of 25 c.c. but not in another—the lot made up of five
1 c.c. tubes and two of 10 c.c. The concluding words of the paragraph
"and so on" also open up a vista of possible questions. If one of the
10 c.c. tubes gives a positive and the other a negative, how is the result
to be stated? If one, or two, or more of the 1 c.c. tubes give positives,
but not the remainder, what conclusion is to be drawn? Passing then
to the standards laid down under heads (a)—(e), how is the student to
determine standard (b) from the author's series of tubes? If B. coli is
"present in 50 c.c." in his series, it is most likely to be present in the
25 c.c. tube and is therefore not absent from 25 c.c.: if present in the
25 c.c. tube, it is also very probably present in one of the others which
total to 25 c.c. and this makes the case worse. Standard (b) cannot
therefore be determined from the given series of tubes. Standard (c)
also fails: if none of the 10 c.c. or 1 c.c. tubes give a positive, the actual
result is, as already pointed out, " B. coli present in one sample of 25 c.c.
but not in another." If either of the 10 c.c. tubes give a positive, one
cannot state that B. coli is absent from 10 c.c. Precisely similar
criticisms apply to (d). If B. coli is absent from all the 1 c.c. tubes, it
is absent from 5 c.c, not from 1 c.c. If any one of the 1 c.c. tubes
give a positive, it is not "absent from 1 c.c."

The train of reasoning followed in the treatise of Colonel Beveridge
and Major Wanhill is somewhat different. These authors employed the
usual MacConkey medium and they classified waters in practically the
same way as Savage, e.g. they held that the absence of B. coli from
100 c.c. indicated a very pure water, while presence in 100 but absence
from 50 c.c. "is an indication of a good water, which has been polluted
in some way, by animal or by human excreta, but in such small amount,
or at such a distant period that there would not be much danger attaching
to the use of such water for a town supply, if filtered" (p. 152). They
further observed that " For temporary camps, if inspection could reveal
the presence of no polluting agency and it could be surmised that the
excreta of sheep or cattle were the cause, the presence of B. coli in
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10 c.c. or less might be allowed, this number being often found in
moorland streams, where human contamination is unlikely1."

Beveridge and Wanhill also provide an arithmetical illustration of
the method of determining the density of bacilli in the source from an
examination of samples each of the same volume. They say that if
ten tubes each inoculated with 1 c.c. of water yielded three positive
and seven negative results the sample may be considered to contain
B. coli in every 3 c.c. of water, adding: " this is a rough estimate and
is not mathematically accurate." We may observe that it was this
somewhat delphic utterance which induced an officer on water duty to
submit to us the problem which was the starting point of the present
investigation.

Before detailing our investigation, we may emphasise certain con-
siderations which were, no doubt, present in the minds of the various
authors cited but seemed to them too trivial to state.

The fact that a given volume of water tested contains no bacilli,
or none which will grow, does not prove that the source of supply is
sterile, the point is merely that the greater the volume tested with
negative results the smaller is likely to be the population of organisms
existing in the supply; none of the writers has attempted to provide
a scale of bacterial densities corresponding to the increase of the minimum
quantity of water found sterile on examination. We think, indeed,
that the tenor of the passages cited creates a presumption that the
authors' criterion really is that sources shown by other methods or found
from practical experience to be safe or to be unsafe have usually been
found to give sterile readings when samples of the assigned size have
been tested. This would explain, for instance, the lower standard
adopted in the case of moorland waters. This is undoubtedly a reason-
able attitude of mind enough, but it is necessary to remark that the
process is not wholly satisfactory, since two observers both testing the
same source on, say, the basis of a sample of 100 c.c. might obtain the
one a positive, the other a negative result, so that the one would reject
and the other pass the supply. Further, no criterion is provided of the
increase in accuracy of prediction attained when two, three or more
samples of 100 c.c.-all give sterile readings.

The object of this paper is to provide such criteria or at least to
indicate the method by which they may be obtained in any given case.
The actual technique employed is so different in detail in different

1 Beveridge and Wanhill, The Sanitary Officer's Handbook of Practical Hygiene, 2nd
Edition. London, 1912.
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cases (thus the Metropolitan Water Board use tubes with volumes in
decreasing geometrical progression, 100 c.c, 10 c.c, 1 c.c, etc., while
Colonel Lelean had tubes of diminishing volume but not diminishing
uniformly), that it is not possible to provide a table of standards which
will be of use to all observers. Such tables can be drawn up, with the
help of general formulae obtained, but, as the arithmetic if simple is
laborious, we have confined ourselves to the provision of a few illustrative
examples.

SECTION I. PRELIMINARY PROPOSITIONS.

If in the water from which samples of, say, 1 c.c. each are drawn
there exist B bacilli in all in a total volume of W c.c. of water, then, the
distribution of bacilli being assumed to be random, the probable numbers
of c.c. with 0,1,2, 3,... bacilli in each are given by the binomial expansion

/W — 1 1 \s

(V-4) <»•
Since B and W are both very large indeed, (1) becomes by a well-known
transformation originally given by Poisson1:

+ A + + )
7}

where A = ™. The problem then reduces itself to that of determining

the appropriate value of A and the probable reliability of its deter-
mination.

SECTION II. CASE OF A SINGLE TEST.

We first consider the case of a sample of N c.c. having been taken
and found sterile.

The chance of this happening for a given value of A, is, by (2), e~SK.
Now it is reasonable to assume that all values of A from 0 to some

upper limit w are a priori equally probable (by analogy with Bayes'
postulate) so that the chance of A being within the range A ± ^dX is
dXjw and the chance that, A being within the range, the event happens
is e~NK, so that the complete chance of A not exceeding some assigned
value K is:

e . OA. Nic

p = -'j) _ i y
e-A'* .dX e

o
1 Recherches gm la ProbabiliU d. Jugements, etc., p. 190 and p. 206.
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e~Nw diminishes very rapidly as w increases and we may put w = oo so
that the required chance is

P = l-e-v' (3).

Consequently if we desire to assign an upper limit to the probable
density of bacilli in a source of supply a sample of N c.c. from which
has proved sterile we have the following simple method. Suppose we
take as our standard the limit corresponding to odds of 99 to 1.

Then, from (3)

and the odds are 99 to 1 that K is not greater than

log -01
N log e'

Looking at the matter from the standpoint of the frequency distri-
bution, we may say that the frequency distribution of bacilli per c.c. in
waters which give a negative result on testing N c.c. is

y = N . e~N\

The maximum is at zero and the curve tails off rapidly towards the
higher densities. The actual curve for N = 100 is shewn in Fig. 1.

\

\

\

-———_
f- 1 —. w^^,

•005 •01 •015 02 025 •03 •045

X —bacteria per c.c.

Fig. 1. Frequency distribution of bacterial densities when 100 c.c. give a negative
result. The area of the curve is 10 squares.
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SECTION III. CASE OF TWO TESTS.

We now take the instance of two tubes having been used with
respectively n and m c.c. of water in each. Should both prove negative,
we reach the previous result putting n + m = N. If the n c.c. tube is
negative and the m c.c. tube positive then from (2) by similar reasoning
we have for the chance that A does not exceed K :

* - rw
e~KK (1 - e-km) dX

Jo

putting w = infinity, as. before, we have

P = 1 _ (n + me-n* _ "g-.n+n..^ ( 4 ) .

Taking again some particular value of odds, such as 99 to 1, (4)
enables us to find a value of K.

It is to be noted that the method breaks down if both samples give
positive results for

o

- e-nX) (1 - e-mK) dX
.' o '

vanishes for w = oo , so that no upper limit is assignable to A.
The problem of this section may also be studied from the point of

view of curve fitting. We have, writing m + n = N,

y= — e~Kn(l - e~km) (5),

for the distribution of A, since the total area is

/ ;

The curve extends from 0 to oo, and differentiating (5) with respect to
A and equating to zero we find for the mode

A = l o g . - T —n m log e
Now

(6).

xn e~XK .dx = - \ x"-1. e~XK .dx=... = —^
Jo KJ0 K ^ 1

(integrating successively by parts and noticing that the first part
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vanishes), so that the successive moments of (5)- are determinate. We
have:

N + n ._,
(<)

{ h

This curve therefore has positive skewness for all finite values of n,
i.e. the long tail of the distribution extends to high values of A.

Again if we write Ax for the modal value found in (6), the chance
that the true bacterial density does not exceed the modal value is:

integrating and putting Ax equal to (6), (9 a) becomes:

If m = pn, N = (p + 1) n, (10) becomes:

If p becomes very large the fraction approximates to unity and most
of the area lies beyond the mode. This is reasonable, for the information
that a second sample of infinite size gave a positive result adds nothing
to our knowledge and (4) reduces to the case of the last section, for which,
as A cannot be negative, the mode is at A =-- 0.

As an illustration of the forms that frequency distributions may
take, the curves have been calculated (1) for the case in which 100 c.c.
gives a positive result and 50 c.c. a negative, (2) for the reciprocal
case in which 100 c.c. gives a negative but 50 c.c. a positive—an incon-
sistent but perfectly possible result. The two curves are shewn together
in Fig. 2. Both distributions are very skew. The respective modes are
Ax = 0-011 and Ax = 0-0081.

The question naturally arises, what is the probability of an incon-
sistence such as that assumed in the second illustration ? If n c.c. have
given a negative result what is the probability that a subsequent sample
of m c.c. from the same water will also give a negative, or on the other
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hand a positive ? If n c.c. have given a negative, the probability that
A lies within the limits K ± Jd/c and that a second sample of m c.c. will
then give a negative is we--̂ " df/c, where N = m + n as above. For

/

——i — Ji—
•02 -03 04 05 06 07 08

X = bacteria per c.c.

Fig. 2. Frequency distributions of bacteria] densities for (1) 100 c.c. +, 50 c.c. - ,
the curve with the lower maximum, (2) 100 c.c. - , 50 c.c. + , the curve with the higher
maximum. The area of each curve is 10 squares.

all values of A the required probability is therefore the integral of this
from 0 to oo or:

chance that n c.c. having given a negative, a second) n
sample of m c.c. will also give a negative j N'

If n = 100, m = 50, the chance is | or the chance of an inconsistence
no less than | . If m = n, the chance is \ . The results emphasise our
previous remarks on the necessity of remembering that all results are
subject to considerable fluctuations of sampling.

SECTION IV. CASE OF SEVERAL TESTS.

We first examine the case of N tubes, each containing the same
quantity of water, which is taken as unity, n of the tubes being sterile
while m give positive results.

If follows directly from (2) that the most probable value of A is given

by
N — n> 1 N N

AT^ = e~K o r A = r^- l o§ T^— = 2-302585 log ^ ^ ...(12).N log e & 2V — m b N — m K '
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The value so obtained is, however, subject to wide fluctuations of
sampling as we shall now show.

~ftj ryyi

Calling — -y—, x, we haveN
1 N — m m

If
1 1

2 = log - , dz = dx, (dz)2 = „ (dx)2,

and consequently

a/ = -5 aJ =
N (N - m)'

And finally the "probable error" of A determined from (12) is:

1-553068 .(13).

As will be seen from the probable errors calculated as illustrations
in the columns headed 4 and 10 of Table I the fluctuations are such
that it seems better to resort to the method adopted in the previous
sections.

TABLE I.

Probable number of bacilli per 1000 c.c. for a given number of blanks out
of a given number of test tubes (1 c.c. in test). If 10 c.c. are placed in
each tube instead of 1, divide all figures by 10.

Out of

blanks
1

2

3

4

5

6

7

8

9

r
2
693

3 4
1098 1386

±1345

405 693
± 777

— 287
± 448

—

—

5
1609

916

510

223

—

—

6
1792

1098

693

405

182

—

—

—

—

7
1946

1253

847

560

336

154

—

—

_

8
2079

1386

981

693

470

287

134

—.

—

9
2197

1504

1098

811

588

405

251

118

—

10
2303

±1473

1609
± 982

1204
± 750

916
± 602

693
± 491

510
± 401

357
± 322

223
± 246

105
± 164
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We have accordingly for the chance (P) that A does not exceed some
value K

e-Xne~
- ^ : : (14).

e~Kn{\ -e~k)mdX
.'o

Expanding the brackets, the numerator and denominator can be
integrated as before and an equation obtained for the value of x corre-
sponding to a given value of P. For small numbers of tubes there is no
difficulty, though the laboriousness of the work rapidly increases with
the number of tubes. Alternatively, writing

x J-V dx
e~K — x, d\ = ,

x
substituting and assuming w to be infinite (14) becomes

n re-'
a;"-1 (1 — x)m dx xn~l (1 — x)m . dx

Je-K JO

Jo (m + »)!
If now we require the value of K which corresponds to some assigned

probability, we can rewrite (15) as
rx
I t*> yL JU) • U/JJ

-2—, TT-i 1 = 1 - P (16).
(n — 1)! m ! v

(m + n)!
Integrating the numerator of (16) by parts, (taking x"-1 as the direct

integrand so as to keep the terms all positive) it becomes

*" in \m m n -\m-i m (m — 1) 2n _
n \ n + 1 (n + I) (n + 2)

(17).
The series converges fairly rapidly and in rough practice it will be

found that a sufficiently good approximation is often reached by putting
the bracket equal to unity and solving for x from

- = ( r c - 1 ) ! ^ ! ( 1 _ p ) ( l g )

n (m + ri)!
As the sum within the bracket cannot exceed unity, this approxi-

mation underestimates x and therefore over-estimates A, an error on
the safe side.
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A point of some interest is to consider the problem suggested by
(9 a) of the last section taking the modal value from (12), i.e. putting

n

(17) then becomes
n + m

\n + m) j7 m \m m / n
n [\m + n) n + 1 \n + m• + ml \m + n)

mim^r^ / n \* / m y~* J
(n + 1) (n + 2) \n + m) \m + nj j

and in the important special case of m = n

n (n — 1) n (n — 1) (n — 2)

(19 a).

The series in (19 a) is readily summed. Call it F (n). Then

I
n\n\ V) nlni. (n+ l ) ! ( n - 1)! + (n + 2)! (« - 2)!

= 0 2" 4- (1 , 2n i /7 2n

_ 1 l
2 t 2

— 1)!

Substituting in (15) we have

Applying Stirling's theorem to the third term it becomes s —;=,

which is zero when n is infinite, and then the mode divides the frequency
into equal parts.

For usual values of n the approximation is slow. Thus

n Value of (15) n Value of (15)

1 -2500 100 -4718
2 -3125 500 4874

10 -4119

https://doi.org/10.1017/S0022172400006501 Published online by Cambridge University Press

https://doi.org/10.1017/S0022172400006501


M. GREENWOOD AND G. UDNY YULE 49

Reverting for a moment to the integral in the denominator of (16),
we may note that its value can be approximated to by Laplace's method
of putting

f J 17 f r> d>x n

\y.dx=Y\e-t-jz.dt.

Y being the maximum value of the function within the required range,

in this case the value for x = -,-, if a; is written — _ + ̂ ,
n+m—1 . n+m—1

t2 is obtained as a function of ̂  and then ^ as a function of t by
reversion of series.

The result to a first approximation only is that the integral trans-
forms to

(n-lYrHm-2)' (e_, V2 &
(n + m — l)»+»»-i j f 1 m

(n + m - 1)[ •• - + j—r-Ht»\m + 1 (m + 2)2,

This method of treatment is, of course, well known. We can,
however, employ the method of the last section and investigate the
properties of y = xn~x (1 — x)m, or the distribution of e~x, where the
range is from 0 to 1.

The mode is at
n— 1 n — 1 ,ir> J \

x — — • = • « • • • • • , (19a)

n + i n — I N — 1

and, the moments about the start of the curve being simply successive
B functions we easily find

mean = -ir—.. (20),

_ n{m+l)
M2 (N+l)2(N+2) K >'

2n [2n* - 3 n (N + 1) +JN +_1)»]
M3 (N + 1 ) 3 ( N + 2 ) ( N + 3) K ''

A comparison of the mean and mode shews again that the curve is
skew for all finite values of n and m greater than zero. The transformed
curve, y = yoe~Kn (1 — e~k)m is, of course, also very skew, cf. the two
distributions shewn in Fig. 3.

Finally we have the case of samples of different sizes.
Thus if Ni samples each of ax c.c. have given % negative and mx

positive results, N2 samples eaoh of a2 c.c. have given n2 negative and
Joum. of Hyg. xvi. 1
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(n + m — l)»+»»-i j f 1 m

(n + m - 1)[ •• - + j—r-Ht»\m + 1 (m + 2)2,

This method of treatment is, of course, well known. We can,
however, employ the method of the last section and investigate the
properties of y = xn~x (1 — x)m, or the distribution of e~x, where the
range is from 0 to 1.

The mode is at
n— 1 n — 1 ,ir> J \

x — — • = • « • • • • • , (19a)

n + i n — I N — 1

and, the moments about the start of the curve being simply successive
B functions we easily find

mean = -ir—.. (20),

_ n{m+l)
M2 (N+l)2(N+2) K >'

2n [2n* - 3 n (N + 1) +JN +_1)»]
M3 (N + 1 ) 3 ( N + 2 ) ( N + 3) K ''

A comparison of the mean and mode shews again that the curve is
skew for all finite values of n and m greater than zero. The transformed
curve, y = yoe~Kn (1 — e~k)m is, of course, also very skew, cf. the two
distributions shewn in Fig. 3.

Finally we have the case of samples of different sizes.
Thus if Ni samples each of ax c.c. have given % negative and mx

positive results, N2 samples eaoh of a2 c.c. have given n2 negative and
Joum. of Hyg. xvi. 1
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X = bacteria per c.c.

Fig. 3. Chart shewing frequency distributions of bacterial densities for 1 positive
out of 2 and 2 positives out of 4 (1 c.c. in each test). The area of each curve is 10
squares.

m2 positive results and ... Nn samples of an c.c. have given nn and mn

negative and positive results, (14) becomes:

P- Jo
-i (\ — g-A

I [e~ A a i K l (1 e~A o l

'o (23).
This expression does not lend itself to simple treatment in the general

case but in any particular case it may furnish a solution without much
difficulty. The arithmetic may however prove almost unworkable. In
an illustration given in Section V only the most probable values of the
bacillary density have been approximately determined by an artifice.
If the tests are not repeated, only one test being made with a tube of
each size, the expression simplifies.

On the general question of the best series of sizes of tubes to use,
when the waters to be tested may present so great a range between
purity and the reverse that the use of different sizes seems desirable,
we may make a few remarks. One obvious condition, strangely over-
looked, is that the size of any one sample should be greater than the
sum of the sizes of the smaller samples. Otherwise the observer is
simply asking for " inconsistencies " in his results. A geometrical series
fulfils the required condition, and the Metropolitan Water Board have
actually used a geometrical series with the ratio 10 (0-01, 0-1, 1, 10, 100
c.c). This ratio seems rather a high one. A geometrical series seems
also a natural one to use as the chance" of an inconsistence is the same
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at every point of the series: r being the (ascending) ratio of the series,
the chance of an inconsistence between any adjacent pair of samples
(the larger giving a negative, the smaller a positive) is l/(r + 1 ) .

The various expressions found above enable us to solve all the
problems proposed and in the following section we provide a few
arithmetical examples of their use.

SECTION V. NUMERICAL ILLUSTRATIONS.

(a) The case of a blank sample.

If 50 c.c. were tested and found sterile we have from (3)

e-5o« = i _ p o r _ 50A: log e = log (1 - P).

For P = -5 this gives K = -01386.
„ P = -99 „ „ K = -09210.
„ P = -999 „ „ K = -13816.
„ P = -9999 „ „ K = -18420.

So that the chances are even that the source does not contain more
than 14 bacilli per litre. I t is 99 to 1 that there are not more than
92 per litre, 999 to 1 that there are not more than 138 per litre and
9999 to 1 that there are not more than 184 per_ litre.

Had 150 c.c, e.g. a sample of 100 and a sample of 50 both proved
sterile, substitution of 150 for 50 gives for the corresponding values
per litre, 5, 31, 46, 62.

(b) One sample is sterile, the other not.

Suppose 100 c.c. are positive, 50 c.c. sterile. Then using (4) the
equation to be solved is

And we reach:

P Bacilli per litre P Bacilli per litre
•5 21 -999 146
•99 100 -9999 192

(c) Repeated Tests with Tubes of Equal Volumes.

As a first illustration we take Beveridge and Wanhill's example of
10 samples, each 1 c.c, 7 of which are sterile and 3 show growth.

Here n = 7, m = 3, N = 10 so that by (19 D) and (20) the mode
of the x distribution is at -66667 and the mean at -63637. That is
a source with a density of 405 bacilli per litre (from e~h = -66667) is

4—2
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the most probable state. Owing, however, to the marked skewness of
the distribution, this result is of little service, we must solve (16) for
different values of 1 — P.

If we wish to find the density corresponding to P = -5, -9, -99 we
have

r-5
120a;7 - 315K8 + 280x9 - 84a;10 = ] -1

1-01.
Thus, taking the last case, we have

f(x) = 120a;7 - 315a;8 + 280a;9 - 84a;10 - -01,

/ ' (x) = 840a;6 - 2520a;7 + 2520a;8 - 840z9,

and by successive approximation we find that -29716 is very nearly
a root.

Hence from erK = -29716 we reach 1213 bacilli per litre: the odds
are 99 to 1 that the density of the source does not exceed this value.

The densities corresponding to an even chance and to odds of 9 to 1
are similarly found to be 439 per litre and 802 per litre respectively.

In Table II we give examples of the significance of one or more
sterile tubes in a series of 2-4 samples.

TABLE II .

Tables illustrating the significance of one or more blanks in two, three,
or four tests on 1 c.c. If the samples are of nc.c, not 1 ex., divide
the numbers of bacilli per litre by n.

Two tests.
If the number of blanks is

The probability is
0-75 that the bacilli per litre exceed
0-50
0-25
0-01
Most probable number per litre

Three

The probability is
0-75 that the bacilli per litre exceed
0-50 „
025
001 „
Most probable number per litre

1
690

1230
2050
5300

690

tests.

2
140
350
690

2300
ml

If the number of
1

990
1580
2390
5700
1100

2

400
690

1120
2830
410

blanks
3
95

230
460

1540
nil
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0-75
0-50
0-25
001
Most

Four

The probability is
that the bacilli per litre exceed

„ „ „ ,,
„ „ „ )(

probable number per litre

tests.
If
1

1220
1840
2670
5990
1390

the number
2

610
950

1410
3170
690

of blanks
3

210
490.
780

1960
290

is
4
70

170
350

1150
nil

As stated at the outset, divergences in the numbers of tubes forming
different workers' series are too great to allow us to calculate any single
table of general service. But the arithmetical examples should suffice
to enable any bacteriologist to construct a table covering his own series.

(d) Tubes of different volumes, test not repeated.

A series of tubes of different volumes is used by several observers,
e.g. as already mentioned Lelean, and Hewlett. Comment has already
been made on the inconvenient character of the series used in each of
these cases. That used by the Metropolitan Water Board is a simple
geometrical series with a ratio of 10, viz. 100, 10, 1, 0-1, 0-01 c.c. The
ratio is high, but it must be admitted that this simplifies the work of
calculating the theoretical significance of the results; we have already
pointed out that a geometrical series seems the right series to use.

Writing down equation (23) in its simplified form, where nr = 0
and mr = 1 or conversely, expanding, and retaining only the first
power of x in the resulting equation we find the following approximate
numbers of bacilli per litre:

100+ ,
res t -

72
424
23

100+ , 10 + ,
rest —

720
4245
230

100 + , 10 + ,
1 +, rest -

7260
42820
2310

100 + , 10 + ,
1 + .0-1 +

78940
470150
24540

P=0-5

Most probable numbers

The values of A are nearly, it will be noticed, but not quite, a geometric
series.

(e) Repeated tests with tubes of different volumes.
This involves the determination of the limiting density from (23).

As an illustration we take the following series from one of the Reports
of the Metropolitan Water Board.

Source B
Negative Positive

312 21
327 6
329 4
333 0
333 0

Size of
Sample
100 c.c.
10 c.c.
1. c.c.

•1 c.c.
•01 c.e.

Source A
Negative

308
333
336
338
338

Positive
30
5
2
0
0
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It seemed difficult to obtain in this case even fair approximations
to the values of the bacillary density for given values of P. But the
following method gives good approximations to the most probable
values. Taking the expression

y = y g-A(aiJii + a2«2 + - ) (\ _ g->Oi\i»i (\ _ g-Aa2\i«2

ldy . . a,m-. .

= 0
for the most probable value. For Series A we find this gives

P-100A -,-lOA p-k

- 34503-18 + 3000 -_-•--—— + 50 - ? ^ + 2 --—-. ,
-I. C A C A &

or writing e~x = a;

2 j - ^ - + 50 ̂ %-a + 3000 T - ^ 0 0 ^ = 34503.
1 — x 1 — a;10 1 — x 1 0 0

Clearly x is near unity, as the value on the right is so large.
Substitute accordingly z = 1 — x for x and expanding this becomes

50 1 - ~ 1 0 2 ^ + 3000 1 - ^ 0 0 Z - : ^ - 34503.10 45 2 lOO 4502

Or, ignoring 22

37,5552 = 37,
z = 0-000985,
x = 0-999015,
A = 0-965 per litre.

For Series B we find to a similar approximation A = 0-838 per litre,
or the water from Source B is most probably slightly purer than that
from Source A, though there is no practical difference.

As a glance at the two series suggests, moreover, they are not con-
sistent with each other. Source B, if the better water, should give
fewer positives in the small tubes as well as the large. Actually it
gives much fewer in the large tube, but more in the small ones._ Using
the above values of A, we find for the theoretical as against the actual
distributions of positives:

Size of Source A Source B
sample Actual Calculated Actual Calculated
' 100 30 31-7 21 27-0

10 5 3-3 6 2-8
1 2 -3 4 - 2

It looks as if we were not dealing with a mere chance distribution
from water essentially of constant character, but with occasional slight
contaminations of the source.
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