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Abstract. We present the current understanding of the dynamical as
pects of the oscillations of rapidly rotating stars. 

In this contribution, we first review the recent progress concerning the role 
of the Coriolis force when its amplitude is such that perturbative approaches 
are inappropriate. We then discuss the problems raised by the existence of the 
centrifugal acceleration and show that, although of second order, it should affect 
quite strongly the spectrum of acoustic modes of rapidly rotating stars. 

The role of the Coriolis force on the oscillations of a star is twofold: it 
perturbs already existing modes (like acoustic, gravity or Alfven modes) and 
introduces new modes, namely inertial modes, for which it is the restoring force. 
In radiative zones of stars, Nmax > 2ft and we usually have to deal with gravity 
modes perturbed by rotation and gravito-inertial modes, while in convective 
zones Â max ~ 0 implies that we are left with pure inertial modes. Acoustic 
modes, being in the high frequency range, are usually only slightly perturbed by 
the Coriolis force. Pure inertial modes, being constrained to convective zones, 
should not be expected to reach large amplitudes because their excitation is 
stochastic. On the other hand, gravity modes excited by an instability (7, K,...) 
can reach large amplitudes and, if their frequency is close to 2ft, be strongly 
perturbed by rotation; an example is 7Doradus stars (Dintrans & Rieutord, 
2000). 

The strong effect of the Coriolis force is of mathematical origin. To be 
fully appreciated, it is convenient to focus on an incompressible inviscid fluid 
contained in a spherical shell which mimics the convective or radiative zone of 
a star. Such a configuration only possesses inertial modes but this is sufficient 
for our purpose. The pressure perturbations associated with inertial modes 

satisfy Poincare's equation (see Greenspan, 1969), namely Ap — (^7) g^§ = 0, 
where ui is the frequency of the mode. It can be shown that \LJ\ < 2ft which 
makes Poincare's equation of hyperbolic type. However, fluid motions satisfy 
the boundary condition v • n = 0, where n is a vector normal to the boundary; 
therefore, the problem is mathematically ill-posed, since a hyperpolic equation 
requires initial conditions rather than boundary conditions. This mathematical 
property has major consequences on the form of eigenmodes of a rotating fluid: 
in general, there are no smooth solutions and no eigenmode exists for an inviscid 
fluid. In other words, if we consider the (damped) eigenmodes of the associated 
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viscous problem, their kinetic energy tends to infinity as viscosity decreases to 
zero (Rieutord et al., 2000, 2001). Such a property is not specific to inertial 
modes and is shared also by gravity modes. Hence, these latter modes also 
suffer from these singularities in general (Rieutord & Noui, 1999) but, in the 
case of a non-rotating star, the spherical symmetry of the configuration permits 
the separation of variables and thus removes the singular solutions; however, as 
soon as separability disappears singularities come back. 

To conclude the case of Coriolis force, let us emphasize that it deeply modi
fies the shape of eigenmodes in the range u> <, 20 and that diffusion is a necessary 
ingredient to properly compute these modes. Adiabatic calculations may still 
give 'good looking' results, especially if the numerical method is dissipative, but 
they will often converge to spurious modes often betrayed by a slow convergence 
when grid resolution is increased. 

The centrifugal force is proportional to Q.2 whereas the Coriolis force is linear 
with O. One thus expects that centrifugal effects are less important than those 
of the Coriolis force. Unfortunately, this is not true for rapidly rotating stars. 
The first effect of the centrifugal force is to modify the equilibrium shape of the 
star by inducing a polar flattening e. So very basically, the fluid's container 
is changed. This change is very important as it affects mostly the outer layers 
which contain most of the amplitude of observable modes. If R is the star radius, 
all modes whose wavelength is of order eR will be sensitive to the ellipsoidal 
shape of the container; the period of such modes is eR/cs which is ~25 mn for a 
star with M=2MQ and R=2R Q rotating at 150 km s _ 1 when cs ~100 km s_1; 
these numbers are typical of 5 Scuti stars. The second effect comes from the 
impossibility of having radiative zones at rest when the fluid is rotating (Von 
Zeipel theorem). These motions defining the quasi-steady state of the star are 
little known (turbulent or not ?); by the implied mixing, they may be effective 
during the whole evolution of the stars. 

The centrifugal force has an influence which is presently not clear. Its first 
role in changing the shape of the star is currently under study (Lignieres et al., 
2001) and is suspected to have a great influence on acoustic modes in rapidly 
rotating stars like 5 Scuti stars. Its second, but more subtile, role is its long-term 
influence during the evolution by the mixing processes it induces. These effects 
need to be appreciated through simulations of the evolution of a rotating star 
using 2D models accounting for the transport mechanisms. 

Acknowledgments. We are much indebted to Lorenzo Valdettaro for his 
help in the elaboration of the numerical solutions. 

References 

Dintrans, B. & Rieutord, M. 2000, A&A, 354, 86 
Greenspan, H. 1969, The theory of rotating fluids, (Cambrige University Press) 
Lignieres, F., Rieutord, M., & Valdettaro, L. 2001, Semaine de l'Astrophysique 

Francaise, Edts, SF2A, (EdP-Sciences, Conf. Series) 
Rieutord, M. & Noui, K. 1999, Euro. Phys. J. B, 9, 731 
Rieutord, M., Georgeot, B., & Valdettaro, L. 2000, PRL, 85, 4277 
Rieutord, M., Georgeot, B., & Valdettaro, L. 2001, JFM, 435, 103 

https://doi.org/10.1017/S0252921100015967 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100015967



