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Abstract. We propose a computationally feasible estimator for the needlet trispectrum, which
develops earlier work on the bispectrum by Donzelli et al. (2012). Our proposal seems to enjoy a
number of useful properties, in particular a) the construction exploits the localization properties
of the needlet system, and hence it automatically handles masked regions; b) the procedure
incorporates a quadratic correction term to correct for the presence of instrumental noise and
sky-cuts; c) it is possible to provide analytic results on its statistical properties, which can serve
as a guidance for simulations. The needlet trispectrum we present here provides the natural
building blocks for the efficient estimation of nonlinearity parameters on CMB data, and in
particular for the third order constants gN L and τN L .
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1. Introduction
The Inflationary models describe the dynamics of the first instants of the Universe.

Each model introduces a characteristic signature of non-Gaussianity into the anisotropy
distribution of the Cosmic Microwave Background (CMB) radiation. The level of non-
Gaussianity is described by the so-called Bardeen’s Potential (Bardeen (1980)):

Φ(x) = ΦL (x) + fN L [Φ2
L (x) − 〈Φ2

L (x)〉] + gN L [Φ3
L (x)] (1.1)

where Φ(x) is the gravitational potential field of the Universe and ΦL (x) is its Gaus-
sian part. The constants fN L and gN L , which parametrize the non-Gaussian part, can
be measured from the amplitude of the bispectrum and trispectrum of the field, i.e.
the harmonic counterpart of the 3-point and 4-point correlation function of the field,
respectively.

There exist several optimal bispectrum estimators that allow to evaluate fN L with
high confidence (see for instance Komatsu et al. (2005) or Planck Coll. (2013)). Optimal
trispectrum estimators has been already applied to CMB data at WMAP resolution (e.g.
Sekiguchi & Sugiyama (2013) in real space and Regan et al. (2013) in needlet space), but
the lack of an optimal trispectrum estimator applied to high-resolution sky simulations
(e.g. Planck resolution) has prevented the evaluation of strong constraints on gN L so
far.
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Figure 1. 1D-Spherical needlet. The figure shows the characteristic needle shape of the
function, from which take its name (from Marinucci et al. (2008))

2. Spherical Needlet System
2.1. Definition

Spherical needlets (Narcowich et al. (2006), Baldi et al. (2009)) are a wavelet system on
the sphere defined by setting:

ψjk (x) :=
√

λjk

∑
l

b

(
l

Bj

) l∑
m=−l

Ylm (ξjk )Ylm (x); (2.1)

where x ∈ S2 , {λjk , ξjk} are a set of cubature points and weights on the sphere, B > 1 is
a constant related to the width of the needlet and b(.) is a weight function satisfying the
three following conditions: a) Compact Support, b(ξ) > 0 if ξ ∈ (B−1 , B), 0 otherwise;
b) Partition of Unity, for all ζ � 1,

∑∞
j=0 b2

(
ξ

B j

)
= 1; c) Smoothness, b(.) ∈ CM , i.e.,

b(.) is M times continuously differentiable, for some M = 1, 2, . . . or M = ∞.

2.2. Reconstruction Formula
The spherical needlet coefficients are provided by the analytical formula:

βjk =
∫

S 2
T (x)ψjk (x)dσ(x) =

√
λjk

∑
l

b

(
l

Bj

) l∑
m=−l

alm Ylm (ξjk ). (2.2)

As a consequence of the partition of unity property, the following well-known recon-
struction formula holds:

f(x) =
∑
jk

βjkψjk (x) ≡
∑
lm

alm Ylm (x). (2.3)

2.3. Localization and Uncorrelation Properties
As argued earlier in Baldi et al. (2009), spherical needlets enjoy an excellent localization
property in real domain (fig. 1):

|ψjk (x)| � cM Bj

(1 + Bj arccos〈ξjk , x〉)M
. (2.4)

More explicitly, spherical needlets are then quasi-exponentially localized around any cu-
bature point ξjk . Moreover, as extensively argued in the literature, the needlet coefficients
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evaluated on isotropic random fields are asymptotically uncorrelated, under mild regu-
larity conditions. It is then possible to derive analytically their statistical properties, and
to understand the role and expressions for correction terms under realistic experimental
conditions (noise and masks, see Donzelli et al. for the bispectrum case)

3. Optimal Trispectrum Estimator
The sample trispectrum estimator is usually written using the spherical harmonics

coefficients as: ∑
m 1 m 2 m 3 m 4

G(l1 ,m1 , l2 ,m2 , l3 ,m3 , l4 ,m4) × al1 m 1 al2 m 2 al3 m 3 al4 m 4 , (3.1)

where G(l1 ,m1 , l2 ,m2 , l3 ,m3 , l4 ,m4) is the Gaunt integral defined for instance in Marin-
ucci & Peccati (2011). This estimator is clearly unfeasible under realistic experimental
conditions, due to the presence of missing data and anisotropic noise. As a consequence
of the previous discussion, it is possible to exploit the needlet coefficients to derive an al-
ternative, computationally feasible and statistically sound estimators of the trispectrum.
More precisely, exploiting Wick theorem on higher order moments of Gaussian variables
we propose the following needlet trispectrum:

Jj1 j2
j3 j4

=
1

σj1 σj2 σj3 σj4

∑
k

[βj1 kβj2 kβj3 kβj4 k

− {〈βj1 kβj2 k 〉βj3 kβj4 k + 5 perms.} + {〈βj1 kβj2 k 〉〈βj3 kβj4 k 〉 + 2 perms.}]
(3.2)

Heuristically, the needlet trispectrum is constructed combining quadruples of coeffi-
cients, evaluated at the scales of interest, and subtracting linear and quadratic compo-
nents in order to cancel bias and minimize the variance. Further details, and a software
which exploits the needlet trispectrum to evaluate gN L on CMB maps, will be provided
in the forthcoming paper Troja et al. (2014) .
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