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A NOTE ON NONDIFFERENTIABLE SYMMETRIC DUALITY
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Abstract

Under suitable hypotheses on the function / , the two constrained minimization problems:
MIN/ - fyy subject to x > 0, -fy > 0; MAX/ - fxx subject to y > 0, fx > 0;

are well known each to be dual to the other. This symmetric duality result is now extended
to a class of nonsmooth problems, assuming some convexity hypotheses. The first
problem is generalized to:

MINf(x,y) - pTy subject to x e T,-pT e S* n dy(-f)(x,y),
in which T and S are convex cones, S* is the dual cone of S, and dy denotes the
subdifferential with respect to y. The usual method of proof uses second derivatives,
which are no longer available. Therefore a different method is used, where a nonsmooth
problem is approximated by a sequence of smooth problems. This duality result confirms
a conjecture by Chandra, which had previously been proved only in special cases.

1. Introduction

Let T c R" and S c Rm be closed convex cones; let / : R" X Rm -> R be a twice
differentiable function, such that / ( • , y) is convex on T for each y e S, and
—f{x, •) is convex on S for each x e T. Writing / for f(x, y) and taking vectors
in the dual cones S* and T* as row vectors, consider the pair of problems

(PS): Minimize f-fyy subject t o j c e r , - / / e S *;

(DS): Maximize / - fxx subject to y e S, / / e T*.

Here fx and f denote partial derivatives. Under appropriate "constraint qualifi-
cation" hypotheses, that intS* # 0 (or S a polyhedral cone) and that the
Hessian matrix fxx(x*, y*) is nonsingular at a minimum (x*, y*) for (P), then
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(see [3], Chapter 6) (DS) is a strong dual problem to (PS); thus weak duality holds
(for feasible points, the object function for (PS) > the objective function for
(DS)), and (x*, y*) also maximizes (DS), the two objective functions being equal
at this point (the "zero duality gap" property). The proof in [3] assumes an
additional "closed-cone hypothesis", which appears superfluous for the linear
constraint x e T; and the proof of weak duality is deficient, but may easily be
mended. The closed-cone hypothesis in [3] could be substituted for the hypothesis
int S * # 0 . If / is quadratic, then (PS) and (DS) have linear constraints, for
which no Hessian hypothesis is relevant, or needed. But that well-known case
does not contribute towards a nondifferentiable generalization.

Consider now a nondifferentiable version of problems (PS) and (DS), in which
/ is assumed locally Lipschitz, and satisfying the above convexity hypotheses
(thus / ( • , y) is convex on T and -f(x, •) is convex on S). Then / is differentia-
ble almost everywhere, but second derivatives need not exist at all. The deriva-
tives / / and fj are now replaced by the subdifferentials 3x/(*, y) and
-dy(-f)(x, y). The problems (PS) and (DS) now become:

(NPS): Minimize f(x, y) - pTy subject to* e T, -pT e 5* n dy(-f)(x, y);

(NPD): Maximize f(x,y) - qTx subject to y e S . ^ e P n dxf(x,y).
This pair of problems is related to the pair proposed in [1], where weak duahty

was proved under convex/concave hypotheses, but strong duahty could only be
proved in a special case, where the subdifferentials could be represented so as to
make the problem (NPD) differentiable, so that F. John conditions would hold at
its minimum (x*, y*). In the present paper, duality will be shown to hold generally,
without any need for a differentiable representation.

To prove weak duahty, let (x, y) be feasible for (NPS), and let («, v) be feasible
for (NDS). Then

[f(x,y)-pTy]-[f(u,o)-qTu]
= [f(x,y) -/(*,«) +pT(v -y)] +[f(x,v) -f(u,v)-qT(x - «)]

+ [-PT"]+UTx]
^ 0 + 0 + 0 + 0 = 0.

Let int denote interior, and let co denote convex hull and co~ closed convex
hull.

2. Strong duality for nonsmooth problems

Let z = (x, y) £ Rm X R"; assume (provisionally) that (NPS) reaches a strict
local minimum at (x, y, p) = (x*, y*, p*); let z* = (x*, y*). For ij > 0, let Bv

denote the closed unit ball in Rm+n with centre 0 and radius TJ. Let F(z):= f(x, y).
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Following the method of [4], a smooth (at least C2) function F(-: TJ) is defined,
corresponding to a locally Lipschitz function F, by

F(z :TJ):= f

where ^ is a non-negative C2 weighting function with support in Bv satisfying
jB \p(t)dt = 1, where dt denotes Lebesgue measure. Then [4]

F'(z* :TJ) = j F'(z* - w)yp(w) dw e C ( T | )

:=CO-{F'(Z* + S): \\S\\ < TJ, 3F'(Z* + s)},

noting that, by Rademacher's theorem, F is Frechet differentiable except on a set
of zero measure, which does not affect the integral; and it follows that the Clarke
generalized subdifferential (see [2]) dF(z*) = r\r)>0C(r}), and is nonempty (see
[4], and [2, Proposition 5]). Then (NPS) and (NDS) lead to the corrresponding
smoothed problems:

(NP :TJ): Minimize H{z, p:i\):= F(z :TJ) — pTy

subject to x e T, p = Fy(z : TJ) e - S * + b'n;

(ND :TJ): Maximize K(z,q :TJ):= F(Z :TJ) — qTx

subject to y e S, qT = Fx(z : TJ) e T* + b^'.

Here z — (x, y), Fx and Fy denote partial derivatives with respect to x and y,
and the vectors b'v = 0(TJ) and b^' = O(TJ) (as TJ J.0) are defined using the above
expression for C(TJ), to ensure that the smoothed problems are feasible (compare
[4, Lemma 1]). Note that i|/(-) depends parametrically on TJ.

Then "zero duality gap" will hold for the smoothed problems, by an existing
symmetric duality theorem, noting that the convex properties assumed for / carry
over to the smoothed version of this function. A limiting process is then required,
to deduce "zero duality gap" for the given pair of nonsmooth problems. This is
done in the following Theorem, by selecting suitable convergent subsequences,
and choosing suitable functions ^ ( ) , depending on various values of TJ.

THEOREM 1. For problems (NPS) and (NPD), assume that S and T are closed
convex cones, f: Rm X R" is locally Lipschitz, f{-,y) is convex on T for each
y e S, -f{x, •) is convex on Sfor each x e T, int S ¥= 0 (or S is polyhedral). Let
(NPS) attain a local minimum at (x, y) = (x*, y*); and assume that, for suffi-
ciently small TJ > 0,

0 *dyf(x*,y*)

nmtco{fy(x,y);\\(x,y)-(x*,y*)\\^v,(x,y)eD}, (Q)
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where D denotes the set of points where f is Frechet differentiable. Then (NDS) is a
strong dual problem to (NPS).

PROOF. Weak duality is proved as in Section 1.
To prove "zero duality gap", assume provisionally that (NPS) reaches a strict

local minimum at (z, p) = (z*,p*) = (x*, y*, p*). Choose TJ > 0 sufficiently
small that F is Lipschitz on z* + Bv. Define C(TJ) as above, then F'(z*; TJ) e
C(ij); and similarly define

Cx(r,):= C O " {Fx(z* + s ) : \ \ s \ \ < - n , 3 F ' ( z * + s ) } ,

C , ( T J ) : = c o - [ F y ( z * + s ) : \\s\\ < TJ, 3 F ' ( z * + s ) } .

Then [4, Lemma 1] shows that, for each e > 0, there exists 8 > 0 for which the
restriction {z e z* + Bs: x e T, Fy(z:-q) e - 5 * + b'^} of the feasible set of
(NP:-q) to a 5-ball about z* lies in an e-neighborhood of the set {z e z* + Bs:
x e T, S* n dy(-F)(z) * 0 } , which is the corresponding restriction of the
feasible set for the given problem (NPS). (The cited Lemma proves this for a
constraint p(z) e K, where K is a convex cone; here p{x:i\) is replaced by
Fx(z : TJ) or Fy(z : TJ). The proof uses compactness.) A similar statement also holds,
relating to (ND: TJ) and (NDS). The Clarke generalized subdifferentials may here
be equated to convex subdifferentials, in view of the convex hypotheses. Now [4,
Lemma 2] shows that, given the above e-neighborhood property, and the strict
local minimum of (NPS), there exists a sequence {t\k} 10, and corresponding
weighting functions \pk (with support of \f/k in the ball with radius %), for which
the problem (NP:Tjfc) attains a local minimum at some point z£, such that
(z£) -» z* as k -* oo, and Fy{z^:i\k) lies within distance e of S* n dyF(z*)
whenever k is sufficiently large.

From hypothesis (Q), it follows (see the Appendix) that the Hessian matrix
Hyy(' -V) is nondegenerate (thus, has no zero eigenvalues) when TJ is sufficiently
small, and so is nonsingular. The symmetric duality theorem for smooth prob-
lems, cited in the Introduction, then applies to the smoothed problems (NP:TJ)

and (ND: TJ), showing that (ND: TJ) is a strong dual problem to (NP: TJ). Thus, to
a minimum {z*,p*) of (NP:TJ^) there corresponds a maximum (z^qj*) of
(ND: TJ^), with equal objective values.

By choosing successive subsequences of {z£}, [Fy{z^:%}}, {Fx(z£ :TJ^)}, a
subsequence {Tjfc: k c J) (where J c N) may be found, such that (z£) -» z*,
{Fy(z£: TJJ} -• /?*, {Fx(z£: TJA)} -> q*, with these limits satisfying -p* e j ' n
9y(-F)(z*) and q* e T* n dxF(z*). The local Lipschitz hypothesis ensures that
these gradients lie in compact regions, ensuring that subsequence limits exist.
Note that -p* e S* follows since S* is closed and -pk = -Fx(z^: t}k) e S*, and
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similarly q* e T*. And -p* e dy(-F)(z*) and q* e ^ ( z * ) follow from

axF(z*) = PI Cx(i) and a,(-.F)U*) = fl C,(z*).
7)>0 I)>0

Now assume that (NPS) reaches a local minimum at (z*, /»*), but not neces-
sarily a strict local minimum. To deal with this, add a term 6\\z — z*\\2 to F(z),
where 6 is a small positive parameter. The problem (NPS), so modified, has now
a strict local minimum at z*. (Convexity of -f(x, •) is upset, and must be
restored later in the proof.) The previous proof now shows that "zero duality
gap" holds between the modified (NPS) and the corresponding modified (NPD).
Consider now a sequence of values of 6, say {0-} J, 0. By selecting a suitable
subsequence, similarly to the subsequence argument used before, it may be
assumed that the corresponding pj and q} tend to limits, p* and q* say. Then
(z*, p*) and (z*, q*) are optimal for the given problems (NPS) and (NDS), and
their objective functions are equal. (Convexity is only required for weak duality,
already proved for these problems.)

3. Discussion

The essential subsequence arguments in the above proof use compactness of the
unit sphere, hence must assume finite dimensional spaces. Note also that the
proof of strong symmetric duality uses Fritz John, rather than Kuhn Tucker,
conditions, hence does not need an additional constraint qualification. In (Q),
int co can be written in place of int co~, since these two are equal, for a nonempty
set [5]. For (NPS) to be a dual to (NDP), 9̂  and fy in (Q) are replaced by dx and

fx-

Appendix

Let h: R* -* R be locally Lipschitz, and satisfy 0 e 9/i(a). Define h{- : TJ) from
h in the same way as / ( • :TJ) was defined above from / , with \p depending
parametrically on TJ > 0. Define

Ch(x,V):= co-{h'(x + s): ||j||< i,, 3h'(x + *)};

Q(x,v):- co{h'(x:y):supptcBv}.

Since each point in C*(T/) is a sequential limit of values of / h(x — s)\pj(s) ds, the
closure of Q(x, TJ) equals Ch(x, TJ). Since 0 e 9/i(a), there exist points e, e
H(a,T)) (say, at the vertices of a hypercube) such that 0 e intco{e,: / =
1,2,. . . , 2 * } . So, by convexity, a neighbourhood of 0 is contained in H(a\i\).
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H e n c e h'(x* :TJ) = 0 for some x* for which | | x * - a\\ < TJ. F o r ||JC - a| | suffi-

ciently small,

h(x + y:y) = h(x*) + yTAy/2 + o{

where the Hessian A is nondegenerate (thus, no zero eigenvalues) if and only if
0 e vaX{yTA: \\y\\ < 8} for some 8 > 0, and that is implied by 0 e intCh(a,i)),
noting that yTA differs from h\x* + y: TJ) by o(\\y\\2), and that 0 e int (2(fl, TJ),
which implies 0 e int (?(•*> 7?) when ||x — a|| is sufficiently small.

Now omit the assumption that 0 e 3/i(a), and assume instead that

0 * dh(a) n intCh(ii)(= dh{a) nintco{h'(x + s ) : \ \ s \ \ < TJ , 3 / I ' ( X + s ) } ) ,

for some TJ > 0. Thus, for some cT e dh(a), defining g by g(x) := / (x) — crx,
there follows 0 G 3g(a) and 0 6 intCg(a). Therefore the Hessian of / (or g) at
A is nondegenerate, by the previous paragraph.
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