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Abstract

A point on a tree network space is said to be a distant point if it maximises its
minimum weighted distance from any of its vertices. The median minimises the
sum of its weighted distances from the vertices. In this paper two constrained
problems are discussed. The first problem is to maximise the minimum of the
weighted distances from the vertices subject to an upper bound value of the sum of
the weighted distances from the vertices, while the second problem is to minimise
the sum of the weighted distances subject to a lower bound value of the minimum
weighted distance to any of its vertices. It is shown that these two constrained
problems are duals of each other in a well defined sense.

1. Introduction

A graph is defined to be an ordered pair (V, E) where V is a set of vertices
and E is a set of (binary relations defined on the elements of V) edges. A tree
is a connected graph that does not contain any loop, and therefore any two
vertices of a connected tree are connected by the unique path. The concept
of a tree (and graph also) is essentially discrete in nature. In this paper we
consider a metric space T defined on an undirected connected tree (V, E) which
is essentially continuous in nature. A positive weight w(v) is associated to each
vertex v € V. A point x € T may be a vertex or a point on an edge. For any two
points x,y GT, <p(x, y) denotes the length (distance or metric) of the unique path
connecting these two points (as discussed in [6]) in T. Whenever the end vertices
u and v of an edge e need to be specifically identified, the edge will be denoted by
e(u,v) and its length by <j>(u,v). A number of real life situations suggest that a
network space is a more faithful representation of the reality as compared to the
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(2] Duality between distant point and median 305

Euclidean space. For example, in a road network or a communication network
or a pipeline system, the travel occurs along the underlying edges rather than
along the Euclidean distances (straight lines) between two point locations.

A system of roads, gas pipelines or transportations link between specified
points of interest is often modelled as a network space for purposes of analysis,
planning and evaluation. A network space is considered here, where the nodes
correspond to locations of existing facilities and the edges represent the trans-
portation links between the existing facilities. Each edge of the network space
has a known positive length that corresponds to the travel distance or cost be-
tween the two nodes. Location problems on a network space involve determining
the locations of the new facilities with respect to the existing facilities. The new
facilities may be located at some point along the existing edges (links) of the
transportation system or may coincide with the existing facilities and therefore
the network space is necessarily continuous. The metric space T = (V, E) is
known as tree network space and for the sake of brevity we call this simply a
"tree" for further discussions.

Three important points on a tree namely, centre, median (see [6]) and obnox-
ious (see [2]) (denoted by c, m and 0 respectively) are well known. The points
c, m, 0 € T satisfy the following relations:

Zc{c) = mm[Zc(x)\, (1)

Zm{m) = min[Zm(x)], (2)

(x)], (3)m ( )

where for a point x € T,

Zc(x) = max[w(v )</>{x, v)],

v€V

We introduce a fourth important point on a tree which maximises its minimum
weighted distance from any vertex of the tree and call such a point a distant point
d S T . Obviously the location of the distant point is important from the point
of view of the optimal location of some facilities involving significant degree of
pollution (such as airports, chemical plants) or some facilities involving high risk
of radiation (such as nuclear reactor, uranium processing plant). A distant point
d satisfies the following relations:

Zd(d) = max[Zd(x)), (4)

where
{x) = m\n[w(v)(f>{x,v)]
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is called the distant function, for each point x, x € T.
Some physical situations exist where the median function and the centre func-

tion (or the median function and the distant function) are both important at
the same time. Usually, however, the two goals are antagonistic and therefore
it is necessary to devise an approach to combine these two objective functions.
One of these approaches is to optimise one of the two objective functions sub-
ject to a lower limit or upper limit imposed on the other objective function as a
measure of safeguard and control. In this direction, Halpern [5], has studied the.
dual relation between a constrained median problem and a constrained centre
problem. In this paper we deal with the problems of similar nature with regard
to the functions Zd{x) and Zm(x). We wish to consider the following problems.

P.I maxxeT[Zd{x)}.
P.2 For a given number (JL > Zm(m), the constrained distant point problem

CDP(/i) is denned as

CDP(/i): max[Zd(x): Zm(x) < /i].

Let Xd{n) £ T be an optimal solution to CDP(/x) and Zd{xd(fi)} be the max-
imum value of the objective function Zd(x). For // = oo, the problem becomes
unconstrained and Xd(oo) = d, the optimal solution to problem P.I.

P.3 For a given 6 < Zd{d), the constrained median problem CMP(<5) is
defined as

CMP((5): mm[Zm(x): Zd{x) > 6).

Let xm(6) be an optimal solution and Zm{xm{6)} be the minimal value
of Zm{x) for CMP(<5). When S = 0 the problem becomes unconstrained and
xm(0) = m, the optimal solution to (2).

2. Mathematical formulation

With the view to claiming a certain function (defined on T) to be piecewise
linear or concave or quasi-concave it is necessary to define the set of points
(contained in T) properly. In this regard, we assume that the set of points
contained in T is a metric space with (j>{x,y) as its metric which satisfies all
the four standard properties as mentioned in [3] (p. 106). Construction of such
a metric space associated with some tree in Euclidean space is described in
[1]. A concave function is defined on a convex set and therefore we assume
that the set of points in each e is a closed convex set which is a subset of one
dimensional Euclidean space R. As discussed in [4] a vertex m € T which
possesses the minimisation property of the median is assumed to be known for
further discussions. Let V be a subset of V such that exactly one edge is
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incident on each vertex of V. Suppose V contains n vertices, vi,V2,---,vn;
then without loss of generality we assume that V contains the first /, (I < n)
vertices, vi,v2,-• • ,Vk,.. • ,V[. For every vk e V there exists a unique path Pk
(containing a set of points which is a subset of T) between m and vk, comprising
of a set of edges Ek (a subset of E) and a set of vertices Vk (including m). Note
that

i i

(J Ek = E, \JVk =
fc=i fc=i

For each v^ G V we have m € Vk, and therefore for each Pk, m is considered as
origin for further discussions.

Let e(vik, Vjk) be some edge which belongs to Ek, vlk, v3k G Vk, (k = 1, • . . , /),
and this edge for further treatment will be denoted by ek- The set of points
contained in e^ is a convex set which is a straight line segment between Vik and
Vjk. Since this convex set is a subset of the one dimensional Euclidean space real
line R, it is obvious that Pk can be mapped into a convex set which is a subset
of R with m as origin. Clearly such an assumption does not affect the properties
of Zd{x), Zm{x) and Zc(x). Henceforth it will be assumed that for a given
k (k = 1,...,/) the set of vertices Vjt = {vtk, i — 1, • • •, hk} exist on R with m
(m = vik) as origin. In this way the problem of studying the behaviour of Zd(x),
Zm(x) and Zc(x) on T is converted into I subproblems where x e Pk which is
a convex set. The metric space T provides a natural setting for formulating the
network location problem as a mathematical optimisation problem and denning
Zm{x), Zd{x) and Zc(x) on a set of convex set Pk{k = 1,...,/) will help in
utilising the properties of linear, concave, convex or quasi-convex functions in
studying the behaviour of Zm(x), Zd{x) and Zc(x). From this point it is assumed
that Zm(x), Zd{x), Zc(x) are defined for every x € Pk, (k = 1,.. . ,/). It is
assumed that for every w € V, <f>{x,v) is a concave or a linear function when x
belongs to the edge e(u, v), u e V .

Consider a set of concave functions / ,(x), (i = l , . . . , r ) , and let f(x) =
Z)<=i Wifi(x), Wi > 0 (i = 1 , . . . , r) and w, > 0 for at least one i, then f(x) is
said to be a non-negative linear combination of the functions fi{x)(i = 1 , . . . , r)
and is a concave. Therefore, Zm(x) = X)u€V w(v)<f>(x, v) is a concave function
when x 6 e*. Let g(x) = min,=l i . . . j r[/,(x)] then g{x) is a concave function and
therefore Zd{x) = mmvev[w(v)4>(x, v)] is a concave function of x € e*,efc €
Ek(k = 1,...,/). Note that <j>{x, v), x 6 ejt can be a linear function and in those
cases Zm(x) and Zd{x) will be piecewise linear concave functions for x e e*.
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3. Determination of a distant point

Step 1. For each pair of vertices p, q e V find all xPiQ € T such that
w{p)(j>{xpq,p) = w{q)4>{xpq,q).

Step 2. Determine a pair of vertices p°, q° e V and a point xp°qo € T such
that w(p)<f>(xpg,p) < w(p°)4>(xp°qo,p°) for all xpq such that w{p)(p{xpq,p) =

q) then xpogo = d.

4. Approach to determine xd(/*) f°r P2

In CDP(/i), the problem of maximisation with respect to all x € T is divided
into / subproblems by considering that x € Pk, (Jfc = 1, . . . , / ) • Now we assume
that x e Pfe.

Step 1. Obtain Zd(i) on P* without considering any restriction on Zm{x).
Note the value of Zm(x) is a minimum at i = m, and it is a concave function
over any e G Ek-

Step 2. For a given fi, obtain an optimal point id(/i, k) € Pk such that

Step 3. Repeat steps 1 and 2 for A; = 1,... ,1.
Step 4. Let P£ be a path such that

fcmax ^Zdixai^k)}} = Zd{xd(n,k*)};

then

and

Note Zd{xd(^)} is a nondecreasing function of fj. and will be denoted by
Zd(fi).

5. Approach for the determination of xm(6) for P3

In CMP(6), the problem of minimisation with respect to all x € T is divided
into / subproblems by considering x € Pk (A; = 1,...,/).

Step 1. Obtain Zm{x) on Pk without considering any restriction on Zd(x).
Step 2. For a given 6, obtain an optimal point xm{8, k) G Pk such that

Zm{xm{6,k)} = min[Zm(x) : 6 < Zd{x)).
x€P
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Step 3. Repeat steps 1 and 2 for k — 1, . . . , I.
Step 4. Let P^o be a path such that

fcmin ([Zm{xm(5,fc)} = Zm[xm(6,k0)};

then

xm(6,k°) = xm(6)

and

From this point on, xm(6) and Zm[xm(6)} are assumed to be known for a given
6. Note Zm{xm(6)} is a nonincreasing function of 6 and will be denoted by
Zm(S).

6. Duality of the CDP(//) and CMP(<5)

Let Zd = [0, Zd{d)] and Zm = [Zm(m),Zm(d)] be two sets contained in R.
Note that values of 6 & Zd and values of \i € Zm are the only relevant values in
order to obtain a complete range of solutions for CMP(<5) and CDP(/^) respec-
tively, and Zd{xd(fi)} € Z& and Zm{xm(<!))} € Zm for the relevant values of 6
and ^. Let the horizontal axis be assigned to values of /z and the vertical axis to
values of Zd{xd{v)}, and plot its graph for all values of fj, e Zm. Assume now
that the vertical axis is assigned to the values of 6 and the horizontal axis for
values of Zm{xm(6)} whose graph is plotted for all values of 6 G Zd- The dual-
ity relationship between CDP(/i) and CMP(<5) is demonstrated by the fact that
the two above-mentioned graphs coincide. This result is proved in the following
theorem.

THEOREM, (a) For any neZm, if

Zd{xd(fi)} = 6, (5)

then

Zd[xd{Zm(xm(6)}} = 6.

(b) For any 6 e Zd, if

Zm{xm{6)} = fi,

then

Zm[xm{Zd(xd(fi)}} = fi.
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Z m ( x ) =

Zd(x) = Mm [w(v)0 (x ,v ) ]
vev

Zm(xm(8»

= M i n [ 2 m ( x ) : Z d ( x ) > 6 ] , 6 e Z d

xtT

Z d ( x d (M) )

= M o x [ Z d ( x ) :Z m (x )
xeT

FIGURE I

PROOF. Due to symmetry it suffices to prove (a).
Let Zd(xd{n)) = Zd(x*), for some x* e T for which Zm(x*) < (j,. Hence

Zm(xm(Zd(xd{n)))) = mm[Zm(x) : Zd(x) > Zd(xd(fi)) = Zd{x*)]

< Zm(x*) < fi.

Similarly let Zm{xm(6)) = Zm{x°), for some x° € T for which Zd(x°) > 6.
Hence

Zd(xd(Zm(xm(6)))) = max[Zd(x) : Zm(x) < Zm(xm{8)) = Zm(x0))
xer ( 7 )

> Zd(x°) > 6.

From (5) and (6) we obtain

Zm{xm{6)) < n. (*)
Since Zd(xd(fi)) is obtained as a result of maximisation, and the feasible region

in T increases with fi, this implies that Zd(xd(/i)) is a nondecreasing function.
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Hence applying (8) and (5) we get

Zd(xd(Zm(xm(6)))) < Zd{xd{n)) = 8. (9)

Obviously (7) and (9) imply

Zd(xd(Zm(xm(S)))) = 6.

7. Illustration

Let V = (vi,v2,v3,v4), E = {e{vi,v2),e{v2,v3),e[v2,v4)}, <f>(vuv2) = 3,
<t>{v2,v3) = 1, <f>(v2,v4) = 5, w(vi) = 2, w(v2) = 5, w(v3) = 1, w(v4) = 3.

As reported earlier, Zm (x) assumes its minimum at some vertex. In this case,

Zm(v2) = 22, Zm(v3) = 3l, Zm(v4) = 47.

Hence m — v2 (median).

In Figure 1, Zm(x) and Zd(x) are shown for x £ P(«i,«3), x € P(v3,v4) and
x € P(v4,vi). Clearly Zm(x) is a minimum at the point x = v2, Zm(v2) = 22,
and Zd(x) is a maximum when x = d, Zd(d) = 4.5, where (j>(v2,d) = 3.5 and
<j>(v4,d) = 1.5. Hence Zm{d) = 39.5, Zd = [0,4.5], Zm = [22,39.5]. For n = 32,
(note n e Zm), we have Zd(xd(Z2)) = 3 and id(32) is given by 4>(v2,xd(32)) - 2
and 4>(v4,xd(32)) = 3. Also for 6 - 2, (note 8 e Zd) we have ^m(xm(2)) = 27
and xm(2) (not unique)is given by <f>(v2,xm(2)) = 1 and 0(u4)xm(2)) = 4 and
also by <j)(v2,xm(2)) — 1, and 0(wi,zm(2)) = 2. In this case, the two graphs of
Zd(xd{fJ.)), n e Zm and Zm(xm(6)), 8 e Zd are shown to be identical (see Figure
2) and this is the result which is proved in the theorem for the general case. In
this particular case one can easily show that

M-22, 22 < / / < 23.25,
(M _ 1 7 ) / 5 ) 23.25 < n < 39.5

and

0<6<5/4,
5/4<5<4.5.
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