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Abstract

It is proved that a regular essentially closed and weakly homomorphically closed proper subclass of
rings consists of semiprime rings. A regular class M defines a supernilpotent upper radical if and
only if M consists of semiprime rings and the essential cover Mk of M is contained in the semisimple
class S %M. A regular essentially closed class M containing all semisimple prime rings, defines a
special upper radical if and only if M satisfies condition (S): every M-ring is a subdirect sum of
prime M-rings. Thus we obtained a characterization of semisimple classes of special radicals; a
subclas S of rings is the semisimple class of a special radical if and only if S is regular, subdirectly
closed, essentially closed, and satisfies condition (S). The results are valid for alternative rings too.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 16 A 21; secondary 17 D 05.
Key words and phrases. Kurosh-Amitsur radical, supernilpotent radical, special radical, essentially
and weakly homomorphically closed class.

1. Introduction

Recent investigations have shown that semisimple classes of radicals, hereditary
radicals and supernilpotent radicals, respectively, can be characterized by nice
algebraic properties (see Sands (1976), van Leeuwen, Roos and Wiegandt (1977),
Sands (Preprint), Anderson and Wiegandt (1979), (Preprint a) and (Preprint b)).
As far as structure theorems are concerned, the best kind of radical is that of
special radicals introduced by Andrunakievich (1958). Though constructions of
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special radicals were treated recently by Leavitt and Watters (1976), no char-
acterization of semi-simple classes of special radicals were known.

The main purpose of this paper is to characterize the semisimple classes of
special radicals (Theorem 4). To this end classes defining special upper radicals
and those defining supemilpotent upper radicals are characterized in Theorem 3
and Theorem 2, respectively. Since one of the characteristic properties of
semisimple classes of supemilpotent radicals is that the class should be weakly
homomorphically closed, this condition is discussed in the context of other
algebraic properties in Section 1.

In this paper we shall work in the variety of associative or alternative rings.
(That we work in a variety, is used only in Section 2 where the split-null
extension is applied; the other results are valid in any homomorphically closed
hereditary class of alternative rings). A subclass M of rings will always mean a
non-empty abstract class, that is, a class which is closed under isomorphisms.
Further, O will denote the class of one-element rings and A0 that of all rings
with zero multiplication. For a ring A the symbols A + and A0 will denote the
additive group of A and the zero-ring on the abelian group A +, respectively.

A class M of rings is said to be hereditary, if / < A G M implies / E M. M is
a regular class, if every nonzero ideal of an M-ring has a nonzero homomorphic
image in M (W. G. Leavitt (1970) used the term S-complete for the term
regular). M is called subdirectly closed, if every subdirect sum of M-rings is again
an M-ring. We say that the class M is essentially closed, if B G M implies
^ £ M whenever B is an essential (that is large) ideal in A. The fact that B is an
essential ideal of A, will be denoted by B O • A. The essential cover Mt of a
class M is defined as

Mk = {A: there exists a ring B G M such that B <] • A }.

Obviously, a class M is essentially closed if and only if M = Mk. A class M is
said to be weakly homomorphically closed, if B <] A £ M and B G A0 imply
A/B G M.

Radical and semisimple classes are meant in the sense of Kurosh and Amitsur
and for details of radical theory we refer to the books of Andrunakievich and
Rjabuhin (1979) and Szasz (1975). We recall that the upper radical operator %
is defined by

%M = {A: A has no nonzero homomorphic image in M}

and the semisimple operator S by

SR = {A: A has no nonzero ideal in R}.

If M is a regular class, then %M is a radical class and if R is a radical class,
then SR is a semisimple class. A semisimple class is always hereditary and
subdirectly closed. Recent characterizations of semisimple classes were given by
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Sands (1976), (Preprint), van Leeuwen, Roos and Wiegandt (1977) and Ander-
son and Wiegandt (Preprint a).

A radical class R is said to be supernilpotent, if A0 C R and R is hereditary.

PROPOSITION 1 (see Proposition 1 of Anderson and Wiegandt (Preprint b)). If
B <\A, then either B < A or B at (B + C)/C <\-A/C where C denotes an
ideal of A being maximal relative to the property B n C = 0.

A ring A is called semiprime, if A does not contain an ideal B ¥= 0 in A0.
Clearly, any class of semiprime rings is weakly homomorphically closed. A
prime ring is always semiprime. The class of all prime rings will be denoted by
P.

PROPOSITION 2. The class P is essentially closed.

PROOF. Let B be an essential ideal of a ring A such that B G P , and let us
consider two ideals C and D of A such that CD = 0. Now we have

(B n C)(B n Z>) C CZ> = 0

and since B is prime, it follows B r\ C = 0OTBC\D = 0. Taking into consider-
ation that B is essential in A, we get C — 0 or D = 0 proving that A is a prime
ring.

For an ideal B of A the annihilator B* and the right annihilator Br are defined
as

B* = {x £ A:xB + Bx = 0}

and

Br = {x <EA:Bx = 0}.

PROPOSITION 3. B* < A and Br < A for every ideal B of a ring A. If B <A
and B is a semiprime ring, then Br = B* and B n B* = 0 hold. The class of all
semiprime rings and the class P of all prime rings are hereditary.

These assertions are well-known for associative rings and were established for
alternative rings by Slater (1968) with the exception of the last statement which
can be proved easily by using the techniques of Slater (1968).

PROPOSITION 4 (see Proposition 2 of Anderson and Wiegandt (Preprint b)).
Let M be a class of semiprime rings. If C < B <3 A and B/C G M, then C < A.
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PROPOSITION 5. Let M be a class of semiprime rings. Further, let C <Q B <] A
such that 0=£B/C G M. If D denotes the set

D = {x G A: xB + Bx C C),

then D < A and B n D = C and the annihilator of (B + D)/D in A/D is zero.

This assertion is a part of Proposition 3 of Anderson and Wiegandt (Preprint
b).

Let A be a ring and M an v4-bimodule. The split-null extension {A, M) is
defined as the ring on the cartesian product A X M with the operations

(a,, w,) + (a2, m2) = (a, + a2, m, + m2)

and

(<*„ ml)(a2, m2) = (axa2, axm2 + m1a2).

If A is associative or alternative, then so is (A, M).

PROPOSITION 6. If aM = Ma = 0 implies a = 0, then (0, Af) is an essential
ideal in (A, M). Moreover, (0, M) G A0 and A st (A, M)/(0, M) hold.

PROOF. We show that the ideal (0, M) is essential in (A, M). To this end let
(a, m) be a nonzero element of an ideal / of (A, M). If a = 0, then

0 ^ (0, m) e / n (0, M)

holds. If a ^ 0, then by the assumption there exists an element m' e M such
that am' =£ 0 or w'a ^ 0. Suppose that am' ¥= 0. Then

0 ¥* (0, am') = (a, m)(0, w') G / n (0, M)

is valid. Hence (0, M) <\ • (A, M) holds. The further assertions are straightfor-
ward.

Let A and B be abelian groups and H = Hom(v4, B). On the cartesian
product A X H X 2? an addition and a multiplication can be defined by

(a,, &„ Z>,) + (a2, k2, b2) = (a, + a2, &, + k2, b{ + b2)

and

(a,, *„ 6,)(a2, *2, Z>2) = (0, 0, a,*2 + a2kx).

Thus we get an algebraic structure K = (A, H, B). Obviously K is an abelian
group with respect to the addition. One can easily check the distributivity,
further, the multiplication is commutative and in view of (K2)K = K(K2) = 0, it
is also associative.
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PROPOSITION 7. K is a commutative associative ring. If for every nonzero
element a G A there is an element k G H such that ak i*= 0, then B° = (0, 0, B) is
an essential ideal in K. Moreover, (0, H, B) G A0 and A0 as K/(0, H, B) hold.

PROOF. TO prove that B° is an essential ideal in K, let us consider an arbitrary
element {a, k, b) =t 0 of an ideal / of K. If (a, k, b) G B°, then / n B° =fi 0. If
k =£ 0, then there exists an element a' G A such that a'k ^ 0 and therefore

0 =t (0, 0, a'k) = (a, k, b)(a', 0, 0) G (a, k, b)K C / n B°.

If a ¥= 0, then by the hypothesis there is ak' e H with a&' =̂  0. Hence we have

0 *= (0, 0, alt') = (a, k, b)(0, k', 0) G (a, A:, b)K Q I n B°.

Thus 7 ^ 0 implies / n ^ V O proving that B° <\ • K.
The other assertions are straightforward.

2. On weakly homomorphically closed classes

Without assuming that M is a regular class we can prove

PROPOSITION 8. Let M be an essentially closed and weakly homomorphically
closed class of rings. / / M n A V O then A0 C M.

PROOF. Let A be a ring such that 0 =£ A G M n A0. As is well-known, the
abelian group A + is an essential subgroup of its injective envelope E(A +) and
so A <] • E(A +)° holds. Since A G M and M is essentially closed we conclude
that E(A +)° G M n A0. In addition E(A +)° is a divisible abelian group, hence
E(A +)° is a direct sum of copies of the additive group R + of the rationals and
of the quasi-cyclic groups Z(pco). Since M is weakly homomorphically closed,
the class M n A0 is homomorphically closed implying R° G M or Z(p°°)° G M.

Let F be an arbitrary free abelian group. Obviously Hom(F, R+) and
Hom(/\ Z(px)) satisfy the assumption of Proposition 7. Hence Proposition 7
yields that

R° = (0, 0, R + ) <d • K} = (F, Hom(F, R + ) , R +)

and

Z(^")° » (0, 0, Z(/>°°)) < K2 = (F, Hom(F,

Moreover
F° = KJ (0, Hom(F, R + ) , /? +
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and

F° a KJ (0, Hom(F, Z(/»")), Z(/>"))

hold. Taking into account that M is essentially closed, we get AT, e M or
AT2 G M. Since M is weakly homomorphically closed, it follows F° G M. Thus
the class M n A0 contains the rings F° over all free abelian groups F. Since
M n A0 is homomorphically closed, it follows A0 C M.

The next result generalizes Theorem 2 of Anderson Wiegandt (1979) where it
was assumed that the considered class was a semisimple class.

THEOREM 1. If M is an essentially closed and weakly homomorphically closed
class of rings such that M n A0 ^ O, then M is the class of all rings.

PROOF. Let A =fc 0 be an arbitrary ring and let Z denote the ring of integers.
Further, let us consider the Dorroh extension B of A and the split-null extension
{A, B). Since 1 G B, we have a G aB + Ba for every a EL A. Thus Proposition 6
is applicable and so (0, B) is an essential ideal in (A, B), moreover, (0, B) G A0

holds. In view of Proposition 8 it follows that (0, B) G M and since M is
essentially closed, we get (A, B) G M. Taking into account that M is weakly
homomorphically closed, by Proposition 6 it follows

A = (A, B)/ (0, B) G M.

COROLLARY. A regular essentially closed and weakly homomorphically closed
class M of rings either consists of semiprime rings, or coincides with the class of all
rings.

PROOF. If M is not the class of all rings, then by Theorem 1 it follows that
M n A0 = O. Suppose that M contains a ring A which is not semiprime. Then A
has a nonzero ideal in A0. This, however, contradicts the regularity of M.

3. Classes defining supernilpotent radicals

It has been first noted by Armendariz (1968) that a radical is hereditary if and
only if its semisimple class is essentially closed. The following criterion for a
radical to be hereditary, seems to be useful.

PROPOSITION 9. A radical class R is hereditary if and only if it satisfies condition

(H) B < A G R implies B G R.
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PROOF. The necessity is trivial. The sufficiency follows by a straightforward
application of Proposition 1.

We say that a radical R has the intersection property relative to the class M if

R(A)= PI (Ia<A:A/Iaf=M)
a

holds for every ring A.
An essentially closed class M of rings satisfies trivially condition

(E) OJ=B < -A and 5 e M imply/I £ % M

We shall use the following

PROPOSITION 10. Let M be a regular class of semiprime rings. The following
conditions are equivalent.

(i) The radical % M is hereditary,
(ii) Mk C §
(iii) %M
(iv) % M has the intersection property relative to the class
(v) %M n Mk = O,
(vi) M satisfies condition (E).

In particular, if % M is hereditary, then every ring of the semisimple class S
is a subdirect sum of M^-rings.

PROOF. For associative rings the equivalence of (i)-(v) can be found in
Theorem 7 of Le Roux, Heyman and Jenkins (Preprint). The crucial point is the
proof of the implication (iii) —* (iv) and for alternative rings one can prove it
similarly as in Theorem 2 of Anderson and Wiegandt (Preprint b). The equiva-
lence of (v) and (vi) is straightforward.

REMARK. For associative rings the essential cover of a hereditary class of
semiprime rings is essentially closed (see Theorem 4 of Heyman and Roos
(1977)), but in the case of a regular class of semiprime rings it need not be so
(see Watters (Preprint)). For a hereditary class of semiprime rings the equiva-
lence of (i)-(v) was first shown by Heyman and Roos (1977) Theorem 7.

The next Theorem characterizes the regular classes determing supernilpotent
radicals.

THEOREM 2. Let M be a regular class of rings. The radical class R = % M is
supernilpotent if and only if M consists of semiprime rings and satisfies condition
(E).
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PROOF. Let R = iLMbe supernilpotent. Then M consists of semiprime rings,
moreover, by Proposition 10 M satisfies condition (E).

Assume that the class M consists of semiprime rings and satisfies condition
(E). Obviously A0 C <?LM holds and again by Proposition 10 R = %M is
hereditary.

REMARK. Let us remind the reader that a class M of rings is called a weakly
special class, if M is hereditary, consists of semiprime rings and satisfies
condition

(A) B <\A and 5 G M imply .4 /5* GM where 5*
denotes the annihilator of B in A.

As it was proved by Rjabuhin (1965), the upper radical of a weakly special class
is supernilpotent; further the semisimple class of a supernilpotent radical is
weakly special (see also Andrunakievich and Rjabuhin (1979) and Szasz (1975)).
If M consists of semiprime rings then condition (A) is equivalent to the
assumption that M is essentially closed (see Heyman and Roos (1977) and also
Anderson and Wiegandt (Preprint b)). Though by Proposition 10 in Theorem 2
condition (E) can be replaced by demanding Mk c S I M , the class M need not
be essentially closed. For instance, let Z denote the ring of integers and let P*
denote the class of all prime rings but Z. The class P* is hereditary, for 1 G Z
and therefore Z cannot be an ideal of a prime ring. Z is a subdirect sum of the
prime fields Z/(/>) G P* (p ranges through the primes) hence Z G S ̂ LP*
holds. The essential cover of P* is P, because P is essentially closed and
(p) G P*, (p)< • Z are valid. Thus from P ' c P c S <$LP* it follows %P* C
%P C %P*. Nevertheless the class P* is not essentially closed because Z £ P*,
but it satisfies condition (E) in view of Theorem 2. Thus there are hereditary but
not essentially closed classes M of semiprime rings such that %-M is supernilpo-
tent.

4. Classes defining special radicals

Let us recall that a class M of rings is said to be a special class, if M is a
weakly special class consisting of prime rings. A special radical is defined as the
upper radical of a special class of rings. In this last section our aim is to
characterize the semisimple classes of special radicals and to this end we
introduce the notion of subdirectly indecomposable rings. A ring A is said to be
subdirectly indecomposable, if A cannot be decomposed as a nontrivial subdirect
sum of two rings, that is, for any two ideals B and C of A the relation
B n C = 0 implies B = 0 or C = 0. Clearly every subdirectly irreducible ring is
subdirectly indecomposable but not conversely.
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PROPOSITION 11. A subdirectly indecomposable semiprime ring is a prime ring.
Conversely, every prime ring is subdirectly indecomposable.

PROOF. Let B and C be ideals of a subdirectly indecomposable semiprime ring
A such that BC = 0. Now C is contained in the right annihilator Br of B in A.
Since being semiprime is a hereditary property by Proposition 3, also B is a
semiprime ring and therefore Br = B* holds in view of Proposition 3. Moreover,

BnCQBnBr = BnB* = o

holds for B is semiprime. Since A is subdirectly indecomposable, we get B = 0
or C = 0 proving that A is a prime ring.

The converse statement is straightforward.

PROPOSITION 12. Let M be a regular class of rings. If the upper radical
R = %M is special, then M consists of semiprime rings and satisfies condition (E)
and the following condition

(Q) Every S %M-r/«g is a subdirect sum of prime rings of the class S <?IM.

PROOF. Since R is supernilpotent, by Theorem 2 the class consists of semi-
prime rings and satisfies (E). Moreover, the semisimple class SR is hereditary
and by Armendariz (1968) also essentially closed. Hence by Propositions 2 and 3
the class P n S R is hereditary, essentially closed and consists of prime rings. In
view of Heyman and Roos (1977) (see also Anderson and Wiegandt (Preprint
b ) ) P n S R satisfies condition (A), so P n S R is a special class. Since R is a
special radical, it is the upper radical of a special class Q and in addition
Q c P n S R c S R holds. Thus we get

RD cilQD % ( P n S R ) D R

and Proposition 10 is applicable yielding the validity of condition (Q).

PROPOSITION 13. Let M be a regular class of semiprime rings satisfying condition
(E). Then the upper radical R = %M is special, provided that P n SR C Mk

holds and the following condition (R) is satisfied.

(R) Every M-ring is a subdirect sum of prime \lk-rings.

PROOF. Theorem 2 yields that R is supernilpotent. As we have seen in the
proof of Proposition 13, the class P n SR is a special class satisfying P n SR
C Mk. Thus in view of Proposition 10 (iii) we have

R = %M = %M* C %(P n SR).

Assume that there is a ring A which is in %(P n S R) but not in R. Now A can
be mapped homomorphically onto a nonzero M-ring B and by condition (R) the
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ring B can be mapped homomorphically onto a nonzero prime ring C being in
Mk. Hence by Proposition 10 we get that C e P n M k C P n § R . Thus A can
be mapped homomorphically onto a nonzero ring in P n S R contradicting the
hypothesis that A e %(P n SR). Hence R = %(P n SR) holds proving that
R is a special radical.

Propositions 12 and 13 yield immediately

THEOREM 3. Let M be a regular and essentially closed class of rings such that
P n S %M C M. The upper radical R = %M is special if and only if M satisfies
the following condition

(S) every M-r/ng is a subdirect sum of prime \l-rings.

Now we can easily get the following characterizations of semisimple classes of
special radicals.

THEOREM 14. The following two conditions are equivalent for a class S of rings:
(i) S is the semisimple class of a special radical;
(ii) S is regular, subdirectfy closed, essentially closed, and satisfies condition (S).

PROOF, (i) implies (ii) trivially by Theorem 3.
(ii) -* (i) By Corollary 2 of Anderson and Wiegandt (Preprint a) S is the

semisimple class of a hereditary radical, if S is regular, subdirectly closed and
essentially closed. Taking into account that S is regular, condition (S) implies
that S is a class of semiprime rings, moreover S satisfies trivially P n S C S.
Thus by Theorem 3 the upper radical of S is special.

Finally we show that in Theorem 4 the condition that S is subdirectly closed
cannot be weakened. A class M is said to be coinductive, if for any descending
chain /, D • • • D /„ D . . . of ideals of a ring A satisfying A/Ia e M for each
a, also the factor ring A / n /„ is in M.

PROPOSITION 14. The class P of all prime rings is coinductive.

PROOF. Let /, D • • • D Ia D . . . be a descending chain of ideals of a ring A
such that A/Ia (E M for every a. Without loss of generality we may assume that
D /„ = 0. Let Bx and B2 be ideals of A such that BXB2 = 0. For every a and for
i — \,2 we have

BJ (B, n /„) « (B, + /„)//„ <A/iae P,
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and also

(5 , + Ia)(B2 + la) C BXB2 + /„ = 4 .

Since every /a is a prime ideal of .4, we get Bt C Ia for all a and for i = 1 or
/ = 2. If 5j ¥= 0, then there is an index a0 such that 5, C /^ for every B > a0.
Hence B2 C /^ for every B > a0 which implies B2 = 0. Thus A is a prime ring
and P is a coinductive class.

Let R be a special radical. Then the class P n SR is a special class which
satisfies trivially condition (S). Moreover, by Proposition 17 the class P n SR is
coinductive (because S R is always coinductive). Nevertheless P n S R is not
subdirectly closed and hence not a semisimple class.
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