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Abstract

In this paper we determine the metric dimension of n-dimensional metric (X,G)-manifolds. This category
includes all Euclidean, hyperbolic and spherical manifolds as special cases.
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1. Introduction

The concept of the metric dimension of a metric space was defined for the first time
in 1953 in [2]. Around 1975, because of applications involving the set of vertices of
a graph, the concept attracted more attention (see, for example, [6, 12]). Since then it
has found many other applications (see, for example, [3–5, 8, 10]). In 2013, returning
to the original idea of the metric dimension of a metric space, Bau and Beardon in
[1], among other things, computed the metric dimension for n-dimensional Euclidean
space, spherical space, hyperbolic space and Riemann surfaces. Recently, the authors
in [7] presented some generalisations of [1] and computed the metric dimensions of
n-dimensional geometric spaces. Note that geometric spaces are in fact equivalent to
the connected homogeneous Riemannian manifolds.

We recall from [1] that for a metric space (X, d) a resolving set is a nonempty subset
A of X such that if d(x, a) = d(y, a) for all a ∈ A then x = y. The metric dimension β(X)
of (X, d) is the smallest cardinality κ such that there is a resolving subset of X with the
cardinality κ. A subset of (X, d) with cardinality β(X) that resolves X is called a metric
basis for X. As X resolves X every metric space X has a metric dimension which is at
most the cardinality |X| of X.

Our aim in this note is to determine the metric dimension of a class of metric spaces
called metric (X,G)-manifolds. Euclidean, hyperbolic and spherical manifolds and
geometric spaces are special cases of this class.
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2. Preliminaries
To state our results we need to recall some definitions. Our definitions and notation

concerning manifolds are standard (see, for example, [9]).
Let (X,d) be a metric space. The open ball with centre x and radius r will be denoted

by BX(x, r) or simply B(x, r).
As usual we define Euclidean space, hyperbolic space and spherical space,

respectively, by

En = {x = (x1, . . . , xn) | xi ∈ R} with the metric d(x, y) = ‖x − y‖;
Hn = {x ∈ Rn | xn > 0} with path metric derived from |dx|/xn;

Sn = {x ∈ Rn+1 | ‖x‖ = 1} with path metric induced by the Euclidean metric on Rn+1.

Note that the metric dimension of any open subset of En,Hn, or Sn is n + 1 (see [1]
or [7]). We remark that in a metric space X, the relation A ⊆ B ⊆ X implies neither
β(A) ≤ β(B) nor β(B) ≤ β(A) (see [7]).

In a metric space (X, d), a geodesic arc is a distance-preserving function α : [a, b]→
X, with a < b in R. A geodesic segment joining a point p to a point q in X is the image
of a geodesic arc whose initial point is p and terminal point q. A geodesic line is a
function λ : R→ X that preserves distance locally (see [11, page 25]). The image of a
geodesic line is called a geodesic.

An n-dimensional geometric space is a metric space (X, d) such that:

(1) X is geodesically connected; that is, each pair of distinct points of X is joined by
a geodesic segment in X;

(2) X is geodesically complete; that is, each geodesic arc α : [a, b]→ X can be
extended to a unique geodesic line ᾱ : R→ X;

(3) there exist a continuous function ε : En → X and a real number k > 0 such that ε
maps BEn (0, k) homeomorphically onto BX(ε(0), k) and, for each point u of Sn−1,
the map λ : R→ X defined by λ(t) = ε(tu) is a geodesic line such that λ restricts
to a geodesic arc on the interval [−k, k];

(4) the metric space (X, d) is homogenous; that is, for each pair of distinct points p
and q in X there is an isometry φ : X → X such that φ(p) = q.

Note that (3) and (4) imply that X is an n-manifold. It is known that a Riemannian
manifold M is a geometric space if and only if M is homogeneous [11]. We know
from [7] that for an n-dimensional geometric space X, β(X) = n + 1. The spaces
En,Hn,Sn,Tn (the n-dimensional torus), RPn (the real n-dimensional projective space),
and CPn (the complex n-dimensional projective space) are elementary examples
of geometric spaces. In fact all connected homogeneous Riemannian manifolds
are geometric spaces (see [11, page 371]). As a special case, real Grassmannian
O(n)/(O(r) ×O(n − r)) and complex Grassmannian U(n)/(U(r) ×U(n − r)) manifolds
are geometric spaces.

A similarity from (X, dX) to (Y, dY ) is a bijective map Φ : X → Y for which there is
a real number k > 0 such that

dY (Φ(x),Φ(y)) = kdX(x, y)
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for all x, y in X. In this case we say that (X, dX) is similar to (Y, dY ). It is obvious
that, like the isometries, the similarities between metric spaces preserve the metric
dimension. Also a similarity preserves the geodesics.

Now we can define the (X,G)-manifolds which are the main focus of this note.

Definition 2.1.

(i) Let G be a subgroup of S (X), the similarity group of an n-dimensional geometric
space X and let M be an n-manifold. An (X,G)-atlas for M is defined as a family
of charts

Φ = {φi : Ui → X | i ∈ I}

covering M such that the coordinate changes

φ j ◦ φ
−1
i : φi(Ui ∩ U j) −→ φ j(Ui ∩ U j)

agree in a neighbourhood of each point with an element of G. There is a unique
maximal (X,G)-atlas for M containing Φ. An (X,G)-structure for M is a maximal
(X,G)-atlas for M and an (X,G)-manifold is an n-manifold M together with an
(X,G)-structure for M.

(ii) A metric (X,G)-manifold is a connected (X,G)-manifold M such that G is a
subgroup of I(X), the group of isometries of X.

It can be shown that on a metric (X,G)-manifold M there exists a metric induced
by X which is the path metric on M and generates a topology on M equivalent to the
manifold topology. Throughout, we consider this metric on a metric (X,G)-manifold
M. We refer the reader to [11] for more details of the X-metric on a metric (X,G)-
manifold M and other related material.

Example 2.2.

(i) Let X = En,Hn, or Sn. Then an (X, I(X))-structure on a manifold is called,
respectively, a Euclidean, hyperbolic, or spherical structure and we call X,
respectively, a Euclidean, hyperbolic, or spherical n-manifold.

(ii) Let X be a geometric space and suppose that the subgroup Γ ≤ I(X) acts freely
and properly discontinuously on X. Then the quotient space X/Γ has a metric
(X, I(X))-manifold structure.

A function ϕ : X → Y is called a local isometry if, for each x ∈ X, there is a
real number r > 0 such that ϕ maps BX(x, r) isometrically onto BY (ϕ(x), r). Local
isometries preserve the length of curves and geodesics. For a metric (X,G)-manifold
the charts are locally isometric [11, page 352], so we can consider them (by restricting
the domains) as isometries, and also the change of coordinates maps are isometries on
each component of their domains.

Finally, let us recall a well-known result on metric (X,G)-manifolds; for a proof we
refer to [11, page 367].
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Theorem 2.3. Let M be a metric (X,G)-manifold. Then the following statements are
equivalent:

(i) M is a complete metric space;
(ii) M is geodesically complete;
(iii) M is complete, that is, the universal covering space of each connected component

of M is a complete metric space.

All the metric (X,G)-manifolds we consider in this note are complete metric spaces.
Hence the manifolds considered in this paper are geodesically complete and, by
[11, page 359], geodesically connected. Recall that M is called geodesically connected
whenever each pair of distinct points in M can be joined by a geodesic segment in M.

3. Results

In this section we determine the metric dimension of n-dimensional metric (X,G)-
manifolds. To begin with, we compute the metric dimension for a special case of this
class of manifolds.

Proposition 3.1. The metric dimension of a unique geodesic n-dimensional metric
(X,G)-manifold is n + 1.

Proof. A unique geodesic manifold is simply connected. Thus, if M is a unique
geodesic manifold, there exists a developing map φ : M → X that is locally isometric
(see [11]). But a bijective local isometry is an isometry, so φ : M → φ(M) is an
isometry. From this, we infer that β(M) = βφ(M). By [7], the metric dimension of
an open subset of n-dimensional geometric space X is n + 1, hence β(M) = n + 1. �

We recall that for any distinct points p, q in a metric space (X, d), the bisector
B(p | q) is defined by

B(p | q) = {x ∈ X | d(x, p) = d(x, q)}.

From the definition we see that a subset A ⊆ X resolves X if and only if it is not
contained in any bisector.

Now we are ready to prove our main result. In [1] it is proved that for a Riemann
surface M with constant sectional curvature we have β(M) = 3. The following theorem
not only includes this result for Riemann surfaces with constant sectional curvature
but also determines the metric dimension of all Riemann surfaces (orientable and
nonorientable cases).

Theorem 3.2. Let M be a complete n-dimensional metric (X,G)-manifold. Then for
each open subset A of M, β(A) = n + 1.

Proof. Let x0 ∈ A be an arbitrary point. Since A is open, there exist an open
neighbourhood U ⊆ A of x0 and a chart φ : U → X such that, for some r > 0, the
mapping φ : BM(x0, r)→ BX(y0, r) is an isometry, where y0 = φ(x0) (see [11]). Also,
since X is an n-dimensional geometric space, we know from [7] that β(X) = n + 1.
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Let BX = {y0, . . . , yn} ⊂ BX(y0, r) be a metric basis for X and let

BM = {xi | 0 ≤ i ≤ n, xi = φ−1(yi)} ⊂ BM(x0, r).

Since φ is an isometry, BM is a metric basis for BM(x0, r) and thus β(BM(x0, r)) = n + 1.
We show that BM is a resolving set for A. To this end let x and x′ be two distinct points
in A with dM(x, xi) = dM(x′, xi) for all i = 0, . . . , n. Then from the definition of X-
length [11, page 350] and X-distance [11, page 351] for M and our assumption that M
is complete and consequently geodesically complete and geodesically connected, we
conclude that there are geodesic segments αi from x to xi and α′i from x′ to xi such
that dM(x, xi) = ‖αi‖ and dM(x′, xi) = ‖α′i‖. Hence there exist lifts α̃i and α̃′i of αi and
α′i in X such that ‖αi‖ = |α̃′i| and ‖α′i‖ = |α̃i|, where |α̃i| and |α̃′i| are the length of α̃i

and α̃′i in X; for more details, see [11]. So there are corresponding points y and y′ in
X such that dX(y, yi) = dX(y′, yi), for every i = 0, . . . , n, which is a contradiction since
{y0, . . . , yn} is a metric basis for X. This shows that {x0, . . . , xn} is a resolving set for A,
and we conclude that β(A) ≤ n + 1.

To show that β(A) > n, let B = {x1, . . . , xn} be a resolving set for A. Since A is open,
each xi has a ball neighbourhood, say B(xi, ri), in A and there are isometric charts
φi : B(xi, ri)→ B(φi(xi), ri). Also, there exists a simply connected open subset U of M
such that

xi ∈ B(xi, ri) ⊆ U (i = 1, . . . , n),

and, according to the developing theorem (see [11]), there is an extended chart φ : U →
X that is locally isometric. Now since φ(U) is open in X, BX = {yi = φ(xi) | i = 1, . . . , n}
could not be a resolving set for φ(U). It follows that there are distinct points q and q′

such that d(q, yi) = d(q′, yi) for each i = 1, . . . , n. Note that in each ball B(p, r) in X
there is a metric basis for X, and around each yi we have B(yi, ri) = φ(B(xi, ri)). Now
since BX is not a resolving set for φ(U), we find that BX ⊆ B(q | q′) and B(q | q′) is an
(n − 1)-dimensional submanifold (geometric space) of M (see [7]) and B(yi, ri) is an
n-dimensional submanifold of M. From this we infer that for a fixed 1 ≤ j ≤ n one
may choose y and y′ in φ(B(x j, r j)) such that d(y, yi) = d(y′, yi) for each i = 1, . . . , n (in
fact, we have B(q | q′) = B(y | y′) (see [7]). This implies that

x = φ−1(y) ∈ B(x j, r j) and x′ = φ−1(y′) ∈ B(x j, r j)

which means that x and x′ are in A. The fact that local isometries preserve the length
of curves implies that d(x, xi) = d(x′, xi) for each i = 1, . . . , n. This shows that B is not
a metric basis for A. Hence β(A) > n. Consequently, we conclude that β(A) = n + 1. �

As an immediate consequence we obtain the following corollary.

Corollary 3.3.

(i) For a complete n-dimensional metric (X,G)-manifold M we have β(M) = n + 1.
(ii) The metric dimension of every n-dimensional Euclidean, spherical and hyperbolic

manifold is n + 1.
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Proof.

(i) Take M = A in Theorem 3.2.
(ii) By part (i), we only need to note that Euclidean, spherical and hyperbolic

manifolds are metric (En, I(En))-, (Sn, I(Sn))- and (Hn, I(Hn))-manifolds,
respectively. �
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