ANOTHER CHARACTERISTIC CONJUGACY CLASS OF SUBGROUPS OF FINITE SOLUBLE GROUPS

A. MAKAN

(Received 25 June, 1969)

To Bernhard Hermann Neumann on his 60th birthday

Communicated by G. E. Wall

1. Introduction

Let \mathfrak{F} be a class of finite soluble groups with the properties: (1) \mathfrak{F} is a Fitting class (i.e. normal subgroup closed and normal product closed) and (2) if $N \leq H \leq$ $G \in \mathfrak{F}$, $N \triangleleft G$ and H/N is a p-group for some prime p, then $H \in \mathfrak{F}$. Then \mathfrak{F} is called a *Fischer class*. In any finite soluble group G, there exists a unique conjugacy class of maximal \mathfrak{F} -subgroups V called the \mathfrak{F} -injectors which have the property that for every $N \lhd \lhd G$, $N \cap V$ is a maximal \mathfrak{F} -subgroup of N [3]. By Lemma 1(4) [7] an \mathfrak{F} -injector V of G covers or avoids a chief factor of G. As in [7] we will call a chief factor \mathfrak{F} -covered or \mathfrak{F} -avoided according as V covers or avoids it and \mathfrak{F} -complemented if it is complemented and each of its complements contains some \mathfrak{F} -injector. Furthermore we will call a chief factor partially \mathfrak{F} -complemented if it is complemented and at least one of its complements contains some \mathfrak{F} -injector of G.

For a finite soluble group G, W. Gaschütz [4] has constructed a characteristic conjugacy class of subgroups of G called the Prefrattini subgroups, which avoid all complemented chief factors and cover the rest. Also, given a formation f locally defined by $\{f(p)\}$ (see [5]), T. Hawkes [8] has constructed, using Sylow systems [6], another characteristic conjugacy class of subgroups of G which avoid all complemented f-eccentric [1] chief factors and cover the rest. If $f(p) = \phi$ for each prime p then the latter reduce to Prefrattini subgroups. In this note we show:

THEOREM. Let G be a finite soluble group. Then there exists a characteristic class of conjugate subgroups of G which avoid all partially \mathcal{F} -complemented chief factors and cover the rest.

All groups are assumed to be finite and soluble.

2. Partially &-complemented chief factors

In this section we will give simple characterizations of partially \mathcal{F} -complemented chief factors of a group G, which we shall need in the next section. We begin

395

A. Makan

with two examples. That a chief factor of G may be partially \mathcal{F} -complemented without being \mathcal{F} -complemented is shown by the following example.

EXAMPLE. Consider the dihedral group

 $D_{20} \cong C_2 \times D_{10} = \langle x, y, z | x^2 = y^5 = z^2 = 1, z^{-1} y z = y^{-1}, xy = yx, xz = zx \rangle,$

and take \mathfrak{F} to be the Fischer class \mathfrak{N} of all nilpotent groups. Clearly $\langle x, y \rangle$ is the \mathfrak{N} -injector of D_{20} . The chief factor $\langle y, z \rangle / \langle y \rangle$ is complemented by $\langle x, y \rangle$ as well as $\langle y, xz \rangle$; however only one of these contains the \mathfrak{N} -injector of D_{20} .

Every partially F-complemented chief factor of G is clearly F-avoided. But every F-avoided complemented chief factor may not be partially F-complemented as the following example shows.

EXAMPLE. Let $H = \langle x \rangle \times \langle y \rangle$ be the direct product of a 2-cycle by a 4-cycle respectively. No complement of $\langle x \rangle$ in H contains the 2-cycle $\langle xy^2 \rangle$, since the only 4-cycles of H complementing $\langle x \rangle$ are $\langle xy \rangle = \langle xy^3 \rangle$ and $\langle y \rangle$, and none of these contains xy^2 .

Now let G be the semi-direct product of a 5-cycle $\langle z \rangle$ by H, with the action of x and y on z given by $x^{-1}zx = z^{-1}$ and $y^{-1}zy = z^2$. Clearly xy^2 acts trivially on z. Also $\langle z \rangle \times \langle xy^2 \rangle$ is the \Re -injector of G. Now the chief factor $\langle z, x \rangle / \langle z \rangle$ is \Re -avoided and complemented in G but it is certainly not partially \Re -complemented.

Let H/K be a partially \mathfrak{F} -complemented chief factor of G and M a complement containing an \mathfrak{F} -injector of G, then we will say that H/K is partially \mathfrak{F} -complemented by M.

PROPOSITION 2.1. Let V be an \mathcal{F} -injector of G and P a Sylow p-subgroup of V. A p-chief factor of G is partially \mathcal{F} -complemented by M iff P^{G} lies in M.

REMARK. By Corollary to Lemma 3 [7], P is a Sylow *p*-subgroup of P^G . Hence it follows that a *p*-chief factor of G is \mathfrak{F} -avoided iff it is avoided by P^G . Henceforth we will be using these facts without further mention. Also V will always denote an \mathfrak{F} -injector of G and P a Sylow *p*-subgroup of V.

PROOF. Let H/K be a *p*-chief factor of *G* partially F-complemented by *M*. Let $D = \operatorname{Core}_G M$ and A/D the unique minimal normal subgroup of G/D. By Theorem 3.1 [4], $A = C_G(H/K)$. Since H/K is F-avoided, $[H, P^G] \leq H \cap P^G =$ $K \cap P^G \leq K$. Thus $P^G \leq A$. But A/D is also F-avoided since it is partially Fcomplemented by *M*. Hence $P^G = P^G \cap A = P^G \cap D \leq D \leq M$.

Conversely, let H/K be a complemented *p*-chief factor of G and M a complement containing P^G . If A and D are as before, then A/D is \mathfrak{F} -avoided as P^G avoids it. Since A/D is self-centralizing, by Lemma 4 [7] M contains an \mathfrak{F} -injector of G. Hence H/K is partially \mathfrak{F} -complemented by M.

COROLLARY 2.2. G has no partially &-complemented p-chief factors iff all of its p-chief factors are &-covered.

PROOF. Assume first of all that G has no partially \mathfrak{F} -complemented p-chief factors. Then we claim that P is a Sylow p-subgroup of G. For otherwise $P^G S^p < G$, where S^p is a Sylow p-complement of G. Let M be a maximal subgroup of G containing $P^G S^p$. Let A and D be as in Proposition 2.1. Then by the latter, A/D is partially \mathfrak{F} -complemented by M, a contradiction. Thus P is a Sylow p-subgroup of G which means all p-chief factors of G are \mathfrak{F} -covered. The converse is trivial, since a partially \mathfrak{F} -complemented p-chief factor is necessarily \mathfrak{F} -avoided.

COROLLARY 2.3. Every complemented p-chief factor of G/P^G is an \mathfrak{F} -complemented chief factor of G.

Let \mathfrak{A} be the set of all \mathfrak{F} -avoided complemented chief factors of G with the following property : If $H/K \in \mathfrak{A}$ and for some prime p, p||H/K|, then HP^G/KP^G is a complemented chief factor of G.

PROPOSITION 2.4. A chief factor of G belongs to \mathfrak{A} iff it is partially \mathfrak{F} -complemented.

PROOF. Let H/K be archief factor of G which belongs to \mathfrak{A} and let p||H/K|. By hypotheses HP^G/KP^G is complemented in G by M, say. Clearly M contains P^G and complements H/K. Hence by Proposition 2.1 H/K is partially \mathfrak{F} -complemented.

Conversely, if H/K is a *p*-chief factor of *G* partially \mathfrak{F} -complemented by *M*, say, then by Proposition 2.1 $M \ge P^G$. Now clearly *M* complements HP^G/KP^G . Hence H/K belongs to \mathfrak{A} .

The following Proposition is a consequence of Proposition 2.4.

PROPOSITION 2.5. Given any two chief series of G there is a 1-1 correspondence between partially \mathcal{F} -complemented chief factors in the two series, the corresponding chief factors being G-isomorphic.

PROOF. Consider any two chief series of G/P^G . By Lemma 2.6 [2] there is a 1-1 correspondence between complemented chief factors in the above series, corresponding chief factors being G-isomorphic. In particular there is such correspondence between complemented p-chief factors of G/P^G . Now let (*) and (**) be two arbitrary chief series of G. Consider the chief series (*)' and (**)' of G/P^G obtained by multiplying each member of (*) and (**) respectively by P^G . From what has been just said above and from Proposition 2.4 the result follows for partially \mathfrak{F} -complemented p-chief factors of G. Since p was an arbitrary prime we are done.

3. Proof of the main theorem

In order to prove the main theorem we will need the following two lemmas.

LEMMA 3.1. Let \mathfrak{S} be a Sylow system of a group G and $H \leq G$. Then there is a conjugate H^g , $g \in G$, of H in G such that \mathfrak{S} reduces into H^g .

PROOF. This is a consequence of a result of P. Hall [6] which states that any two Sylow systems of G are conjugate.

LEMMA 3.2. Let \mathfrak{S} be a Sylow system of G which reduces into V. If \mathfrak{S} also reduces into a subgroup M of G which contains some \mathfrak{F} -injector of G, then $V \leq M$.

PROOF. By hypotheses $\mathfrak{S} \cap M = \mathfrak{T}$ is a Sylow system of M. Let W be an \mathfrak{F} -injector of G contained in M. By Lemma 3.1 there is a conjugate W^m , $m \in M$, of W in M into which \mathfrak{T} reduces. In particular \mathfrak{S} reduces into W^m . Now W^m is an \mathfrak{F} -injector of G and hence is conjugate to V. But by Lemma 1(2) [7] \mathfrak{F} -injectors of G are pronormal in G. Hence by the corollary to the Theorem in [9], $W^m = V$ and therefore $V \leq M$, as required.

We now prove the main theorem.

PROOF. Let \mathfrak{S} be a Sylow system of G. By Lemma 3.1 there is some \mathfrak{F} -injector V of G into which \mathfrak{S} reduces. Consider a chief series of G/P^G , and denote by B_p the intersection of exactly one complement of each complemented p-chief factor of G/P^{G} , into which \mathfrak{S} reduces. By Corollary 2.3 each of these complements contains some \mathcal{F} -injector of G, and therefore by Lemma 3.2 each contains V. Thus $V \leq B_n$. Also let W be a Prefrattini subgroup of G corresponding to \mathfrak{S} , then $W \leq B_p$ (See [8]). By Theorem 3.1 and Corollary 3.6 [8] with $f(p) = \phi$, B_p/P^G avoids all complemented p-chief factors of G/P^G and covers the rest. Thus let H/K be an \mathfrak{F} -avoided complemented *p*-chief factor of G. If H/K is partially \mathfrak{F} -complemented in G, then by Proposition 2.4 HP^G/KP^G is complemented in G/P^G so that $B_p \cap HP^G$ $= B_p \cap KP^G$ i.e. $P^G(B_p \cap H) = P^G(B_p \cap K)$ using the modular law. Also $P^{G} \cap (B_{p} \cap H) = P^{G} \cap H = P^{G} \cap K = P^{G} \cap (B_{p} \cap K); \text{ since } B_{p} \cap H \ge B_{p} \cap K$ it follows that $B_p \cap H = B_p \cap K$ which means B_p avoids H/K. However if H/Kis not partially \mathfrak{F} -complemented then HP^G/KP^G is a Frattini chief factor of G and so covered by B_p which means B_p also covers H/K since $B_p \ge P^G$. Finally since B_p covers all \mathcal{F} -covered and all Frattini p-chief factors it follows that B_p avoids just the partially \mathcal{F} -complemented *p*-chief factors of *G*, and covers the rest.

Next assume that for each prime $p B_p$ has been constructed as above corresponding to the same Sylow \mathfrak{S} . Let $Z(\mathfrak{S}) = \bigcap_p B_p$. Then clearly $Z(\mathfrak{S})$ avoids all partially \mathfrak{F} -complemented chief factors of G. Also $|G: Z(\mathfrak{S})| = \prod_p |G: B_p|$. Thus $|Z(\mathfrak{S})|$ is the product of the orders of all chief factors of G which are not partially \mathfrak{F} -complemented. Hence $Z(\mathfrak{S})$ has the required covering/avoidance property.

Finally since Sylow systems of G are transitively permuted by the inner automorphism of G, $Z(\mathfrak{S})$ as \mathfrak{S} runs through the Sylow systems of G, form a characteristic class of conjugate subgroups.

We will refer to these subgroups as \mathcal{F}_{Φ} -subgroups.

COROLLARY 3.3. For each prime p and each Sylow p-subgroup Z_p of an \mathcal{F}_{Φ} -subgroup $Z(\mathfrak{S})$ of G, $Z_p P^G / P^G$ covers all Frattini p-chief factors of G / P^G and avoids the rest.

COROLLARY 3.4. Let $Z(\mathfrak{S})$ be an \mathfrak{F}_{Φ} -subgroup of G corresponding to a Sylow system \mathfrak{S} and let \mathfrak{S} reduce into V. If W is a Prefrattini subgroup of G corresponding to \mathfrak{S} , then $\langle V, W \rangle \leq Z(\mathfrak{S})$.

Next we show that one can say even more, with the help of the following Lemma.

LEMMA 3.5. Let $\mathfrak{S} = \{S^p\}$ be any Sylow system of G and W a Prefrattini subgroup of G corresponding to \mathfrak{S} , then \mathfrak{S} reduces into W.

PROOF. By definition (See [8]), $W = \bigcap_{p \mid |G|} M^p$ where M^p is the intersection of exactly one complement of each complemented *p*-chief factor in a given chief series of *G*, into which \mathfrak{S} reduces. The Lemma now follows from the following simple facts, namely (a) that if *X* and *Y* are subgroups of *G* with coprime indices and if \mathfrak{S} reduces into each of them then \mathfrak{S} reduces into $X \cap Y$, and (b) that $|G: X \cap Y| = |G: X| \cdot |G: Y|$.

THEOREM 3.6. Let $Z(\mathfrak{S})$, V and W be as in corollary 3.4. Then $Z(\mathfrak{S}) = VW$.

PROOF. By Corollary 3.4, $\langle V, W \rangle \leq Z(\mathfrak{S})$. Let $S_p \in \mathfrak{S}$ be a Sylow *p*-subgroup of *G*. Then by Lemma 3.5, $S_p \cap W = W_p$ is a Sylow *p*-subgroup of *W*. Since by hypotheses, \mathfrak{S} reduces into $V, V_p = S_p \cap P^G$ is a Sylow *p*-subgroup of *V*. Now $S_p \cap W_p P^G = W_p (S_p \cap P^G) = W_p V_p$, by the modular law; thus W_p and V_p commute. Let Z_p be a Sylow *p*-subgroup of $Z(\mathfrak{S})$ containing $W_p V_p$. By Corollary 3.3, $P^G W_p / P^G = P^G Z_p / P^G$ i.e. $Z_p = W_p (Z_p \cap P^G) = W_p V_p$; thus $Z_p = W_p V_p \leq$ $WV \subseteq \langle W, V \rangle \leq Z(\mathfrak{S})$. Since *p* is an arbitrary prime, using order argument it follows that $Z(\mathfrak{S}) \leq W V$. For $|W_p \cap V_p|$ is the product of orders of all \mathfrak{F} -covered and Frattini *p*-chief factors in any chief series of *G* through P^G whereas $|(W \cap V)_p| \leq$ the product of orders of such *p*-chief factors in any given chief series. Thus

$$|Z(\mathfrak{S})| = \Pi_p |Z_p| = \Pi_p |W_p V_p| = \Pi_p |W_p| \cdot \Pi_p |V_p| / \Pi_p |W_p \cap V_p|$$

$$\leq \Pi_p |W_p| \cdot \Pi_p |V_p| / \Pi_p |(W \cap V)_p| = |WV|.$$

Hence $Z(\mathfrak{S}) = WV$.

COROLLARY 3.7. Let $Z(\mathfrak{S}) = VW$ be an \mathfrak{F}_{Φ} -subgroup of G and let W_p and V_p be permutable Sylow p-subgroups of W and V respectively. Then $W_p \cap V_p$ is a Sylow p-subgroup of $W \cap V$ as well as of $V_p^G \cap W$.

Now let \mathfrak{H} be the set of all \mathfrak{F} -covered, Frattini chief factors H/K of G with the property that if $p \mid |H/K|$, then $H \cap P^G/K \cap P^G$ is a Frattini p-chief factor of G.

COROLLARY 3.8. $V \cap W$ covers all chief factors of G which belong to \mathfrak{H} and avoids the rest.

PROOF. Clearly $V \cap W$ avoids all \mathfrak{F} -avoided and all complemented chief factors of G. Let H/K be an \mathfrak{F} -covered and Frattini chief factor of G and assume H/K is a p-chief factor. If $H/K \notin \mathfrak{H}$, then $H \cap P^G/K \cap P^G$ is a complemented chief

A. Makan

factor of G, whence $H \cap P^G \cap W = K \cap P^G \cap W$, i.e. $P^G \cap W$ avoids H/K. By Corollary 3.7, it follows that H/K is avoided by $V \cap W$. On the other hand, if $H/K \in \mathfrak{H}$ and if $p \mid |H/K|$, then by hypotheses $H \cap P^G/K \cap P^G$ is covered by W, i.e. $(H \cap P^G \cap W)(K \cap P^G) = H \cap P^G$, i.e. $(H \cap P^G \cap W)K = (H \cap P^G)K = H$, since H/K is \mathfrak{F} -covered. Thus H/K is covered by $P^G \cap W$ and hence by $V \cap W$, by corollary 3.7.

Finally we remark that if \mathfrak{F} is a trivial Fischer class then an \mathfrak{F}_{σ} -subgroup coincides with a Prefrattini subgroup of G.

I am indebted to Dr. H. Lausch for suggesting the problem and for his help and encouragement, and to the referee for his comments.

References

- [1] R. W. Carter and T. O. Hawkes, 'The F-normalizers of a finite soluble group', J. Algebra 5 (1967), 175-202.
- [2] R. W. Carter, B. Fischer and T. O. Hawkes, 'Extreme classes of finite soluble groups', J. Algebra 9 (1968), 285-313.
- [3] B. Fischer, W. Gaschütz and B. Hartley, 'Injektoren endlicher auflösbarer Gruppen', Math. Z. 102 (1967) 337-339.
- [4] W. Gaschütz, 'Praefrattinigruppen', Arch. Math. 13 (1962), 418-426.
- [5] W. Gaschütz, 'Zur Theorie der endlicher auflösbarer Gruppen', Math. Z. 80 (1963), 300-305.
- [6] P. Hall, 'On the Sylow system of a soluble group', Proc. London Math. Soc. (2) 43 (1937), 316-323.
- [7] B. Hartley, 'On Fischer's dualization of Formation Theory', Proc. London Math. Soc. (3) 19 (1969), 193-207.
- [8] T. O. Hawkes, 'Analogues of Prefrattini subgroups', Proc. Internat. Conf. Theory of Groups, Austral. Nat. Univ. Canberra, August 1965, pp. 145-150.
- [9] A. Mann, 'A Criterion for Pronormality', J. London Math. Soc. 44 (1969), 175-176.

Department of Mathematics Institute of Advanced Studies Australian National University P.O. Box 4, CANBERRA

400