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1. Introduction

We shall study a special case of the following abstract approximation problem: given
a normed linear space E and two subspaces, Mx and M2, of E, we seek to approximate
f eE by elements in the sum of Mt and M2. In particular, we might ask whether closest
points t o / from M = Mt + M2 exist, and if so, how they are characterised. If we can
define proximity maps px and p2 for Mx and M2, respectively, then an algorithm
analogous to the one given by Diliberto and Straus [4] can be defined by the formulae

(i) pt-.E^Mi is such that \\f-pif\\ = dist(f,Mi) for /eE and i= l ,2 , where dist(/,M,)
= infm6A,.||/ —m||.

(ii) The sequence {/„} is defined by fo = f, fn+l=fn-p1fn-p2(fn-plfn) for n = 0, 1,
2....

With these definitions it is easy to establish that all /„ are equivalent to / , in the sense
that/,,—feM, and that ||/n|| converges monotonically downward to a number satisfying

lim||/J|£dist(/,M). (1)
n-*oo

Two interesting questions are whether equality holds in (1), and whether the sequence
{/„} converges. In the case E = C(X x Y) and M = C(X) + C{ Y), these questions have been
answered affirmatively by Diliberto and Straus [3] and Aumann [2], respectively, for the
supremum norm. Golomb [5] gives an abstract account of this algorithm and establishes
equality in (1) under the assumptions that M, and M2 are complemented, and that

ll/-fc/+n|| = ll/-P«/-n| | for all «eM; and » = 1,2.

There are two papers, Sullivan [8] and Attlestan and Sullivan [1], which deal with the
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same algorithm in a rotund or uniformly rotund Banach space which is either smooth
or reflexive. The second of these papers gives some convergence results for the
algorithm.

The situation we shall consider is as follows. Let (X, X, n) and (Y, &, v) be two
measure spaces of finite measure. It is convenient, and does not sacrifice generality, to
suppose that ^(Ar) = v(7)= 1. Let (Z, <D, a) = (X, Z, n)x(Y, 0 , v). By identifying an
element geLAX) with a function g(x,y)=g(x) we imbed LAX) in L^Z). Since n(Y)=l
this imbedding is isometric. Henceforth we ignore the distinction between g and g. In
the same way, LAY) is imbedded in LAZ), and we set M = L1(X) + L1{Y). Now we
inquire into the approximability of elements of E = LAZ) by elements of M, and also
for the case when E = C(XxY) and M = C(X) + C(Y), using the Lx norm. Our
investigations are concerned mainly with the existence of best approximations.

2. Existence of best Ll approximations

An important question is whether best approximations to / from M exist for every
feLAZ). A trivial answer could be given if the subspace M failed to be closed, so we
verify first that M is indeed closed.

Lemma 2.1. The subspace M = Ll(X) + Ll(Y) is closed in LAZ).

Proof. Let {mn} be a sequence of elements in M with limit m.
Write mn(x,y) = gAx) + hjy) where gneLl(X), hneLAY). This representation is unique

only up to an additive constant and so we can insist that $xgndfi=0. Now we have, by
the Fubini Theorem,

= n(X)$\hn\dv
Y

H W l ! since fi(X)=l.

This argument, when applied to mn—mk, shows that the sequence {hn} is Cauchy in
LAY) and so converges to some heLX{Y). The convergence mn-nn implies that gn-+m
— h, and since gneLl(X), we must have m — he LAX), which concludes the proof.

For completeness, we state the following result of R. C. James [6], which characterises
best Lj-approximations.

Theorem 2.1. In order that 0 be a best L^-approximation to an feLAX)from some
linear subspace <&, it is necessary and sufficient that J(/>sgn/^JZ(/)|</>| for all </>eO. Here
Z(f) denotes the set of points where f(x) = 0.

Lemma 2.2. In order that a real number r be a best approximation to feL^X) by a
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constant, it is necessary and sufficient that max{[iN(f — r), iiP(f — r)} ^%n(X). Here N and
P denote the sets where the indicated function is negative or positive, respectively.

Proof. By Theorem 2.1, and obvious deductions, the following are equivalent:

(a) r is a best approximation to /

(b) |Jcsgn(/-r)|^JZ(/_r) |c| for all ce01.

(c)

[d) \nP(f-r)~fiN(f

if) nP(f-r)^n(X)

-r)\^fiZ

and n

<J-r) = n(X)-nP
X)-fiP(f-r)-(il
r)-/zP(/-r)-/xA

N(f-r)^fi(X).

U-r)-fiN(f-r).

t(f-r).

In the space Lt(X) we define an operator A which produces best approximations by
constants. Since best approximations are not unique, we let /(/) denote the interval of
all best constant approximations t o / Formally,

rel{f) iff IIZ-rll^HZ-cH, for all ceR.

Then Af is defined as the midpoint of /(/).

Lemma 2.3. / / /(/) = [a, jS], then

Proof. It suffices to prove the equation for /?, as the other is similar. By Lemma 2.2,

= sup {r:nP(f - r) ̂  1/2 and fiN(f - r) g 1/2}

If the last inequality is a strict inequality, select ofi such that nN(f — r)^l/2 for some
r>c. Since c£/( /) , either / I N ( / - C ) > 1 / 2 or nP(f-c)> 1/2. Since c>p and p.P{f
- /? )^ l /2 , we have ^ P ( / - c ) ^ 1/2 and nN(f - c) > 1/2. This, however, contradicts the
inequalities c<r and fiN(f-r)^ 1/2.

Lemma 2.4. 77ie map A:Ll(X)-*U has these properties:

(a) A(f + c) = Af + c for all ceU, f eLi(X).
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(b) Af ^ Ag whenever f^g,f,geL^X).

(c) \\f - Af \\^\\ f \\Jor all fe L^X).

(d) Iff and g belong to LJX) then \Af-Ag\Z\\f-g\\.,.

(e) In general, A is discontinuous.

Proof. It is elementary to prove that / ( / +c) = /(/) +c. From this, part (a) follows at
once.

In order to prove (b), assume tha t / ^g . Let /(/) = [a, b] and let I(g) = [a.,fi]. We will
show that a^oe and b~^fi, from which assertion (b) will follow at once. Suppose that
a<oi. Then a£I(g), and by Lemma 2.2 either nP(g—a)>| or (iN(g — a)>%. In the first
case we conclude that fiP(f— a)>\ (because f^g). By Lemma 2.2, a £/(/), a
contradiction. In the second case, nN(g—a)>% (because a<ct). By Lemma 2.2, <x£I(g), a
contradiction. A completely analogous proof shows that b^.f}.

Part (c) is immediate from the fact that Af is a best approximation to / and is
therefore as good an approximation as 0.

For part (d), start with the pointwise inequality (valid almost everywhere)

Then

Using parts (a) and (b) of this lemma, we obtain

and

An example in support of part (e) is obtained by letting g(x) = f(x + c), where

fsgnx|x|>£

On the interval [ -1 ,1] we have then Af=0, Ag=\, | | /-ff| |i =2e.

The discontinuous nature of Lj-approximation was pointed out previously by K.
Usow in [10]. See also Lazar, Morris and Wulbert [12].

If/ is a function of two variables, f(x, y), we define Axf to be the function of y which
results upon applying A to (/(•,y). Similarly, Ay is defined. Thus we have, for all yeY
and for all heL^Y),

J \f(x, y) - (Axf)(y)\dn ^ J |/(x, y) - h{y)\ d(x.
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Lemma 23. The operator Ax maps Lt(X x Y) into Lt(Y).

Proof. Let feL^Xx Y) and h = Axf. Modifying slightly the notation used above, let
I(y) denote the interval of all best constant approximations to /(•, y). Let I(y) = [<x(y),
P(y)l- Then h(y)=j\_a(y) + /3(y)~]. In order to show that h is measurable, it suffices to
prove that a and /? are measurable. These two proofs are similar, and only the proof for
P is given.

For y e Y and r an extended-real number, let

\pr(y) = n{x:f(x,y)<r}.

By Theorem 7.6 of Rudin's book [11], ij/r is measurable. Now let rlsr2,.. . , be an
enumeration of the rational numbers. Define <f>n on Y by

k if ^ 1 / 2
-oo otherwise.

Then <£„ is measurable. Indeed, the set Ax = {y\<j)n(y)-^X\ is either Y (when X^rn) or
{y:^ir(j)>\l2}. Thus Ax is measurable for all extended-real numbers L By Lemma 2.3,
j?(y) = supn4>n(y), and /? is thus a measurable function. In order to prove'that heL^Y),
use Lemma 2.4 (part c) to obtain

Integrating over Y, we obtain \\f — / J | I I^ | | /HI , whence H/illi^H/ll!. It is worth noting
that Ax and Ay are metric projections of L,(Xx Y) onto, respectively, Lt(y) and L^X).

Lemma 2.6. Z>ef feLJZ). To each meM satisfying | | / —m|li^ll/lli. there
corresponds an m* e M such that

(') IIZ-mil^HZ-mll, and
(ii) ||ifi*IL

Proof. Firstly, since meM, we may argue as in the proof of Lemma 2.1 to obtain
IMIiiSlWIi. where m = g + h, geL^X), heL^Y), and \g = 0. Furthermore, since
/ £ LX(Z) the following pair of inequalities holds:

Now let h* = Ax(f—g) and set m' = g + h*. Since Ax is a metric projection, we have for
each y

l\f-g-h*\dn£l\f-g-h\dti
X X

EMS— E
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and integrating with respect to y gives us

We can repeat the arguments used at the outset of the proof to obtain 11/1*111̂
For almost all ye Y we have

W;y)-g(:)-h*(y)\\aW,y)-g(-)\\i

We may write (once again for almost all y)

\h*(y)\ = J \h*(y)\dM Sj\h* + g- f\dn + J \g - W
X X X

^2 J |/-0|<///g2||/|L + 2||0||1 ̂  1OH/IL.
x

We conclude that H/r'ILglOII/ll^. Then defining g* = Ay(f-h*) and m* = g* + h*, we
may repeat the preceding argument, to obtain

and

or

Lemma 2.7. The set K = {meM:\\m\\!B^N} is weakly closed in L^Z, <t, a).

Proof. Assume to the contrary, that there exists a generalised sequence {mx} in K
which converges weakly to an element m which is not in K. Then there exists a set
A<=Z such that o(A)>0 and \m(z)\>N for all zeA. Take veL^Z) such that v = 0 on
Z\A and i> = sgnro(z) on A. Since L\(Z) can be identified with Lm(Z) we can define a
functional SeLf(Z) by b{f)-\zfvda = \Afvda. Since {mj is weakly convergent we
must have

J mav da^>\rrwda = \ \m\da > Na(A)
A A A

and this implies that eventually jA mjo da > Na(A). But this is not possible, because

Theorem 2.2. Let feLx(Z). Then in the metric of L^Z), f possesses a best
approximation from the subspace M = L1(X) + L1(Y).
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Proof. By Lemma 2.6 we may confine our search for a best approximation to the set

which is weakly relatively compact by the Dunford-Pettis Theorem ([4], p. 294, [9], p. 274).
It is weakly closed by Lemma 2.7. Since the norm is weakly lower-semicontinuous, the
expression | | / — m\\1 attains its infimum on B.

The arguments of Theorem 2.2 also establish the following result.

Theorem 23. Each feL^Z) has a best approximation in each of the sets
Bn = {meM:\\m\L^n}forn=l,2,3

We do not know, however, whether each feL^Z) has a best approximation in M, or
alternatively, whether the numbers dn = dist(/, Bn) are eventually constant as n-»oo.

Lemma 2.8. The operators Ax and Ay previously defined have the properties

Ay{f+g) =

Proof This follows from Lemma 2.4.

3. Existence of best /^-approximations for continuous functions

In this section we consider spaces of continuous functions furnished with Li-norms.
The spaces X and Y are now compact Hausdorff and we work with the spaces C(X),
C(Y) and C(X x Y). Let /i and v be Borel measures on X and Y, respectively. Is it true
that for each feC(XxY) there exist geC{X) and heC(Y) which minimise the
expression

(1)

Theorem 3.1. Each element of C(X x Y) has a best Li-approximation in the subspace
C(X) + C(Y).

Proof. Let 5 denote the infimum of the expression in (1) as g and h range over C(X)
and C(Y), respectively. Select gneC(X) and hneC{Y) such that | | / -3 n - / i n | l i ->i5 . Define
h* = Ax(f—gn), where Ax is the operator defined in the preceding section. We shall show
that the sequence {h*} is equicontinuous. Let y0 be a point of Y at which equicontinuity
is to be established. Let e>0. By the lemma following, {f{x,-):xeX} is equicontinuous.
Hence there is a neighborhood V of y0 such that

\nx,y)-f(x,yo)\<s (xeX,yeV).
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If y e V, then by Lemma 2.4, part (d),

\Kiy) - Kiyo)\ = \AJJ - gM - AJJ - gn)(y0)\

=S sup \(f - gn)(x, y)-(f- gjx, yo)\
X

= sup\f(x,y)-f(x,yo)\^s (2)
X

This proves the equicontinuity of the sequence {/i*}.
The inequality (2) shows also that if h* is replaced by h* — h*(y0) for some fixed y0,

then the resulting functions are bounded above by 211/H .̂ We suppose, therefore, that
the sequence {h*} is bounded in the supremum norm.

Now define g* = Ay(f — h*). By a repetition of the previous argument we infer that
{g*} is an equicontinuous sequence in C(X). By Lemma 2.4, part (d), ||0*||oo^ll/-'CIL>
and the g*-sequence is bounded. By the Ascoli Theorem, we select a sequence of
integers {nk} such that

g*nk^geC{X), h*n^hsC{Y) (uniformly).

By the continuity of the Lj-norm in C(X x Y), we have

\\f-g-h\\ = 5.

Lemma 3.1. / / X is compact and feC(XxY) then the family | / (x , - ) :xel} is
equicontinuous in C(Y).

Proof. Let £ > 0. For each point (x, y) in X x Y there are open neighborhoods U(x, y)
of x and V(x, y) of y such that

\f(x,y)-f(s,t)\<E, seU(x,y),teV(x,y). (3)

Fix y. Since xeU(x,y) for all x, the family {U(x,y):xeX} covers X. Since X is compact,
there exist xu...,xn such that X is covered by U(xuy),...,U(xn,y). Define V
— V{xi>y)n ' ' ' n Vixn-> y)- Then V is a neighborhood of y. If x is arbitrary in X and te V,
then for some i, x e [/(x;, y). Of course, t e V(xh y). Hence by (3) we have \f(x, y)
— f(x, t)\ < e. This establishes equicontinuity at y.

The analogue of the Diliberto-Straus algorithm in the present setting is defined by
the formulas

Theorem 3.2. There exist functions f e C(X x Y) for which the generalised Diliberto-
Straus algorithm does not work, i.e., l imH/J^dis t^M), where M = C(X) + C{Y).
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Proof. Let X= Y = [- 1,1] and define/eC(A: x Y) by

f(x,y) = i - x y : ( x , > ) e [ - l , 0 ] x [ - l J 0 ]

LO: elsewhere.

From the characterisation theorem for best approximation by constants we obtain Axf
= Ayf = 0. Hence, in the algorithm all iterates are identical. However, 0 is not a best
approximation to / If it were, then by Theorem 2.1 the inequality JJ m sgn / g \\AV) M
would be valid for all meM. The function x+y does not satisfy this, as an elementary
calculation shows. More careful calculation reveals that $$\f(x,y) — c(x+y)\ attains a
minimum of 0-354 near c = 0-19.
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