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ABSTRACT. The Clim atc System, !\lodcl (CS!\I) dnTlop cd a t the Na ti ona I Center 
for Atmospheric Resea rch (NCAR ) consists of a tmosphere, la nd a nd ocea n models, as 
wel l as a dyna mic-thermod ynamic sea-ice modeL The res ult s of sea-ice simul a ti on using 
th e first coup led clima te simul a ti on with the CSJ\I is prese nted. It was fo und tha t thc 
sim ulated total-ice a reas in both hemispheres compared \\'e ll with obsen 'at ions fo r winter, 
but we rc too la rge [or summer. The numerica l solution o[ the ca\'it a ting l1uid dy namics 
was [o und to a ll ow excessive ridging o f ice, a nd a n ad hoc co rrecti o n was im plemented . 
T he ice ITloeit ies were rcali stic for the Antarctic. but lor the Arctic \\'e re turned towa rd 
Alaska and Siberi a by m odelcd winds a nd current s. This ice-drift pattern was renec tcd by 
ice thickness, which lacks the obse rved ri dging near G reenl a nd. The results illustra te the 
sensiti vit y o f sea ice to the simulati on o f polar climate a nd th e cha ll enge of m odeling th e 
entire climate system. 

INTRODUCTION 

In\"(~stigat ions o[ the global climate sys tem ",ith coupled 
atmosphere ocea n general circul at ion models (GCM s) 
mos t oft en ignore the eflec ts 0 [" sea-i ce d yna mics. Onl y 
recentl y have some models included simple' treatments of 
ice d ynam ics; they ha\"e shown its importance in the simul­
a tion o[ sea ice, g loba l clima te and sensiti vit y to clim ate 

change (Washing ton a nd ;'!eehl, 1996; Pollard and Thomp­
son, I 99..J.). Such models still conta in pa ra meteri za ti ons of 
im porta nt physica l p rocesses, such as energy nu xes throug h 
sub-g ridsca le leads, which should progress as modeling 
reso lutio n a nd methods a re improved. 

The C lim ate System J\Iodel (CSM ) is a coupled a tmos­

phere- ocea n G C;'[ recentl y de\'eloped a t the Nationa l 
Center fo r Atmospheric Resea rch (NCAR ) fo r use by the 
modeling com m unit y. It includes a dyna mic-therm o­
dyna mic sea-ice model that resolves many o[ the ph ysica l 
p rocesses that control interac tions between sea ice and 
climate. In this paper, we present the res ult s of the simul­

a ti on of sea ice in both hemispheres from the first co upl ed 
experiment of the CSJVI. 

MODEL DESCRIPTION 

The CSM comprises the NC AR Community C limate 

M oclel version 3 (CCM 3) a tmospheric GC;'! a t 2.8 0 
X 2.8' 

resolution and 18 l"C rtical levels (Ki ehl a nd others, 1996); a 
globa l ocean model of approx im atel y 2° x 2" resolution 
a nd +5 ver ti ca l lc\"c1s (NCAR O cean Section, 1996); a nd a 
dyna mic-thermod yna mic sea-ice model (Bettge a nd others, 

1996), These m odel components a re linked by the NCAR 
Flux Coupler (Brya n a nd others, 1996), whieh computes the 
nu xes of mass a nd energy a t the interfaces betwee n the 
nlOclel components. A brief descripti on or the sea-ice model 
wi 11 be g iven hcre; more complete desc ripti ons of a ll compo­

nents can be fo und in the references gi,·en. 

Th e sea-i ce model component is based on that used by 

Was hing ton a nd i\leehl (1996) in a global a tmosphere 
ocea n G C M . The model uses the Ara ka wa B-g rid in spheri­

cal coordina tes, with a fi xed longitudina l resolution of 2 . ..J. 
a nd va rying la titudina l resolution from 2. 2 '~ a t 20 (01 a nd 
S) to 1.2° poleward of 60 -, a nd includes a sea-ice g ridce ll a t 
90 N . The time-step orthe ice l'n odel is currently se t a t 1200 
seconds a nd resoh 'es the diurnal cyc le. The thermodyna mic 
formul ati on is based on the three-b'e1 Semtner (1976) 

m oclel, with minor modificatio ns for its interface with the 
Flux Coupl er. The Flux Coupler computes nuxes of heal. 
nl.ass, rad ia ti on a ndl1l.omentul1l. separa tely OI'er the ice-cOl'­
ered a nd ice-free (ocea n) fr ac ti ons of each gridce ll , so that 
open leads can abso rb energy or re freeze. The growth of 
new ice in the open ocean a nd leads is passed from the ocea n 

m odel, a nd contributes to la tera l g rowth up to a max imum 
concentra ti o n. Surface a lbedo is dependent on snow depth , 
a nd is reduced 1'0 1' melting ice a nd sno\\'. Th e net [lux orfres h 
\\'a ter is computed from the g rowth a nd melt or sea ice. 
using a consta nt sa linit y or sea ice Or + ppL a nd from rres h 
snowmdt. Prese ntl y, there is no ri\Tr runoff included in the 

C SM. 
The sea -i ce model d yna m ics a rc ta ken rrom t he fo rm u la­

ti on or Poll a rd a nd Thompson (1994) fo r the cal'ita ting fluid 
ice rh eo logy or Fl a to a nd Hibler (1992). Fo r gridce ll s under 
com -e rgent stresses, ice pressure is incremented to reduce 

com·e rge nce. For com'C rgent points, where i he ice press ure 

is less tha n the ma ximum ice streng th (sce FlalO a nd Hibler, 
1992), th e di, -crgence of ice veloc it y should be negligible. 
H owelTr, Cor these points, it was scen that the dil'erge nce 
can remain as much as I x 10 7 S I, elTn after 1000 it era­
ti ons of the so lution. This res idua l co m'e rgence can, under 

persistentl y conve rgent stresses, a ll ow ice thickness to 

increase a t a ra te of g reater tha n 300% a 1 a t points where 
the ice should be incompress ibl e. 

To co rrect fo r the cxcess ridging or ice, the ad\"ec ti on 
scheme was fo rmulated into sepa rate diverge nce a nd advec­

ti\ 'e term s, For g ridcell s with res idual cOIllTrgence, the 

di vergence term is se t to zero, e l i m i nati ng a ny excess 

107 https://doi.org/10.3189/S0260305500013872 Published online by Cambridge University Press

https://doi.org/10.3189/S0260305500013872


11 eat/w'OI and others: CSi\! simulation qfsea ice 

r idging. T he volume of excess ridging is then redi stributed 
to the remaining divergent ice pack. 

RESULTS 

Th e CSM experiment descr ibed here was conducted by the 

CSM Principal Investigators G ro up at NCAR. The sea ice 
a nd ocean we re initially coupled and run together for 230 
yea rs, with mean monthl y atmospher ic forcing from a 
simul ation with CCl\I3. D uring thi s spin-up, the residual 
convergence in the ice model was idcntifi ed and the con"ec­
ti ons desc ribed above were i mplemellled. The CCM 3 
atmosphere was initi a ll y run sepa ra tely using obsen 'ed 
SSTs, before coupling to the ocea n a nd ice models. The full y 
coupled system was run for 25 years, the results of which are 
presented here. 

Th e total sea-ice-co\'ered areas in the Northern a nd 
Southern H emispheres a re shown in Figure 1. The Arctic 

ice-a rea max ima a re slightly g reater than the mean max i­
mum a nalyzed by Gloersen a nd others (1992) from remotely 
sensed ice concentrations, whil e the Arcti c minim a a re con­
siderably greatel" than observcd. The Anta rctic ice area 
g rows slowly oyer 25 yea rs, in response to a slight cooling 
trend in the 1110delecl SST, to approxim ately 10 % greater 
than the obsen 'ed mean max imum a nd minimum values. 
A more recent CSM experime nt has reduced the trends in 
ice a rca a nd SSTconsiderably. 

T he Arctic ice concentrati ons (Fig. 2a, b) a re primari ly 
96- 99% in February, a nd ex tend fa rther south in the 
Greenland, Icel and a nd Norwegian Seas (GIN) than th e 
obsen 'ed ice edge, Simila rl y, in August, the ice pack is too 
extensive in Ba ffin Bay, the GI~ seas, and the Arctic bas in, 
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Fig. 1. Total ice-covmd area ill /he 25)iec/1' CSM runJara) the 
Northern HemisjJlzere (NH) and b) the Southem Hemi­
sphere (SH ), and observed ma \ imum and minimum areas 
( dashed Lines). 

c) SH Februory,.£..-__ _ 

d) SH Auqusl 

I 
) 

Fig. 2. l\Jeal1 monthLJI ice concentmtions Jar a) No rthern Hemisphere FebrualJI, b) Nor/hem Hemisphere August, c) Southern 
HemisjJ/zere Februmy, and d) SOli/hem HemisjJ/zere Augus/. SoLid lines are observed mean ice edges adaptedfrom GLoersen and 
others (1992). 
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" ' hil e there was a strong North Atlantic thennoha line cir­
cul a ti on in thi s simulation, the SSTs in the GIN seas re­
ma ined much too co ld, impl ying there was insufficient 
occa n-heat tra nsport to melt ice. The Anta rcti c sea-ice con­
centra tions (Fig. 2c, d ) a nd the position orthe February ice­
edge in particula r, a re closc r to obse ryations (the Anta rctic 

Circumpola r C urrent simulated by the ocean model tends 
to constrain the ice edgc closer to observati o ns). However, 
the simulatio n indicates that the Ross Sea rema ins ice-cO\ '­
ered year-round , in CO nLras t with obse rvati ons, a nd it has 
too littl e ice cO\'C r in the Bellings ha usen Sea. 

The Arctic ice thi ckness in Februa ry (Fig. 3a ) builds up 

to approxima tely 5 m in the C hukchi a nd Eas t Siberi a n 
Seas, but is o nl y 3 m north or Greenla nd , lac king the 
obsen Td pressure r idging aga inst North Amer ica. This 
thi ckness pattern is created by the direc tion of ice d r ift in 
res po nse to wind a nd current stresses. In Ba £Iin Bay, simul­

a ted ice thickn esses or 5 m ex i ·t yea r-round as a n undes ir-

a) NH Feb r uary_---_ 

b) SH August 

o 0.5 1 2 3 4 5 

Fz'g 3. iUeal/ 1I101//h()1 ice /hickness (m).fo r a) <'v"o r/ /zem 
f-IemisjJhere FebruOl~)I, and b) SOil /hem HemisJJhere AlIgIIS/. 
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able result of the redi stri bution process, \\'hich has been 
imprO\'ed in recent experiments by limiting the redi stribu­
tion to within the Arctic bas in . 

The simul ated ice-veloc it y fi eld (Fig. +) shows a n a nti­
cyclonic Beaufo rt G yre, but lacks the obscn 'ed Tra nspola r 
Drift Stream. The modeled ice \ 'clociti es nea r the Pole a rc 

directed towa rd s Al aska a nd not towa rds Fra m Strait as 
obse rved . Fig ure 5 shows the obse rved mean ice drift {i'om 
buoy data (Colony a nd Thorndike, 198+) a nd the obse rvcd 
",inLer ice thickn ess rrom subma rine data (BoLll'ke a nd 
Garrett, 1987). 

While th e ice-\ 'Clocity fi eld differs frol11 obsen 'ations, it 

0 .25 

Fig -I. Annual lI1 ean ice veLoci[JI in. Vorthem Hemis/Jherefrom 
CSill. 

Fig 5. ObseJ'l'ed mean ice drift (a rrows) from Cololl), and 
TlLOmdike (198-1) and winln-ice thickness (m)/ro l17 BOll rke 
and Carrell (1987). 
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appears to be the appro pri ate res ponse to the a tmospheric 
m odel \\·inds. The sea-I evcl pressure from the CSM (Fig. 6) 
shows a n a nticyelonic Beaufo rt High di splaced towards 

Siberi a, which contributes to the ice acl vec tion towards 
A las ka a nd thc Chukchi Sea. This demonstrates the ra ther 
high sensiti vity of the Arctic ice velocity a nd ice-thickness 
di stribution to simul ated a tmospheric fo rcing: whil e th e 
a tmospheric p ressure patterns arc not too fa r from obser­
\'ati ons, the ice motions a rc considerabl y different. 

o 

Fig. 6. Alll1l1atll1ean atmospheric sea -Iel'et pressure (h Pa) 
Jrom CS/vI. ConlOllT illlerval is I hPa, wilh Ih e /JreSJlITe ill 
Ihe sli/J/J/ed region greater than 1015 h Pa. 

T he Anta rctic ice thickness in Aug ust (Fig. 3b ) is p ri­
ma ril y 0.5- 1.0 m, with pressure ridging up to 3.5 m aga inst 

the Peninsul a. This is comparable to the a na lys is by H a rder 

• a nd Lemke (199+) or sea-ice thickn ess measurements ri·om 
the Winter Weddell Gy re Study (WWGS ), which show a n 
ave rage thickn ess in the eas tern VVeddell Sea 01'0.5- 1.0 rn, in­
creas ing towards the western \Veddellto a ra nge of 1.0- 3.0 m. 

CONCLUSIONS 

The results of the CSt-1[ sea-ice model in a climate si I11U­

la ti on show that sea ice res po nds app ro pri a tely to the 
modeled cl imate, but the coupled system produces some un­
rea li stic wind rorcing a nd ice motion. The simulati on or sea 

ice is more rea li stic in the Anta rctic than in the Arctic, in 

pa rt because Antarcti c sea ice is more di ve rgent a nd easier 
to model. T he pattern or wind stress [rom the a tmospheri c 
model prod uces persistent conve rge nce of ice in the C hukchi 
Sea. In additi on, th e numerica l so lution of' th e ca\'ita ting 
fluid ice dyna mics was found to a llow excess ive pressure 

riclg ing uncler this conve rgent pa ttern. This aspec t or the ca­

vit a ting-fluid model has not been documented pl"C\'iously, 
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presum abl y since ea rlier m odel s used observed wind forcing 
that sen TS to dri ve g reater ice export through Fra m Stra it. 
I mprovements to the cavita ti ng-fluid solution to rI i mi nate 

the excess converge nce or ice a re being im·esti gated. 
Coupled a tmosphere-ocea n- ice model simul a ti ons in 

genera l a re affected by model initi a li zati on, spin-up a nd 
model limitations that lead to climate drift. The sea-ice 
model, with the limita ti ons di sc ussed herein, reproduces 
some aspects of the obseryed pola r sea ice, a nd prov ides the 

feed backs betwee n ice, a tmosphere a nd ocea n tha t a re 
importa nt for stud ying the g loba l clim ate. 
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