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Abstract

We present a new valuation formula for a generic, multi-period binary option in a
multi-asset Black–Scholes economy. The payoff of this so-called M-binary is the most
general possible, subject to the condition that a simple analytic expression exists for
the present value. Portfolios of M-binaries can be used to statically replicate many
European exotics for which there exist closed-form Black–Scholes prices.
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1. Introduction

Many European style exotic options have payoffs which can be represented as
portfolios of simpler contracts. These simpler contracts are often other exotic options
called binary or digital options. A binary option is generally one whose payoff is
determined by an exercise condition. If the exercise condition is satisfied at one or
possibly more future dates, the binary pays out a predetermined amount dependent on
the terms of the contract. If the exercise condition is not satisfied, the binary expires
worthless.

As a simple example, consider a standard European call option of strike price k and
expiry date T . The payoff CT (x)= (x − k)+ = (x − k)I(x > k) can be viewed as a
portfolio of: long one asset binary with T payoff AT (x)= xI(x > k), and short k bond
binaries each with T payoff BT (x)= I(x > k). The indicator I(x > k) is the exercise
condition for both these binaries. This example obviously involves just a single asset
and a single expiry date.
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We present in this paper a valuation formula for the most general multi-asset,
multi-period binary option, which has an analytic expression in the Black–Scholes
framework. This binary option has a payoff which is any product of arbitrary powers
of the asset prices at any of multiple monitoring dates. This payoff is conditional on
a wide set of exercise scenarios which may involve similar products. We refer to this
generic binary option as an M-binary.

Examples of European style exotic options which are M-binary decomposable
include: multi-asset, single-period asset and bond (or cash) digitals; single-asset,
multi-period asset and bond (or cash) digitals; power (or turbo) options; compound
options; chooser options; reset options with multiple strike and date resets; fixed period
shout options; fixed strike, discrete geometric mean Asian options; floating strike,
discrete geometric mean Asian options; multi-asset turbo options (options with power-
law payoffs); discretely monitored barrier options; discretely monitored lookback
options; best and worst rainbow options; options on the maximum/minimum of
multiple assets; exchange and sequential exchange options; outperformance rainbow
options; compound options on the M-best (or worst) of N -risky assets; ratchets and
cliquets; balloon options; gaps and supershares; cylinder options; capped options;
range options (for example, Everest and Kilimanjaro options); Napoleon options.

As can be seen, the M-binary is the key building block for a very large selection of
exotic options. To price a given exotic option, the main effort required is to decompose
the exotic option payoff into the replicating portfolio of M-binaries and then it only
remains to identify the associated M-binary parameters.

If we utilize the reflection principle for Brownian motion, described as the “method
of images” in [1] and recently extended to multivariate settings in [9], this list can
be enlarged even further to include a whole family of barrier, ladder and lookback
options and other exotic extensions. We are not the first to decompose exotic options
into portfolios of binary options. Rubinstein and Reiner [8], Heynen and Kat [4] and
Ingersoll [7] explore various aspects of the same concept. What we present here is a
new formula for a generic binary option which is the most general possible, subject
to the condition that it has a tractable, analytic representation in the Black–Scholes
framework. Consequently, the formula is of little help when pricing options for which
no closed-form valuation exists, such as additive basket options, or options whose
payoff does not involve powers of assets or products of such powers.

2. The M-binary payoff

Due to the multivariate nature of the M-binary we shall price in this paper, it is
helpful to adopt a vector and matrix notation. Additionally, we find it convenient to
use the following (nonstandard) convention.

DEFINITION 2.1. For any vector v and matrix M such that Mv is defined, make use
of the shorthand

vM
≡ exp(M log v),

https://doi.org/10.1017/S1446181109000285 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000285


[3] M-binaries in a Black–Scholes economy 477

where log v= (log v1, log v2, . . . )
′ denotes componentwise function evaluation, as

does exp v, and v′ denotes the transpose of v.

We are now in a position to introduce a formal definition of an M-binary. The option
involves a somewhat general payoff and, as a consequence, a number of parameters
that require explanation. Rather than appear to define these parameters “out of the
blue”, we prefer to state the M-binary’s expiry payoff and then discuss the meaning of
the parameters.

DEFINITION 2.2. An N -asset, M-period multi-binary with parameters {α, a, S, A} is
a binary option with expiry T payoff of the form

VT (X)= Xα Im(SXA > Sa). (2.1)

The meanings of the parameters {α, a, S, A}, the price vector X and other notational
issues are discussed in the following remarks.

REMARK 1.

(1) The payoff depends on at least one of the asset prices X i (i = 1, 2, . . . , N ) at
each of the monitoring times Tk (k = 1, 2, . . . , M), assumed to satisfy T1 <

T2 < · · ·< TM ≤ T . Note that T is the payout date of the option and need not
coincide with the last monitoring date TM . We shall be interested in pricing the
M-binary for all times t before T1, the first monitoring date.
X is the smallest vector of asset prices at different monitoring times required to
completely determine the payoff of the option. In particular, X= X(ik) = X i (Tk)

refers to asset price X i at monitoring time Tk . We emphasize that it is not
required that every asset X i at every time Tk be present in X, only those X i (Tk)

that directly determine the option’s payoff.
If we let n be the dimension of X, then it should be clear that N ≤ n ≤
N M , where the minimum value obtains if each asset price occurs at only one
monitoring time, and the maximum value obtains if each asset occurs at all M
monitoring times. We refer to X as the payoff vector for the M-binary and n as
the payoff dimension.

(2) The actual payoff at time T (if nonzero) is the scalar Xα , which is our shorthand
notation for the product of powers:

Xα = Xα1
1 Xα2

2 · · · X
αn
n .

Thus, α is a row vector of indices and has the same length as X. If a component
X(ik) does not appear in the payoff, then we simply set the corresponding index
α(ik) = 0. In the extreme case when the payoff is 1 dollar (that is, a bond binary),
then α(ik) = 0 for all components. If the payoff is the price X(ik) of a single
asset i at time Tk , then we set α(ik) = 1 and all other components of α equal
to zero. In this way, we can construct very general payoffs for our M-binary
exotic option.
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(3) The symbol Im in (2.1) is our notation for an m-dimensional indicator
function, and gives the exercise condition for the M-binary. It is defined for
any m-dimensional vectors, Y and a, by

Im(Y> a)= I(Y1 > a1)I(Y2 > a2) · · · I(Ym > am).

That is, Im is a product of m one-dimensional indicator functions. The matrix S
in (2.1) is an m-dimensional diagonal matrix whose diagonal entries are either
+1 or −1. If Si i =+1, then the corresponding indicator is I(Yi > ai ), while
if Si i =−1, then it is I(−Yi >−ai ), or equivalently, I(Yi < ai ). The matrix S
therefore determines the direction of the inequalities in the multiple exercise
conditions. We call a the exercise price vector for the M-binary.

(4) The most interesting part of the M-binary payoff function is the term XA. Here,
A is an (m × n) exercise condition matrix. Each row of A contains the indices
to be applied to X for each of the m indicator functions implied by Im . Hence

row j of A gives rise to the indicator function I(X A j1
1 X

A j2
2 · · · X

A jn
n > a j ).

Different choices of the matrix A allow a considerable degree of flexibility in
the kinds of exercise conditions that can be applied. For example, if A = In ,
the n-dimensional identity matrix, then the exercise condition reduces to the
simple expression

In(X> a)= I(X1 > a1)I(X2 > a2) · · · I(Xn > an).

On the other hand, if A = (1/n)1n is a row vector with all components equal to
1/n, then m = 1 and

Im(XA > a)= I(Gn > a),

where Gn = (X1 X2 · · · Xn)
1/n is the geometric mean of the n asset prices

X1, X2, . . . , Xn .
Since it is always possible to express an exercise condition of dimension m > n
as a combination of exercise conditions each with dimension not greater than n,
we can, without loss of generality, assume m ≤ n.

As an example of the utility of the M-binary, we show how to choose the matrix A
so that we can price exotic options whose payoffs depend on the maximum or
minimum of an observed set of option prices and a given amount of cash k.

PROPOSITION 2.3. Let A be an (n × n) matrix and a an n-dimensional vector with
elements defined by

Ai j =


1 if j = p

−1 if i = j 6= p

0 otherwise

and ai =

{
k if i = p

1 if i 6= p
, (2.2)

where p is some integer in the range 1≤ p ≤ n and k is a positive constant. The
exercise condition In(sXA > sa) is satisfied for s = 1 if max(X)= X p > k or for
s =−1 if min(X)= X p < k.
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Now consider the M-binary portfolio with expiry payoff

Qs(X, T ; k)=
n∑

p=1

X pIn(sXA > sa)+ kIn(sX< sk1n),

where (A, a) are defined as in (2.2) and their implicit dependence on p is understood.
This portfolio pays the best (if s = 1) or worst (if s =−1) of n given assets and k
units of cash; that is, max(X, k) and min(X, k), respectively. Calls and puts on the
maximum and minimum of several assets can then be obtained using the identities
[max(X)− k]+ =max(X, k)− k and [k −min(X)]+ = k −min(X, k).

If the option payoff depends on only the maximum or minimum asset price and not
on the given cash amount k, then (2.2) should be modified by omitting the pth row
of A and the pth component of a. We omit the proof of Proposition 2.3, which is
relatively straightforward.

3. The M-binary present value

We adopt the Black–Scholes framework extended to multiple assets, that is, the N
assets are assumed to follow correlated geometric Brownian motions. In particular,
let r denote the risk-free interest rate, qi the dividend yield of asset i and σi its
volatility. Then the risk-neutral price process of the i th asset, X i , satisfies the
stochastic differential equation

d X i

X i
= (r − qi ) ds + σi d Bi , X i (t)= xi , (3.1)

where Bi and B j are correlated Brownian motions with instantaneous correlation
coefficient ρi j . With these assumptions, we are now ready to state the main result
of the paper.

THEOREM 3.1. Let Vt (x) denote the time t present value of an M-binary with expiry
payoff (2.1). In the Black–Scholes economy described above, the arbitrage-free
present value of the M-binary is given by the expression

Vt (x)= xαeθ Nm(Sd, SC S), (3.2)

where

θ =−rτ + α′µ+
1
2
α′0α, d= D−1[log(xA/a)+ A(µ+ 0α)

]
,

C = D−1(A0A′)D−1, 0 =6R6′,

R = ρi j
min(τk, τl)
√
τkτl

, D =
√

diag(A0A′),

µ=

(
r − qi −

1
2
σ 2

i

)
τk, 6 = diag(σi

√
τk), τk = Tk − t, τ = T − t.

(3.3)
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REMARK 2.

(1) The present value Vt (x) is valid for all times satisfying t < T1, the minimum
monitoring time. The term x on the right-hand side of (3.2) denotes the present
value of the payoff vector X= X(ik). Clearly, all the components x(ik) are equal
to xi regardless of the time index k.

(2) For a zero-mean, unit-variance Gaussian random vector Z with correlation
matrix R, the function Nm(d, R)≡ E{Im(Z< d)} denotes the multivariate
normal cumulative distribution function.

(3) The parameters θ , d, C , D, 0, µ and 6 all depend on the monitoring times Tk .
C is an (m × m) correlation matrix, 0 is an (n × n) covariance matrix, D is
a positive definite (m × m) diagonal matrix which normalizes the covariance
matrix A0A′ to a correlation matrix.

(4) While the formula is presented for constant parameters {qi , σi , ρi j }, there is no
difficulty in extending it to the deterministic time-varying parameter case.

4. Proof of main theorem

Theorem 3.1 is a consequence of four fundamental results. These are
straightforward to prove (or at least well known), hence they are stated without proof.
Then follows the proof of our main result, sans integrals and any explicit change of
numeraire.

In a complete, arbitrage-free, multi-asset market the discounted price of any
derivative contract is a martingale with respect to the risk-neutral measure. This leads
to the following well-known pricing formula, also called the first fundamental theorem
on asset pricing (see [3]).

LEMMA 4.1. For any derivative contract with expiry value VT (X), the present, time t,
value, Vt (x), is given by

Vt (x)= e−r(T−t)E{VT (X) | X(t)= x},

where the expectation is taken with respect to the risk-neutral measure.

LEMMA 4.2. Given the price dynamics (3.1) for the N assets, the distribution of the
log of the payoff vector X= X(ik) can be written as

log X d
= log x+ µ+6Z,

where Z= Z(ik) is a zero-mean, unit-variance Gaussian random vector with
correlation matrix R, and µ, 6 and R are given in (3.3).

LEMMA 4.3. Let c be a constant vector, F(·) an arbitrary measurable function of n
variables, and Z a zero-mean, unit-variance Gaussian random vector with correlation
matrix R. Then

E{ec′Z F(Z)} = e(1/2)c
′Rc E{F(Z+ Rc)}.

We like to call the above result the multivariate Gaussian shift theorem.
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LEMMA 4.4. Let B be an (m × n) matrix of rank m ≤ n, b a vector of length m and Z
a zero-mean, unit-variance Gaussian random vector with correlation matrix R. Then

E{Im(BZ< b)} =Nm
(
D−1b; D−1(B RB ′)D−1),

where D =
√

diag(B RB ′).

We now proceed to tie the above lemmas together in a proof of Theorem 3.1. Firstly,
let Z= Z(ik) be a zero-mean, unit-variance Gaussian random vector with correlation
matrix R given by (3.3). Then, by Lemma 4.2,

Xα d
= xα exp{α′µ+ c′Z}, c=6α,

and the exercise condition SXA > Sa is equivalent to

S A(log x+ µ+6Z) > S log a.

Rearranging this last equation, we arrive at Im(SXA > Sa)= Im(BZ>−Su), where
B = S A6 and u= log(xA/a)+ Aµ. Hence from Lemmas 4.1 and 4.3 we obtain

Vt (x) = e−rτ E{XαIm(SXA > Sa)}

= xαe−rτ+α′µ E{ec′ZIm(BZ>−Su)}
= xαeθ E{Im(B(Z+ R6α) >−Su)}
= xαeθ E{Im(BZ>−SDd)} = xαeθ E{Im(BZ< SDd)}.

Observe that Su+ B R6α = SDd where D and d are defined by (3.3). The last
line follows from the symmetry of zero-mean Gaussian vectors, that is, E{F(Z)} =
E{F(−Z)} for any measurable function F . Theorem 3.1 now follows from Lemma 4.4
with B = S A6. 2

REMARK 3. It is clear from the above proof that a formula of the form (3.2) exists for
any price dynamics so long as the log-prices are normally distributed. In particular,
this includes the case of deterministic, time-varying parameters {r, qi , σi , ρi j }. While
this extra generality adds no burden to the proof of the result, it adds significantly to the
already intimidating expanse of notation. It is for this reason the details are omitted.

5. An ESO example

The main result of this paper is captured by (3.2) and (3.3). While these equations
have wide applicability across many areas of financial asset pricing, we present here
one example as an illustration of the method.

Our example is a rather simple model of an executive stock option (ESO) which
has been used in practice to value corporate remuneration packages. At time t = 0, an
executive is granted at-the-money (ATM) stock (call) options in the company, with a
strike price set at the current share price X0 = k. These options vest at time T1 subject
to a performance test, and if successfully passed must be exercised on their expiry
date at time T2, where 0< T1 < T2. The performance criterion is that the share
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price X1 = X (T1) must exceed a benchmark index Y1 = Y (T1) at time T1. The index
can be a general market index such as the ASX 200 index on the Australian stock
exchange, or the S&P 500 index on the New York stock exchange. More commonly,
it will be a customized index related to the company business. If the options vest, that
is X1 > Y1, then the executive receives the call options and is required to hold them
to their expiration date at time T2. In reality, executives may exercise the options at
any time post the vesting date T1, which technically makes these options American
(or Bermudan) rather than European. However, it is also well known (for example, see
Hull and White [6]) that executives do not exercise their options optimally, and often
exercise when the options are sufficiently deep in-the-money.

It is assumed that the share price X t and the performance index Yt follow
geometrical Brownian motions with volatilities σ1 and σ2 respectively and with
correlation coefficient ρ. For simplicity, we shall also assume that no dividends are
paid either for the company stock or the index. We denote by x, y the current spot
prices of the stock and index.

Under the above conditions, the European version of the ESO has payoff

V (X, T )= (X2 − k)+I(X1>Y1),

which is easily replicated as a portfolio of two-asset, two-period M-binaries as follows:

V (X, T )= V1(X, T )− kV2(X, T ),

where

V1(X, T )= X2I(X1>Y1)I(X2>k)= X2I(X1Y−1
1 >1)I(X2>k),

V2(X, T )= I(X1>Y1)I(X2>k)= I(X1Y−1
1 >1)I(X2>k).

The parameters for the M-binary V1(X, T ) are:

X=

X1
Y1
X2

 , x=

x
y
x

 , α =

0
0
1

 , a=
(

1
k

)
,

S =

(
1 0
0 1

)
, A =

(
1 −1 0
0 0 1

)
.

Furthermore, with τ1 = T1 − t and τ2 = T2 − t , we obtain

6 =

σ1
√
τ1 0 0

0 σ2
√
τ1 0

0 0 σ1
√
τ2

 , R =

 1 ρ τ12
ρ 1 ρτ12
τ12 ρτ12 1

 ; τ12 =

√
τ1

τ2
,

0 =6R6′ =

 σ 2
1 τ1 ρσ1σ2τ1 σ 2

1 τ1

ρσ1σ2τ1 σ 2
2 τ1 ρσ1σ2τ1

σ 2
1 τ1 ρσ1σ2τ1 σ 2

1 τ2

 , µ=


(

r − 1
2σ

2
1

)
τ1(

r − 1
2σ

2
2

)
τ1(

r − 1
2σ

2
1

)
τ2

 ,
θ =−rτ2 +

(
r −

1
2
σ 2

1

)
τ2 +

1
2
σ 2

1 τ2 = 0.
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Next we compute

A0A′ =

(
σ 2τ1 (σ 2

1 − ρσ1σ2)τ1

(σ 2
1 − ρσ1σ2)τ1 σ 2

1 τ2

)
where σ 2

= σ 2
1 + σ

2
2 − 2ρσ1σ2.

Then

D =

(
σ
√
τ1 0

0 σ1
√
τ2

)
, C =

(
1 ρ∗

ρ∗ 1

)
, ρ∗ =

(
σ1 − ρσ2

σ

)√
τ1

τ2
,

xα = x0 y0x1
= x, Aµ=

(
1
2 (σ

2
2 − σ

2
1 )τ1

(r − 1
2σ

2
1 )τ2

)
, A0α =

(
(σ 2

1 − ρσ1σ2)τ1

σ 2
1 τ2

)
.

Finally, we compute

d =
(
σ
√
τ1 0

0 σ1
√
τ2

)−1
[

log
(

x/y
x/k

)
+

(
1
2 (σ

2
2 − σ

2
1 )τ1

(r − 1
2σ

2
1 )τ2

)
+

(
(σ 2

1 − ρσ1σ2)τ1

σ 2
1 τ2

)]

=


{

log(x/y)+ 1
2σ

2τ1

} /
σ
√
τ1{

log(x/k)+ (r + 1
2σ

2
1 )τ2

} /
σ1
√
τ2

= (d1
d2

)
,

say. With this notation, we obtain the result

V1(x, y, t)= x N2

{(
d1
d2

)
,

(
1 ρ∗

ρ∗ 1

)}
= x N (d1, d2; ρ

∗). (5.1)

For V2(X, t), the only change compared to V1(X, T ) is α = [0, 0, 0]′. This leads to

θ =−rτ2, xα = x0 y0x0
= 1,

d′ =


{

log(x/y)+ 1
2 (σ

2
2 − σ

2
1 )τ1

} /
σ
√
τ1{

log(x/k)+ (r − 1
2σ

2
1 )τ2

} /
σ1
√
τ2

= (d ′1
d ′2

)
,

say. Note that d ′1 = d1 − ρ
∗σ1
√
τ2 and d ′2 = d2 − σ1

√
τ2. Hence, we obtain

V2(x, y, t)= e−rτ2 N (d ′1, d ′2; ρ
∗). (5.2)

Putting the two expressions (5.1) and (5.2) together, we get the ESO’s present value as

V (x, y, t)= x N (d1, d2; ρ
∗)− ke−rτ2 N (d ′1, d ′2; ρ

∗). (5.3)

Expression (5.3) has the same Black–Scholes structure as for a standard European
call option, with the usual univariate normals being replaced by bivariate normals.
Furthermore, the correlation coefficient of the bivariate normals is not ρ, as might
be expected, but rather the more complicated ρ∗. It is clear from this rather simple
example that multi-asset, multi-period exotics can be very complicated indeed. Our
formula however, allows one to price such exotics in a systematic way, using only
elementary matrix operations.
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6. Conclusion

The present value of the M-binary is the main result of the paper. The underlying
asset price dynamics are assumed to be multivariate geometric Brownian motion which
extends the traditional univariate Black–Scholes model. The price, for all times prior
to the first monitoring date, is guaranteed to be arbitrage-free. The corresponding
hedging parameters can be determined from the vector h= grad Vt (x), while other
“greeks” can also be obtained by partial differentiation of (3.2) with respect to the
various parameters.

The formula only applies to European style derivatives and underlying asset
dynamics with constant parameters, although it is a straightforward matter to extend
it to include deterministic time-varying interest rates, dividend yields, volatilities and
correlation coefficients. If the underlying asset model requires stochastic volatilities,
then there is no escaping the use of numerical methods such as multivariate Monte
Carlo schemes. The analytic formula presented in this paper could then be used as an
ideal control variate to stabilize the variance of the estimate.

It is interesting to observe that the price of the M-binary is expressed in terms of
a multivariate Gaussian distribution function whose order m is determined solely by
the dimension of the exercise condition and is independent of the number of assets
and the number of monitoring periods. Thus, even if the payoff is multivariate, but the
exercise condition is only one-dimensional, the price will only depend on univariate
Gaussians.

It is well known that multivariate Gaussians can present numerical problems if the
order is too high. The univariate case (m = 1) is linearly related to the error function
and presents no difficulty. An efficient algorithm for the bivariate case (m = 2)
due to Drezner was popularized in the mathematical finance literature by Hull [5].
Algorithms for higher-order Gaussians have been published by Genz [2].

The formulae in (3.2) reduce in their complexity for some classes of the input
parameters {α, a, S, A}. We discuss two of these here.

(1) We have already noted that the exercise condition simplifies if the matrix A is an
identity matrix. Other simplifications for the case A = In are: matrix D reduces
D =6 = σi

√
τk so that the correlation matrix C is just R, the joint asset–time

correlation matrix of the Gaussian vector Z.
(2) If the payoff is one unit of cash, then all the elements of α are zero and the term

eθ reduces to the usual discount factor e−rτ . On the other hand, if the payoff is
the value of asset i at time T , then this factor reduces to eθ = e−qi τ , as might be
expected. Both these cases are illustrated in the ESO example of Section 5.
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