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Abstract

The holonomic rank of the A-hypergeometric system MA(β) is the degree of the toric
ideal IA for generic parameters; in general, this is only a lower bound. To the semigroup
ring of A we attach the ranking arrangement and use this algebraic invariant and
the exceptional arrangement of non-generic parameters to construct a combinatorial
formula for the rank jump of MA(β). As consequences, we obtain a refinement of the
stratification of the exceptional arrangement by the rank of MA(β) and show that
the Zariski closure of each of its strata is a union of translates of linear subspaces
of the parameter space. These results hold for generalized A-hypergeometric systems
as well, where the semigroup ring of A is replaced by a non-trivial weakly toric module
M ⊆ C[ZA]. We also provide a direct proof of the main result in [M. Saito, Isomorphism
classes of A-hypergeometric systems, Compositio Math. 128 (2001), 323–338] regarding
the isomorphism classes of MA(β).
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1. Introduction

An A-hypergeometric system MA(β) is a D-module determined by an integral matrix A and
a complex parameter vector β ∈ Cd. These systems are also known as GKZ-systems, as they
were introduced in the late 1980s by Gelfand et al. [GGZ87, GZK89]. Their solutions occur
naturally in mathematics and physics, including the study of roots of polynomials, Picard–Fuchs
equations for the variation of Hodge structure of Calabi–Yau toric hypersurfaces, and generating
functions for intersection numbers on moduli spaces of curves, see [BvS95, HLY96, Oko02, Stu00].

The (holonomic) rank of MA(β) coincides with the dimension of its solution space at a non-
singular point. In this article, we provide a combinatorial formula for the rank of MA(β) in terms
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The rank of a hypergeometric system

of certain lattice translates determined by A and β. For a fixed matrix A, this computation yields
a geometric stratification of the parameter space Cd that refines its stratification by the rank of
MA(β).

Notation 1.1. Let A= [a1a2 · · · an] be an integer (d× n)-matrix with integral column span
ZA= Zd. Assume further that A is pointed, meaning that the origin is the only linear subspace
of the cone R>0A= {

∑n
i=1 γiai | γi ∈ R>0}.

A subset F of the column set of A is called a face of A, denoted F �A, if R>0F is a face of
the cone R>0A.

Let x= x1, . . . , xn be variables and ∂ = ∂1, . . . , ∂n their associated partial differentiation
operators. In the polynomial ring R= C[∂], let

IA = 〈∂u − ∂v |Au=Av, u, v ∈ Nn〉 ⊆R

denote the toric ideal associated to A, and let SA =R/IA be its quotient ring. Note that SA is
isomorphic to the semigroup ring of A, which is

SA ∼= C[NA] :=
⊕
a∈NA

C · ta (1.1)

with multiplication given by semigroup addition of exponents. The Weyl algebra

D = C〈x, ∂ | [∂i, xj ] = δij , [xi, xj ] = 0 = [∂i, ∂j ]〉

is the ring of C-linear differential operators on C[x].

Definition 1.2. The A-hypergeometric system with parameter β ∈ Cd is the left D-module

MA(β) =D/D · (IA, {Ei − βi}di=1),

where Ei − βi =
∑n

j=1 aijxj∂j − βi are Euler operators associated to A.

The rank of a left D-module M is

rankM = dimC(x) C(x)⊗C[x] M.

The rank of a holonomic D-module is finite and equal to the dimension of its solution space of
germs of holomorphic functions at a generic non-singular point [Kas83].

1.1 The exceptional arrangement of a hypergeometric system
In [GZK89], Gelfand et al. showed that when SA is Cohen–Macaulay and standard Z-graded, the
A-hypergeometric system MA(β) is holonomic of rank vol(A) for all parameters β, where vol(A)
is d! times the Euclidean volume of the convex hull of A and the origin. Adolphson established
further that MA(β) is holonomic for all choices of A and β and that the holonomic rank of MA(β)
is generically given by vol(A) [Ado94]. However, an example found by Sturmfels and Takayama
showed that equality need not hold in general [ST98] (see also [SST00]). At the same time,
Cattani et al. produced an infinite family of such examples through a complete investigation of
the rank of MA(β) when IA defines a projective monomial curve [CDD99].

The relationship between vol(A) and the rank ofMA(β) was made precise by Matusevich et al.
who used Euler–Koszul homology to study the holonomic generalized A-hypergeometric system
H0(M, β) associated to a toric module M (see Definition 2.3). The Euler–Koszul homology
H•(M, β) of M with respect to β is the homology of a twisted Koszul complex on D ⊗RM given
by the sequence E − β. This includes the A-hypergeometric system MA(β) =H0(SA, β) as the
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special case that M = SA. As in this special case, and for the purposes of this article, suppose
that the generic rank of H0(M,−) is vol(A).

The matrix A induces a natural Zd-grading on R; the quasidegree set of a finitely generated
Zd-graded R-module N is defined to be the Zariski closure in Cd of the set of vectors α for
which the graded piece Nα is non-zero. In [MMW05], an explicit description of the exceptional
arrangement

EA(M) = {β ∈ Cd | rankH0(M, β) 6= vol(A)}
associated to M is given in terms of the quasidegrees of certain Ext modules involving M
(see (4.2)). This description shows that EA(M) is a subspace arrangement in Cd given by
translates of linear subspaces that are generated by the faces of the cone R>0A, and that
EA(M) is empty exactly when M 6= 0 is a maximal Cohen–Macaulay SA-module. It is also shown
in [MMW05] that the rank of H•(M, β) is upper semi-continuous as a function of β. Thus the
exceptional arrangement EA(M) is the nested union over i> 0 of the Zariski closed sets

E iA(M) = {β ∈ Cd | rankH0(M, β)− vol(A)> i}.

In particular, the rank of H0(M, β) induces a stratification of EA(M), which we call its rank
stratification.

1.2 A homological study of rank jumps

The present article is a study of the rank stratification of EA(M) when M ⊆ SA[∂−1
A ] is Zd-

graded such that the degree set M= deg(M) of M is a non-trivial NA-monoid. In particular,
M is weakly toric (see Definition 2.5). If M= NA, then M is the semigroup ring SA from (1.1)
and H0(M, β) =MA(β) is the A-hypergeometric system at β. The module M could also be a
localization of SA along a subset of faces of A. As M will be fixed throughout this article, we
will often not indicate dependence on M in the notation.

Examination of the long exact sequence in Euler–Koszul homology induced by the short exact
sequence of weakly toric modules

0→M → SA[∂−1
A ]→Q→ 0

reveals that the rank jump of M at β,

j(β) = rankH0(M, β)− vol(A),

can be calculated in terms of Q by

j(β) = rankH1(Q, β)− rankH0(Q, β). (1.2)

We define the ranking arrangement RA(M) of M to be the quasidegrees of Q. Vanishing
properties of Euler–Koszul homology imply that the exceptional arrangement EA(M) is contained
in the ranking arrangement RA(M). We show in Theorem 4.3 that RA(M) is the union of EA(M)
and an explicit collection of hyperplanes.

For a fixed β ∈ EA(M), we then proceed to compute j(β). In § 5, we combinatorially construct
a finitely generated Zd-graded ranking toric module P β with H•(Q, β)∼=H•(P β, β). Since j(β) is
determined by the Euler–Koszul homology of Q by (1.2), we see that P β contains the information
essential to computing the rank jump j(β). To outline the construction of the module P β, let

F(β) = {F �A | β + CF ⊆RA(M)}
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be the polyhedral complex of faces of A determined by the components of the ranking
arrangement RA(M) that contain β. We call the collection of integral points

Eβ = Zd ∩
⋃

F∈F(β)

(β + CF )\(M+ ZF )

the ranking lattices Eβ of M at β. This set is a union of translates of lattices generated by faces
of A, where the vectors in these lattice translates of ZF in Eβ are precisely the degrees of Q
which cause β + CF to lie in the ranking arrangement. Since it contains full lattice translates, Eβ
cannot be the degree set of a finitely generated SA-module. Thus, to complete the construction
of the degree set Pβ of P β, we intersect Eβ with an appropriate half space (see Definition 5.6).
To give a flavor of our approach for β ∈ Rd, this is equivalent to intersecting Eβ with CA(β) =
Zd ∩ [β + R>0A]. By setting up the proper module structure, Pβ = CA(β) ∩ Eβ gives the Zd-
graded degree set of the desired toric module P β with j(β) = rankH1(P β, β)− rankH0(P β, β).
After translating the computation of the rank jump j(β) to P β, we obtain a generalization of
the formula given by Okuyama in the case d= 3 [Oku06].

Theorem 1.3. The rank jump j(β) of M at β can be computed from the combinatorics of the
ranking lattices Eβ of M at β.

In particular, the rank of the hypergeometric system is the same at parameters which share
the same ranking lattices. The proof of Theorem 1.3 can be found in § 6.4 as a special case of
our main result, Theorem 6.6.

1.3 The ranking slab stratification of the exceptional arrangement
Let X and Y be subspace arrangements in Cd. We say that a stratification S of X respects Y
if, for each irreducible component Z of Y and each stratum S ∈ S, either S ∩ Z =∅ or S ⊆ Z.
A ranking slab of M is a stratum in the coarsest stratification of EA(M) that respects the
arrangements RA(M) and the negatives of the quasidegrees of each of the Ext modules that
determine EA(M) (see Definition 4.7).

Proposition 5.4 states that the parameters β, β′ ∈ Cd belong to the same ranking slab of M
exactly when their ranking lattices coincide, that is, Eβ = Eβ′ . Combining this with Theorem 1.3,
we see that the rank of H0(M,−) is constant on each ranking slab.

Corollary 1.4. The function j(−) is constant on each ranking slab. In particular, the strati-
fication of the exceptional arrangement EA(M) by ranking slabs refines its rank stratification.

Hence, like EA(M), each set E iA(M) is a union of translated linear subspaces of Cd which
are generated by faces of R>0A. In order for the ranking slab stratification of EA(M) to refine
its rank stratification, it must respect each of the arrangements appearing in its definition;
this can be seen from Examples 4.5, 6.24, and 6.25. In particular, as RA(M)) EA(M), the
exceptional arrangement EA(M) does not generally contain enough information to determine its
rank stratification.

1.4 A connection to the isomorphism classes of hypergeometric systems

When M = SA, the ranking lattices Eβ are directly related to the combinatorial sets Eτ (β)
defined by Saito, which determine the isomorphism classes of MA(β). In [Sai01, ST01], various
b-functions arising from an analysis of the symmetry algebra of A-hypergeometric systems are
used to link these isomorphism classes to the sets Eτ (β). We conclude this paper with a shorter
proof, replacing the use of b-functions with Euler–Koszul homology.
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1.5 Outline
The following is a brief outline of this article. In § 2, we summarize definitions and results
on weakly toric modules and Euler–Koszul homology, following [MMW05, SW09]. Section 3 is
a study of the structure of the Euler–Koszul complex of maximal Cohen–Macaulay toric face
modules. The relationship between the exceptional and ranking arrangements of M is made
precise in § 4. In § 5, we define the class of ranking toric modules, which play a pivotal role
in calculating the rank jump j(β). Section 6 contains our main theorem, Theorem 6.6, which
results in the computation of j(β) for a fixed parameter β. We close with a discussion on the
isomorphism classes of A-hypergeometric systems in § 7.

2. The language of Euler–Koszul homology

In this section, we summarize definitions found in the literature and set notation. Most important
are the definitions of a weakly toric module [SW09] and Euler–Koszul homology [MMW05].

Let a1, a2, . . . , an denote the columns of A. For a face F �A, let F c denote the complement
of a face F in the column set of A. If F is any subset of the columns of A, the codimension of
F is codim(F ) := codimCd(CF ), the codimension of the C-vector space generated by F . The
dimension of F is dim(F ) = d− codimC(CF ).

A face F of A is a facet of A if dim(F ) = d− 1. Recall that the primitive integral support
function of a facet F �A is the unique linear functional pF : Cd→ C such that:

(i) pF (ZA) = Z;

(ii) pF (ai)> 0 for all j = 1, . . . , n; and

(iii) pF (ai) = 0 exactly when ai ∈ F .

The volume of a face F , denoted by vol(F ), is the integer dim(F )! times the Euclidean volume
in ZF ⊗Z R of the convex hull of F and the origin.

Definition 2.1. Let NF = {
∑

ai∈F γiai | γi ∈ N} be the semigroup generated by the face F and,
as in (1.1),

SF = C[NF ]

is the corresponding semigroup ring, called a face ring of A. Let xF = {xi | ai ∈ F} and ∂F =
{∂i | ai ∈ F}. Define

RF = C[∂F ]

to be the polynomial ring in ∂F and

DF = C〈xF , ∂F | [xi, ∂j ] = δij , [xi, xj ] = 0 = [∂i, ∂j ]〉

to be the Weyl algebra associated to F . Note that

SF ∼=RF /(IF + 〈∂F c〉) with IF = ker(RF → SF ) and F c =A\F.

Definition 2.2. Let t= t1, . . . , td be variables. For a face F �A, we say that a subset S⊆ Zd
is an NF -module if S+ NF ⊆ S. Further, we call an NF -module S an NF -monoid if it is closed
under addition, that is, for all s, s′ ∈ S, s+ s′ ∈ S. Given an NF -module S, define the SF -module
C{S}=

⊕
s∈S C · ts as a C-vector space with SF -action given by ∂i · ts = ts+ai . Further, C{S}

is equipped with a multiplicative structure given by ts · ts′ = ts+s
′

for s, s′ ∈ S and extended
C-linearly. By definition, NF is an NF -monoid and SF ∼= C{NF} as rings.
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Define a Zd-grading on RF ⊆DF by setting

deg(∂i) = ai and deg(xi) =−ai.

Then C{S} is naturally a Zd-graded SF -module by setting deg(ts) = s.

The saturation of F in ZF is the semigroup ÑF = R>0F ∩ ZF . The saturation, or
normalization, of SF is the semigroup ring of the saturation of F in ZF , which is given by
S̃F = C{ÑF} as a Zd-graded SF -module. Note that S̃F is a Cohen–Macaulay SF -module [Hoc72].

If N is a Zd-graded R-module and v ∈ Zd, the degree set of N , denoted deg(N), is the set
of all v ∈ Zd such that Nv 6= 0. Let N(v) denote the Zd-graded module with v′-graded piece
N(v)v′ =Nv+v′ .

We now recall the definitions of toric and weakly toric modules and their quasidegree sets,
which can be found in [MMW05, Definition 4.5] and [SW09, § 5], respectively.

Definition 2.3. A Zd-graded R-module is toric if it has a filtration

0 =M0 ⊆M1 ⊆ · · · ⊆M`−1 ⊆M` =M

such that, for each i, Mi/Mi−1 is a Zd-graded translate of SFi for some face Fi �A. Notice that
toric modules are necessarily finitely generated R-modules.

Definition 2.4. If N is a finitely generated Zd-graded R-module, a vector v ∈ Cd is a
quasidegree of N , written v ∈ qdeg(N), if v lies in the Zariski closure of deg(N) under the natural
embedding Zd ↪→ Cd. Notice that if N is toric, then qdeg(N) is a finite subspace arrangement
in Cd, consisting of translated subspaces generated by faces of A, see [DMM10, Lemma 2.5].

A partially ordered set (S,6) is filtered if for each s′, s′′ ∈S there exists s ∈S with s′ 6 s
and s′′ 6 s.

Definition 2.5. We say that a Zd-graded R-module M is weakly toric if there is a filtered
partially ordered set (S,6) and a Zd-graded direct limit

φs :Ms→ lim−→
s∈S

Ms =M

where Ms is a toric R-module for each s ∈S. We then define the quasidegree set of M to be

qdeg(M) =
⋃
s∈S

qdeg(φs(Ms)),

where each qdeg(φs(Ms)) is defined by Definition 2.4.

Example 2.6. If M⊆ Zd is an NA-module, then M = C{M} is weakly toric because it is a direct
limit over b ∈M of SA(−b) under the natural A-homogeneous inclusion SA(−b)⊆ SA[∂−1

A ]∼=
C[Zd].

Example 2.7. Consider the matrix A=
[
1 1 1 1
0 1 3 4

]
with face F =

[
1
4

]
. The module SF [∂−1

F ] is weakly
toric with quasidegree set

qdeg(SF [∂−1
F ]) = CF

because it is a filtered direct limit over b ∈ ZF of SF (−b). Similarly, the module SA[∂−1
F ] is weakly

toric with qdeg(SA[∂−1
F ]) = C2. The quotient SA[∂−1

F ]/SA is also weakly toric. Its quasidegree
set consists of the point

[
1
2

]
and the union of lines in {t2 = k | k ∈ Z<0}, where (t1, t2) are the

coordinates of C2.
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We now recall the definition of the Euler–Koszul complex of a weakly toric module M with
respect to a parameter β ∈ Cd. For 16 i6 d, each Euler operator Ei − βi =

∑n
j=1 aijxj∂j − βi

determines a Zd-graded D-linear endomorphism of D ⊗RM , defined on a homogeneous y ∈
D ⊗RM by

(Ei − βi) ◦ y = (Ei − βi + degi(y))y
and extended C-linearly. This sequence E − β of commuting endomorphisms determines a Koszul
complex KA• (M, β) =K•(M, β) on the left D-module D ⊗RM , called the Euler–Koszul complex
of M with parameter β. The ith Euler–Koszul homology module of M is HAi (M, β) =Hi(M, β) =
Hi(K•(M, β)). Our object of study will be the generalized A-hypergeometric system H0(M, β)
associated to M .

The Euler–Koszul complex defines an exact functor from the category of weakly toric modules
with degree-preserving morphisms to the category of bounded complexes of Zd-graded left
D-modules with degree-preserving morphisms, so short exact sequences of weakly toric modules
yield long exact sequences of Euler–Koszul homology. Notice also that Euler–Koszul homology
behaves well under Zd-graded translations: for b ∈ Zd,

Hq(M(b), β)∼=Hq(M, β − b)(b). (2.1)

We close this section by recording two important vanishing results for Euler–Koszul homology.

Proposition 2.8. For a weakly toric module M , the following are equivalent:

(i) Hi(M, β) = 0 for all i> 0;

(ii) H0(M, β) = 0;

(iii) β /∈ qdeg(M).

Proof. See [SW09, Theorem 5.4]. 2

Theorem 2.9. Let M be a weakly toric module. Then Hi(M, β) = 0 for all i > 0 and for all
β ∈ Cd if and only if M is a maximal Cohen–Macaulay SA-module.

Proof. See [MMW05, Theorem 6.6] for the toric case. The extension to the weakly toric case can
be found in [SW09]. 2

3. Euler–Koszul homology and toric face modules

Theorem 2.9 provides a criterion for higher vanishing of Euler–Koszul homology via maximal
Cohen–Macaulay SA-modules. In this section, we provide a description of the Euler–Koszul
homology modules of maximal Cohen–Macaulay SF -modules for a face F �A and use it to
understand the images of maps between such modules.

Throughout this section, N is a toric SF -module for a face F �A. Recall the definitions of
toric, SF , DF , and RF from Definition 2.1, and let

xF c = {xi | ai ∈ F c}.

Notation 3.1. Let IF be the lexicographically first subset of {1, 2, . . . , d} of cardinality dim(F )
such that {Ei − βi}i∈IF is a set of linearly independent Euler operators onD ⊗R N . The existence
of IF follows from the fact that the matrix A has full rank. We use KF• (N, β) to denote the Euler–
Koszul complex on DF ⊗RF N given by the operators {Ei − βi}i∈IF , and set

HFi (N, β) =Hi(KF• (N, β)).
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Using the standard basis of ZA= Zd, let

ZF⊥ =
{
v ∈ Zd

∣∣∣∣ d∑
i=1

viaij = 0 ∀aj ∈ F
}
,

and let
∧• ZF⊥ denote a complex with trivial differentials. We show now that when β ∈ CF ,

K•(N, β) is quasi-isomorphic to a complex involving KF• (N, β) and
∧• ZF⊥.

Proposition 3.2. Let F �A and N be a toric SF -module. If β ∈ CF , then there is a quasi-
isomorphism of complexes

K•(N, β)'qis C[xF c ]⊗C KF• (N, β)⊗Z (
∧• ZF⊥). (3.1)

In particular, if N is maximal Cohen–Macaulay as an SF -module, there is a decomposition

H•(N, β) = C[xF c ]⊗C HF0 (N, β)⊗Z (
∧• ZF⊥). (3.2)

Under the hypotheses of Proposition 3.2,

Hi(N, β) = C[xF c ]⊗C HF0 (N, βF )(
codim(F )

i ),

for i > 0, as shown in [Oku06]. In particular,

rankHi(N, β) =
(

codim(F )
i

)
· rankH0(N, β). (3.3)

We show in Proposition 3.6 that surjections of maximal Cohen–Macaulay toric modules for
nested faces yield induced maps on Euler–Koszul homology that respect the decompositions
of (3.2). The additional information stored in

∧• ZF⊥ of (3.1) shows how images of collections
of such surjections overlap, which will be vital to our calculation of j(β) in § 6.

Proof of Proposition 3.2. Fix a matrix gF ∈GLd(Z) such that the entries of each row of gFF not
corresponding to IF are zero and the rows of A that do correspond to IF are identical in A and
gFA. Setting A′ = gFA, SA and SA′ are isomorphic rings, and the matrix gF gives a bijection
of their degree sets, sending NA to NA′. This identification makes N a ZA′-graded SF ′-module,
where F ′ = gFF , and there is a quasi-isomorphism of complexes

K•(N, β)'qis KA
′
• (N, gFβ).

Let F ′ = gFF and β′ = gFβ, and recall that A′ = gFA. By the definition of gF , β′i = 0 for
i /∈ IF because β′ ∈ CF ′. Let DA′ and RA′ denote the Weyl algebra and the polynomial ring
C[∂] with an A′-grading. Since N is an SF ′-module, 0 = ∂F ′c ⊗N ⊆DA′ ⊗RA′ N , and so there
is an isomorphism DA′ ⊗RA′ N ∼= C[xF ′c ]⊗C DF ′ ⊗RF ′ N . Hence the action of each element in
{
∑n

j=1 a
′
ijxj∂j}i/∈IF on DA′ ⊗RA′ N is 0.

If {e1, . . . , ed} denotes the standard basis of Zd = ZA′, then the set {g−1
F ei}i/∈IF generates

ZF⊥ by choice of gF . Applying the isomorphism DF ⊗RF N ∼=DF ′ ⊗RF ′ N in the reverse
direction, we obtain (3.1). Finally, if N is maximal Cohen–Macaulay as an SF -module,
HFi (N, βF ) = 0 for all i > 0 by Theorem 2.9. 2

Remark 3.3. Let δ and κF respectively denote the differentials of the Euler–Koszul complexes
KgFA• (N, gFβ) and KF• (N, β). Under the hypotheses of Proposition 3.2, if i+ j = q and
f ⊗ a⊗ b ∈ C[xF c ]⊗C KFi (N, β)⊗Z (

∧j ZF⊥), then

δ(f ⊗ a⊗ b) = f ⊗ κF (a)⊗ b
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is an element of

C[xF c ]⊗C KFi−1(N, β)⊗C (
∧j ZF⊥)⊆KA′q−1(N, β).

Example 3.4. Consider the matrix

A=

1 1 1 1
0 1 0 1
0 0 1 1

.
Set β =

[
0
0
0

]
∈ C3, and let e1, e2, e3 denote the standard basis vectors in ZA = Z3. Notice

that every face ring of A is Cohen–Macaulay because the semigroup generated by each face
of A is saturated. For the face ∅�A, we choose g∅ to be the identity matrix. The proof of
Proposition 3.2 shows that there is an isomorphism of complexes

K•(S∅, β)∼=
3⊗
i=1

(C[x] · ei
0·−−−→ C[x]),

so the Euler–Koszul homology of S∅ at β is

H•(S∅, β) = ∧•
( 3⊕
i=1

C[x] · ei
)
.

For the face F = [a1 a2] of A, (A, β) is again already in the desired form, so take gF to be the
identity matrix and write C[x]〈∂1, ∂2〉 in place of C[xF c ]⊗C DF ⊗RF SF . Then Proposition 3.2
implies that

Hq(SF , β) =


C[x]〈∂1, ∂2〉 if q = 0,
C[x]〈∂1, ∂2〉 · e3 if q = 1,
0 otherwise.

For G1 = [a1] and gG1 as the identity matrix,

Hq(SG1 , β) =


C[x]〈∂1〉 if q = 0,
C[x]〈∂1〉 · e2 ⊕ C[x]〈∂1〉 · e3 if q = 1,
C[x]〈∂1〉 · e2 ∧ e3 if q = 2,
0 otherwise.

For the face G2 = [a2], setting gG2 =
[1 0 0

1 −1 0
0 0 1

]
yields the decomposition

Hq(SG2 , β) =


C[x]〈∂2〉 if q = 0,
C[x]〈∂2〉 · (e1 − e2)⊕ C[x]〈∂1〉 · e3 if q = 1,
C[x]〈∂2〉 · (e1 − e2) ∧ e3 if q = 2,
0 otherwise.

Lemma 3.5. Let G� F be faces of A, N be a toric SF -module, and L be a toric SG-module.
Regard N and L as toric SA-modules via the natural maps SA� SF � SG. Let π :N → L be a
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morphism of SA-modules. Then there is a commutative diagram

K•(N, β)
K•(π,β) //

��

K•(L, β)

��
C[xF c ]⊗C KF• (N, β)⊗Z (

∧• ZF⊥) // C[xGc ]⊗C KG• (L, β)⊗Z (
∧• ZG⊥)

with vertical maps as in (3.1).

Proof. By choice of IF and IG in Notation 3.1 and the corresponding gF and gG, the diagram

K•(N, β)
K•(π,β) //

��

K•(L, β)

��

KgFA• (N, β) // KgFA• (L, β) // KgGA• (L, β)

commutes. Hence the result follows from the proof of Proposition 3.2. 2

Proposition 3.6. Let G� F be faces of A, N be a maximal Cohen–Macaulay toric SF -module,
and L be a maximal Cohen–Macaulay toric SG-module. Regard N and L as toric SA-modules
via the natural maps SA� SF � SG. Let π :N � L be a surjection of SA-modules. If β ∈ CG,
then

imageH•(π, β) = C[xGc ]⊗C HG0 (L, β)⊗C (
∧• ZF⊥)

as a submodule of

C[xGc ]⊗C HG0 (L, β)⊗C (
∧• ZG⊥).

Example 3.7 (Continuation of Example 3.4). The surjection of face rings given by π : SF � SG1

induces the following image in Euler–Koszul homology:

imageHq(π, β) =


C[x]〈∂1〉 if q = 0,
C[x]〈∂1〉 · e3 if q = 1,
0 otherwise.

Proof of Proposition 3.6. With A′ = gFA, the image of H•(π, β) is isomorphic to the image of
HA′• (π, β). By Proposition 3.2, there are decompositions

HA′• (N, β) = C[xF c ]⊗C HF0 (N, β)⊗Z (
∧• ZF⊥)

and

HA′• (L, β) = C[xF c ]⊗C HF• (L, β)⊗Z (
∧• ZF⊥),

so it is enough to find the image of HF0 (N, β) as a submodule of HF• (L, β). The result now follows
because the sequence

HF0 (N, β)
HF0 (π,β)

−−−−−−−−−→HF0 (L, β)−−→ 0

is exact, HF0 (L, β) = C[xF\G]⊗C HG0 (L, β), and HFi (N, β) = 0 for i > 0. 2
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Example 3.8 (Continuation of Example 3.7). Let πi : SGi � S∅ for i= 1, 2. Then

imageHq(π1, β) =


C[x] if q = 0,
C[x] · e2 ⊕ C[x] · e3 if q = 1,
C[x] · e2 ∧ e3 if q = 2,
0 otherwise,

and

imageHq(π2, β) =


C[x] if q = 0,
C[x] · (e2 − e1)⊕ C[x] · e3 if q = 1,
C[x] · (e2 − e1) ∧ e3 if q = 2,
0 otherwise.

The intersection of the images of Euler–Koszul homology at β applied to π1 and π2 is

[imageHq(π1, β)] ∩ [imageHq(π2, β)] =


C[x] if q = 0,
C[x] · e3 if q = 1,
0 otherwise

because ZG⊥1 ∩ ZG⊥2 = Z · e3.

We close this section with an observation that is vital to our rank jumps computations. For
faces F1, F2 �A, set G= F1 ∩ F2. Let Ni be maximal Cohen–Macaulay toric SFi-modules, L be a
maximal Cohen–Macaulay toric SG-module, and πi :Ni� L be SA-module surjections. Suppose
that β ∈ CG. Using the equality ZF⊥ ∩ ZG⊥ = Z[F ∪G]⊥, Proposition 3.6 implies that

imageHi(π1, β) ∩ imageHi(π2, β) = C[xGc ]⊗C HG0 (L, β)⊗C (
∧i Z[F ∪G]⊥),

which has rank (
codimCd(CF1 + CF2)

i

)
· rankHG0 (L, β).

4. Stratifications of the exceptional arrangement

Let M⊆ Zd be a non-empty NA-monoid (see Definition 2.2), so that the non-trivial module
M = C{M} ⊆ C{Zd} ∼= SA[∂−1

A ] is weakly toric (see Example 2.6) and

M= deg(M). (4.1)

Since M is an NA-monoid, the generic rank of H0(M,−) is vol(A). The rank jump of M at β is
the non-negative integer

j(β) = rankH0(M, β)− vol(A),

and the exceptional arrangement associated to M is the set

EA(M) = {β ∈ Cd | j(β)> 0}

of parameters with non-zero rank jump. By [MMW05, SW09], the exceptional arrangement can
be described in terms of certain Ext modules involving M , namely

EA(M) =−
d−1⋃
i=0

qdeg(Extn−iR (M, R)(−εA)), (4.2)
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where εA =
∑n

i=1 ai. It follows that EA(M) is a union of translates of linear subspaces spanned
by the faces of A, see [MMW05, Corollary 9.3].

We begin our study of j(β) with the short exact sequence

0→M → SA[∂−1
A ]→Q→ 0. (4.3)

While Q is not a Noetherian SA-module, it is a filtered limit of Noetherian Zd-graded SA-modules
and is therefore weakly toric (see Definition 2.5). Thus the ranking arrangement of M

RA(M) = qdeg(Q)

is an infinite union of translates of linear subspaces of Cd spanned by proper faces of A. Since
SA[∂−1

A ] is a maximal Cohen–Macaulay SA-module, Theorem 2.9 implies that Hi(SA[∂−1
A ], β) = 0

for all i > 0. Moreover, by [Oku06, Theorem 4.2], rankH0(SA[∂−1
A ], β) = vol(A) for all β.

Examination of the long exact sequence in Euler–Koszul homology from (4.3) reveals that

j(β) = rankH1(Q, β)− rankH0(Q, β). (4.4)

This implies that, for β ∈ EA(M), H1(Q, β) is non-zero. Therefore there is an inclusion EA(M)⊆
RA(M). We make this relationship precise in Theorem 4.3.

Lemma 4.1. Let v ∈ Zd. The number of irreducible components of RA(SA) which intersect
v + R>0A is finite.

Proof. View SA and its shifted saturation S̃A(−v) as graded submodules of SA[∂−1
A ]. To see that

the intersection RA(SA) ∩ (v + R>0A) involves only a finite number of irreducible components
of RA(SA), it is enough to show that the arrangement given by the quasidegrees of the module
S̃A(−v)/(SA ∩ S̃A(−v)) has finitely many irreducible components. This follows since S̃A(−v) is
toric. 2

Recall from (4.1) that M= deg(M). For b ∈ Zd and F �A, let

∇(M, b) = {F �A | b ∈M+ ZF}.

Lemma 4.2. Let M ⊆ SA[∂−1
A ] be a weakly toric module, b ∈ Zd, F �A be a face of codimension

at least two, and α ∈ Zd be an interior vector of NF . If F is maximal among faces of A not in
∇(M, b), then for all sufficiently large positive integers m, the vector b−mα ∈ EA(M) is an
exceptional degree of M .

Proof. This is [MM05, Lemma 14] when M = SA and A is homogeneous. (The matrix A is called
homogeneous when the vector (1, 1, . . . , 1) is in the Q-row span of A.) The same argument yields
this generalization by Zd-graded local duality, see [BH93, § 3.5]. 2

Theorem 4.3. Let M ⊆ SA[∂−1
A ] be a weakly toric module. The ranking arrangement RA(M)

contains the exceptional arrangement EA(M) and

RA(M) = EA(M) ∪ ZA(M),

where ZA(M) is pure of codimension one.

Proof. We must show that EA(M) contains all irreducible components of RA(M) of codimension
at least two. To this end, let β ∈RA(M) be such that β + CF ⊆RA(M) = qdeg(Q) is an
irreducible component with codim(F )> 2. Then there are submodules M ′, M ′′ ⊆Q and b′ ∈ Zd
such that M ′/M ′′ ∼= SF (b′) and b′ + CF = β + CF . In fact, there is a b ∈ deg(M ′/M ′′)
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with b+ ÑF ⊆ deg(Q) and b+ CF = β + CF . We may further choose b so that F is maximal
among faces of A that are not in the set ∇(M, b). To see this, first note that F /∈∇(M, b+ r)
for all r ∈ ÑF . Indeed, for if (b+ ÑF ) ∩ (M+ ZF ) 6=∅ then there are a ∈ b+ ÑF and s ∈ NF
with a+ s ∈M ∩ (b+ ÑF )⊆M ∩ deg(Q) =∅, which is a contradiction.

Since b+ CF = β + CF is an irreducible component of qdeg(Q), it suffices to show that b
can be chosen so that each facet F ′ of A is in ∇(M, b). First, if F � F ′, then by Lemma 4.1,
there are at most a finite number of translates of CF ′ that define components of qdeg(Q)
and intersect b+ ÑF ; write these as c1 + CF ′, . . . , ck + CF ′. If necessary, replace b by a vector
b′ ∈ b+ ÑF such that (b′ + ÑF ) ∩ (ci + CF ′) =∅ to assume that F ′ is in∇(M, b). Note that after
such a replacement, it is still true that (b+ ÑF ) ∩ (M+ ZF ) 6=∅ by the previous paragraph,
so F /∈∇(M, b). Next, suppose that F � F ′. If (b+ ÑF ′) ∩M=∅, then b+ ÑF ′ ⊆ deg(Q), an
impossibility because b+ CF defines an irreducible component of qdeg(Q). Thus it must be that
(b+ ÑF ′) ∩M 6=∅. In this case, b ∈M+ ZF ′, so F ′ is in ∇(M, b). Hence every facet F ′ of A is
in ∇(M, b), and the claim on the choice of b is established.

Let α ∈ Zd be an interior vector of NF . Lemma 4.2 implies that for all sufficiently large
integers m, the vector b−mα ∈ EA(M). Therefore β + CF = b+ CF ⊆ EA(M). 2

Notation 4.4. For β ∈ Cd, the β-components RA(M, β) of the ranking arrangement of M are
the union of the irreducible components of RA(M) which contain β. Since A has a finite number
of faces, RA(M, β) has finitely many irreducible components.

By [MMW05, Porism 9.5], the exceptional arrangement EA(SA) of the A-hypergeometric
system H0(SA, β) =MA(β) has codimension at least two. In the following example we show that
there may be components of EA(SA) which are embedded in codimension-one components of
the ranking arrangement RA(SA). In particular, the Zariski closure of EA(SA)\ZA(SA) may not
agree with EA(SA).

Example 4.5. Let

A=

2 3 0 0 1 0 1
0 1 2 0 0 1 1
0 0 0 1 1 1 1


with vol(A) = 15, and label the faces F = [a1 a2 a3] and G= [a3]. With β =

[
1
0
0

]
, the exceptional

arrangement of M = SA is properly contained in a hyperplane component of the ranking
arrangement:

EA(SA) = β + CG( β + CF =RA(SA, β)(RA(SA).

We will discuss the rank jumps of MA(β) in Examples 5.7 and 6.3.

One goal of § 6 is to understand the structure of the sets E iA(M) = {β ∈ Cd | j(β)> i}. We
will achieve this by stratifying EA(M) by ranking slabs (see Definition 4.7). Another description
of ranking slabs (via translates of certain lattices contained in the β-components RA(M, β)) will
be given in Proposition 5.4.

Definition 4.6. Let X and Y be subspace arrangements in Cd. We say that a stratification
S of X respects Y if for each irreducible component Z of Y and each stratum S ∈ S, either
S ∩ Z =∅ or S ⊆ Z.
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Definition 4.7. A ranking slab of M is a stratum in the coarsest stratification of EA(M)
that respects each of the following arrangements: RA(M) and −qdeg(Extn−iR (M, R)(−εA)) for
06 i < d.

Since each of the arrangements used in Definition 4.7 is determined by the quasidegrees of a
weakly toric module, the closure of each ranking slab of M is the translate of a linear subspace
of Cd that is generated by a face of A. Corollary 1.4 states that j(−) is constant on each ranking
slab, so each E iA(M) with i> 0 is a union of translates of linear subspaces of Cd that are spanned
by faces of A. It then follows that the stratification of EA(M) by ranking slabs refines its rank
stratification. While this is generally a strict refinement, Examples 6.3 and 6.4 show that the two
stratifications may coincide for parameters close enough to the cone R>0A. We wish to emphasize
that the rank jump j(β) is not simply determined by holes within the semigroup NA, as can be
seen in Example 6.26.

Definition 4.8. A slab is a set of parameters in Cd that lie on a unique irreducible component
of the exceptional arrangement EA(M) [MM05].

We will show by example that rank need not be constant on a slab. In Example 6.4, this
failure results from ‘embedded’ components of EA(M), while, in Example 6.24, it is due to the
hyperplanes of RA(M) that strictly refine the arrangement stratification of EA(M). Together
with Example 6.25, these examples show that each of the arrangements listed in Definition 4.7
is necessary to determine such a geometric refinement of the rank stratification of EA(M).

5. Ranking toric modules

As in § 4, let M⊆ Zd be a non-empty NA-monoid (see Definition 2.2), so that M = C{M} ⊆
C{Zd} ∼= SA[∂−1

A ] is a non-trivial weakly toric module (see Example 2.6). For a fixed β ∈ EA(M),
we know from (4.4) that Q can be used to compute the rank jump j(β). However, this module
contains a large amount of excess information that does not play a role in H•(Q; β). To isolate
the graded pieces of Q that impact j(β), we will define weakly toric modules Sβ ⊆ T β so that:

(i) M ⊆ Sβ ⊆ T β ⊆ SA[∂−1
A ];

(ii) RA(M, β) = qdeg
(
T β

Sβ

)
;

(iii) β /∈ qdeg
(
SA[∂−1

A ]
T β

)
;

(iv) β /∈ qdeg
(
Sβ

M

)
; and

(v) Pβ = deg
(
T β

Sβ

)
is a union of translates of ÑF for various F �A.

(5.1)

In Proposition 5.10, we show that Properties (i)–(iv) of (5.1) allow us to replace Q with
P β = T β/Sβ when calculating j(β). To use this module to actually compute j(β), we will
encounter other toric modules with structure similar to P β, which are called ranking toric
modules. Property (v) allows P β (and similarly, any ranking toric module) to be decomposed
into simple ranking toric modules. These modules are constructed so that their Euler–Koszul
homology modules have easily computable ranks. At the end of § 5.2, we outline more specifically
how simple ranking toric modules will play a role in our computation of j(β).
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5.1 Combinatorial objects controlling rank
We now construct the class of ranking toric modules, which includes the module P β coming
from (5.1). These modules will be constructed via their degree sets, which are unions of ÑF -
modules for various F �A. We begin by isolating the translated lattices contained in deg(Q)
that lie in the β-components RA(M, β)⊆ qdeg(Q) =RA(M) of the ranking arrangement of M
(see Notation 4.4). The union of these translated lattices will be denoted by Eβ.

Definition 5.1.

(i) Let
F(β) = {F �A | β + CF ⊆RA(M)}

be the set of faces of A corresponding to the β-components RA(M, β) of the ranking
arrangement of M . This set F(β) is a polyhedral cell complex, and RA(M, β) is the union
RA(M, β) =

⋃
F∈F(β)(β + CF ).

(ii) For each F ∈ F(β), let

EβF = Zd ∩ (β + CF )\(M+ ZF ).

Lemma 4.2 and Theorem 4.3 together imply that EβF is non-empty exactly when there is a
containment β + CF ⊆RA(M, β).

(iii) Since M is an NA-monoid, M+ ZF is closed under addition, so EβF is ZF -stable. Thus there
is a finite set of ZF -orbit representatives Bβ

F such that

EβF =
⊔
b∈BβF

(b+ ZF ) (5.2)

is partitioned into ZF -orbits as a disjoint union over Bβ
F . Notice that |Bβ

F |6 [(Zd ∩ RF ) :
ZF ].

(iv) The ZF -orbits b+ ZF in (5.2) are the translated lattices that we will use to construct
ranking toric modules. Each is determined by the pair (F, b). We denote the collection of
such pairs by

J (β) = {(F, b) ∈ F(β)×Bβ
F | (b+ ZF )⊆ EβF }.

(v) For a subset J ⊆ J (β), let

EβJ =
⋃

(F,b)∈J

(b+ ZF ).

The maximal case determines the ranking lattices of M at β:

Eβ := EβJ (β) =
⋃

(F,b)∈J (β)

(b+ ZF ).

Notation 5.2. Many of the objects we define in this section are dependent upon a subset
J ⊆ J (β), and this dependence is indicated by the subscript J . Whenever we omit this subscript,
it is understood that J = J (β).

By the upcoming Proposition 5.4, two parameters β, β′ ∈ Cd belong to the same ranking slab
exactly when Eβ = Eβ′ . This is what will be used to show that the rank jump j(β) is constant
on ranking slabs.

Lemma 5.3. The Zariski closure of the ranking lattices Eβ of M at β coincides with the
β-components RA(M, β) of the ranking arrangement.
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Proof. It is clear from the definitions that Eβ ⊆RA(M, β). For the reverse containment, if
β + CF ⊆RA(M, β), then there exists a vector b ∈ β + CF such that b+ ÑF ⊆ ZA\M. This
implies that (b+ NF ) ∩ (M+ ZF ) is empty, so the claim now follows from the definition of
quasidegree sets in Definitions 2.4 and 2.5. 2

Proposition 5.4. The parameters β, β′ ∈ Cd belong to the same ranking slab if and only if the
ranking lattices of M at β and β′ coincide, that is, if Eβ = Eβ′ .

Proof. This is a consequence of Lemmas 5.3, 4.2, and Theorem 4.3. 2

Notation 5.5. In light of Proposition 5.4, use equality of ranking lattices to extend the ranking
slab stratification of EA(M) to the parameter space Cd.

One might try making the sets EβJ in Definition 5.1 the degree sets of ranking toric modules.
However, while the natural map EβF → E

β
G given by faces G� F induces a vector space map

C{EβF }→ C{EβG}, this induced map is not a morphism of SF -modules because it sends units
to zero. To overcome this, we introduce the lattice points in a certain polyhedron, denoted by
CA(β), and intersect it with EβJ to produce the degree set of a ranking toric module.

Definition 5.6.

(i) Recall the primitive integral support functions pF from the beginning of § 2. In order
to construct a ranking toric module from EβJ , (and achieve the various quasidegree sets
proposed in (5.1)), set

CA(β) =
{
v ∈ Zd

∣∣∣∣ for each facet F of A,
pF (v)> pF (β) if pF (β) ∈ R,
pF (v)> 0 else

}
.

For β ∈ Rd, notice that CA(β) = Zd ∩ (β + R>0A) is simply the integral points in the cone
R>0A after translation by β.

(ii) For a pair (F, b) ∈ J (β), let

PβF,b = CA(β) ∩ [b+ ZF ].
The degree sets of ranking toric modules are of the form

PβJ =
⋃

(F,b)∈J

PβF,b = CA(β) ∩ EβJ (5.3)

for J ⊆ J (β). The largest of these is

Pβ := PβJ (β) = CA(β) ∩ Eβ, (5.4)

the degree set appearing in (5.1).

Example 5.7 (Continuation of Example 4.5). With β =
[

1
0
0

]
∈ EA(SA) and b=

[
1
1
0

]
, the sets of

Definitions 5.1 and 5.8 are

F(β) = {∅, G, F},
J (β) = {(∅, β), (G, b), (F, β)},

Eβ = [β + ZF ] t [b+ ZG] and Pβ = [β + NF ] t [b+ NG].

Having defined the degree sets of ranking toric modules in (5.3), we now construct the modules
themselves. Along the way, we meet the modules that satisfy the requirements of (5.1).
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Definition 5.8.

(i) Each ranking toric module will be a quotient of the module T β (for some β ∈ Cd), where

Tβ =M ∪
[ ⋃
b∈Pβ

(b+ ÑA)
]

and T β = C{Tβ}.

Notice that if β ∈ Zd, then Tβ =M ∪ (β + ÑA). The simplest case occurs when M= NA
and β ∈ ÑA, so that Tβ = ÑA.

(ii) For J ⊆ J (β), let

SβJ = Tβ\PβJ and SβJ = C{SβJ}.
We show in Proposition 5.9 that T β and SβJ are indeed weakly toric modules (see
Definition 2.5). When J = J (β), these modules satisfy the properties (5.1). By Notation 5.2,
Sβ = SβJ (β).

(iii) For a subset J ⊆ J (β), the quotient

P βJ =
T β

SβJ

has degree set deg(P βJ ) = PβJ , as recorded in Proposition 5.9. In Proposition 5.10, we show
that Q in (4.4) can be replaced by P β = P βJ (β) when computing j(β).

(iv) If a toric module N is isomorphic to P βJ for a pair (M, β) and a subset J ⊆ J (β), we say
that N is a ranking toric module determined by J .

Proposition 5.9. Let J ⊆ J (β). There are containments of weakly toric modules:

M ⊆ SβJ ⊆ T
β ⊆ SA[∂−1

A ]. (5.5)

In particular, P βJ = T β/SβJ is a ranking toric module with degree set PβJ .

Proof. By construction, we have the containment PβJ ⊆ Eβ. Since the intersection of Eβ and M
is empty, PβJ ∩M is empty as well. Hence M ⊆ SβJ . The other containments in (5.5) are obvious.
It is clear from the definitions that the degree sets of all modules in question are closed under
addition with elements of NA, so they are all weakly toric modules. For the second statement,
since PβJ ⊆ CA(β), P βJ is a finitely generated SA-module and therefore P βJ is toric. 2

By Lemma 5.3 and the definition (5.4) of Pβ, the arrangement qdeg(P β) coincides with the
β-components RA(M, β) of M at β. Further, the construction of P β in Definition 5.8 is such
that P β can replace Q in (4.4) when calculating j(β).

Proposition 5.10. The Euler–Koszul complexes K•(Q, β) and K•(P β, β) are quasi-isomorphic.
In particular,

j(β) = rankH1(P β, β)− rankH0(P β, β). (5.6)

Proof. Consider the short exact sequences

0→ T β

M
→

SA[∂−1
A ]

M
→

SA[∂−1
A ]

T β
→ 0 and 0→ Sβ

M
→ T β

M
→ T β

Sβ
→ 0.

The definition of CA(β) ensures that β is not a quasidegree of either Sβ/M or SA[∂−1
A ]/T β. Thus

we obtain the result from long exact sequences in Euler–Koszul homology and Proposition 2.8. 2
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Definition 5.11. The tth partial Euler–Koszul characteristic of a weakly toric module N is the
(non-negative) integer

χt(N, β) =
d∑
q=t

(−1)q−t · rankHq(N, β).

The main result of this article, Theorem 6.6, states that the partial Euler–Koszul
characteristics of ranking toric modules are determined by the combinatorics of the ranking
lattices Eβ of M at β. Lemma 5.12 describes j(β) as the second partial Euler–Koszul
characteristic of P β, so our results regarding the combinatorics of rank jumps are a consequence
of Theorem 6.6.

Lemma 5.12. The zeroth partial Euler–Koszul characteristic of every non-trivial ranking toric
module for a pair (M, β) is 0. In particular, j(β) = χ2(P β, β).

Proof. This lemma follows from [Oku06, Theorem 4.2] and (5.6). 2

5.2 Simple ranking toric modules
The polyhedral structure of the degree sets of ranking toric modules plays an important role in
our computation of their partial Euler–Koszul characteristics. We will use the fact that each face
F �A determines an SF -module that is the quotient of a ranking toric module. Modules of this
type are called simple ranking toric modules.

Definition 5.13.

(i) For a subset J ⊆ J (β), the ranking toric module P βJ is simple if there is a unique F ∈ F(β)
such that all pairs in J are of the form (F, b).

(ii) For each F ∈ F(β) and J ⊆ J (β), denote by P βF,J the simple ranking toric module
determined by the set {(G, b) ∈ J | F =G}. The degree set of this module is denoted by
PβF,J .

(iii) Call the parameter β simple for M if P β is a simple ranking toric module or, equivalently,
if there is an F ∈ F(β) such that P β = P βF (see Notation 5.2).

We show in Theorem 6.1 that for F �A, each simple ranking toric module P βF,J is a maximal
Cohen–Macaulay toric SF -module. Thus the results of § 3 can be applied to compute the rank
of their Euler–Koszul homology modules.

Notice that by setting

Bβ
F,J = {b ∈Bβ

F | (F, b) ∈ J} and EβF,J =
⊔

b∈BβF,J

(b+ ZF ),

it follows from Definition 5.13 that PβF,J = CA(β) ∩ EβF,J . In particular, when J = J (β), PβF =

CA(β) ∩ EβF .

Proposition 5.14. For F ∈ F(β) and J ⊆ J (β), the simple ranking toric module P βF,J of
Definition 5.13 admits an SF -module structure that is compatible with its SA-module structure.

Proof. By construction, PβF,J is closed under addition with elements of NF . 2
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Definition 5.15. We define a partial order E on J ⊆ J (β) by (F, b)E (F ′, b′) if and only if
b+ ZF ⊆ b′ + ZF ′ for pairs (F, b), (F ′, b′) ∈ J . We let max(J) denote the subset of J consisting
of maximal elements with respect to E.

For J ⊆ J (β), max(J) is the smallest subset of J that determines a direct sum of simple
ranking toric modules into which P βJ embeds.

The calculation of the partial Euler–Koszul characteristics of a ranking toric module P βJ will
be achieved by homologically replacing it by an acyclic complex I•J composed of simple ranking
toric modules. We then examine the spectral sequences determined by the double complex
K•(I•J , β) to obtain a formula for the partial Euler–Koszul characteristics of P βJ .

5.3 A reduction useful for computations
We now define an equivalence relation on the union of the various ZF -orbit representatives
of (5.2). We show in Proposition 5.17 that, for J ⊆ J (β), the ranking toric module P βJ splits as
direct sum over the equivalence classes of this relation. Thus, by additivity of rank, (5.6) can be
expressed as a sum involving simpler ranking toric modules.

Definition 5.16.

(i) Let Bβ =
⋃
F∈F(β) B

β
F be the collection of all ZF -orbit representatives from (5.2).

(ii) Let l be the equivalence relation on the elements of Bβ that is generated by the relations
bl b′ if there exist (F, b), (F ′, b′) ∈ J (β) such that (b+ ZF ) ∩ (b′ + ZF ′) 6=∅.

(iii) Let B̂β denote the set of equivalence classes of l.
(iv) For b̂ ∈ B̂β and J ⊆ J (β), let

J (̂b) = {(F, b′) ∈ J | b′ ∈ b̂}.

Hence, for J ⊆ J (β), there is a partition of PβJ over B̂β, namely, PβJ =
⊔
b̂∈B̂β P

β

J (̂b)
.

Proposition 5.17. For J ⊆ J (β), there is a decomposition P βJ =
⊕

b̂∈B̂β P
β

J (̂b)
.

Proof. For distinct b̂, b̂′ ∈Bβ, the sets Pβ
J (̂b)

and Pβ
J(b̂′)

are disjoint by definition of l. Thus there

is a decomposition P βJ = T β/SβJ =
⊕

b̂∈Bβ T
β/Sβ

J (̂b)
. 2

Example 5.18. As a special case of Proposition 5.17, the simple ranking toric module P βF can
be expressed as the direct sum

⊕
b∈BβF

P β(F,b) (see (5.2)).

Definition 5.19. For J = J (β), let the rank jump from b̂ of M at β be

j
b̂
(β) = rankH1(P β

J (̂b)
, β)− rankH0(P β

J (̂b)
, β).

Corollary 5.20. The rank jump j(β) can be expressed as the sum j(β) =
∑

b̂∈B̂β jb̂(β).

Proof. This follows from (5.6), Proposition 5.17, and the additivity of j(β). 2

As stated in Corollary 5.20, computing j(β) is reduced to finding j
b̂
(β) for each b̂ ∈ B̂β. When

working with examples, it is typically useful to consider each j
b̂
(β) individually. In contrast, as

we continue with the theory, it is more efficient for our notation to study j(β) directly. In §§ 6.1
and 6.2, replacing F(β), P β, and j(β) by their corresponding b̂ counterparts calculates j

b̂
(β).
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6. Partial Euler–Koszul characteristics of ranking toric modules

We retain the notation of § 5. This section contains our main result, Theorem 6.6, which states
that for any subset J ⊆ J (β), the partial Euler–Koszul characteristics of the ranking toric module
P βJ are determined by the combinatorics of EβJ (refer to Definitions 5.11, 5.8, and 5.1). As a special
case of this result, we will have computed j(β) = χ2(P β, β) in terms of the ranking lattices Eβ,
resulting in a proof of Theorem 1.3.

We begin by examining the partial Euler–Koszul characteristics of simple ranking toric
modules PβF from Definition 5.13. We will compute the partial Euler–Koszul characteristics
of a ranking toric module P βJ by homologically approximating it by a cellular resolution (see
Definition 6.7) built from simple ranking toric modules.

6.1 The simple case

The next theorem shows that simple ranking toric modules are maximal Cohen–Macaulay toric
face modules, which will be useful in the general case. This allows us to compute the rank jump
j(β) of M at β when β is simple for M , as in [Oku06, Theorem 2.5].

Theorem 6.1. Fix β ∈ Cd, F ∈ F(β), and J ⊆ J (β). Then the simple ranking toric module

P βF,J is a maximal Cohen–Macaulay toric SF -module. Further, there is a decomposition

H•(P βF,J , β) = C[xF c ]⊗C HF0 (P βF,J , β)⊗Z (
∧• ZF⊥), (6.1)

and, for all q > 0,

rankHq(P βF,J , β) = |Bβ
F,J | ·

(
codim(F )

q

)
· vol(F ).

Proof. Fix a ZF -orbit representative b ∈Bβ, chosen so that PβF,b ⊆ b+ ÑF . This implies that

0→ P βF,b→ S̃F (b)→ S̃F (b)

P βF,b
→ 0 (6.2)

is a short exact sequence of toric modules. Since

deg
(
S̃F (b)

P βF,b

)
= (b+ ÑF )\PβF,b,

the definition of CA(β) ensures that β /∈ qdeg(S̃F (b)/P βF,b). Proposition 2.8 and (2.1) imply
that (6.2) induces the isomorphism

H•(P βF,b, β)∼=HF• (S̃F , β − b)(b).

As β − b ∈ CF , Proposition 3.2 gives the decomposition (6.1), in light of Proposition 5.17.
By [Wal07, Lemma 3.3],

rankHF0 (S̃F , β − b)(b) = vol(F ).

Now the additivity of rank and (3.3) combine to complete the claim. 2

Corollary 6.2. If β ∈ EA(M) is simple for M , then the rank jump of M at β is

jA(β) = |Bβ| · [codim(F )− 1] · vol(F ).
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Proof. Since β is simple for M , P β = P βF for some F �A. Hence apply Theorem 6.1 to
Corollary 5.20, noting that Bβ =Bβ

F . 2

Example 6.3 (Continuation of Examples 4.5 and 5.7). With b=
[

1
1
0

]
, we have the set B̂β = {β̂, b̂}.

Both P β
J (β̂)

and P β
J (̂b)

are simple ranking toric modules. By Corollary 6.2,

j
β̂
(β) = 1 · [2− 1] · 1 = 1 and j

b̂
(β) = 1 · [1− 1] · 1 = 0.

It now follows from Proposition 5.17 that j(β) = 1. A similar calculation shows that j(β′) = 1
for any β′ ∈ EA(SA).

Example 6.4. Let

A=


2 3 0 0 1 0 1 0 1 0 1
0 1 2 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1


with vol(A) = 24, and consider the faces F = [a1 a2 a3] and G= [a3]. Note that the semigroup

NA of Example 4.5 embeds into the NA here. With b=
[

1
1
0
0

]
, the exceptional arrangement of SA

is EA(SA) = b+ CF , where

−qdeg(ExtiR(SA, R)(−εA)) =


b+ CF if i= 8,
b+ CG if i= 9,
∅ if i > 9.

Thus the ranking slab stratification of EA(SA) is strictly finer than its arrangement stratification.
Further, this finer stratification coincides with the rank stratification of EA(SA) inside the cone
R>0A. For β ∈ b+ CG, |B̂β|= 2, while |B̂β|= 1 for β ∈ EA(SA)\[b+ CG]. Calculations similar
to those of Example 6.3 show that

j(β) =

{
3 if β ∈ b+ CG,
1 if β ∈ EA(SA)\[b+ CG].

In particular, the rank of the A-hypergeometric system H0(SA, β) =MA(β) is not constant on
the slab [b+ CF ]⊆ EA(SA) (see Definition 4.8).

Example 6.5. Let M = SA for

A=


2 1 1 1 1 1 1 1
0 1 1 1 1 0 0 1
0 0 1 3 4 0 1 2
0 0 0 0 0 1 1 1


and consider the saturated faces F1 = [a1] and F2 = [a8]. Here vol(A) = 20, vol(Fi) = 1, and
codim(Fi) = 3. Computations in Macaulay 2 [M2] with (4.2) reveal that

EA(SA) = [β′ + CF1] ∪ [β′ + CF2],
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where β′ =
[

1
1
2
0

]
. With b=

[
1
0
0
0

]
and β ∈ ÑA ∩ EA(SA),

RA(SA, β) =


EA(SA) if β = β′,
β + CF1 if β ∈ [β′ + CF1]\β′,
β + CF2 if β ∈ [β′ + CF2]\β′,

Pβ =


[β + b+ NF1] ∪ [β + NF1] ∪ [β + NF2] if β = β′,
[β + b+ NF1] ∪ β + NF1 if β ∈ ÑA ∩ [β′ + CF1]\β′,
β + NF2 if β ∈ ÑA ∩ [β′ + CF2]\β′,

and

B̂β =


{β̂ + b, β̂} if β = β′,
{β̂ + b, β̂} if β ∈ ÑA ∩ [β′ + CF1]\β′,
{β̂} if β ∈ ÑA ∩ [β′ + CF2]\β′.

By Corollary 6.2, for β ∈ ÑA ∩ [β′ + CF2]\β′,

j(β) = [codim(F2)− 1] · vol(F2) = [3− 1] · 1 = 2,

while for β ∈ ÑA ∩ [β′ + CF1]\β′, |Bβ
F1
|= 2, and

j(β) = 2 · [codim(F1)− 1] · vol(F1) = 2 · [3− 1] · 1 = 4.

To compute the rank jump of SA at β′, we must move to the general case. We will see in
Example 6.22 that j(β′) = 4, which arises as the sum of the generic rank jumps along irreducible
components of RA(SA, β′) that is then corrected by error terms that arise from a spectral
sequence calculation.

6.2 The general case

We are now prepared to compute the partial Euler–Koszul characteristics of ranking toric
modules. The proof of our main theorem, Theorem 6.6, will be given at the end of this
section, after a sequence of lemmas. The definitions of J (β), EβJ , and P βJ can be found in
Definitions 5.1 and 5.8, respectively.

Theorem 6.6. For J ⊆ J (β), the partial Euler–Koszul characteristics of the ranking toric

module P βJ are determined by the combinatorics of EβJ .

We compute the partial Euler–Koszul characteristics of the ranking toric module P βJ will
be achieved by homologically approximating P βJ by simple ranking toric modules; note that
the ranks of the Euler–Koszul homology modules of simple ranking toric modules have been
computed in Theorem 6.1.

Definition 6.7. Let ∆ be an oriented cell complex (e.g. CW, simplicial, polyhedral). Then ∆
has the cochain complex

C•∆ : 0→
⊕

vertices v∈∆

Zv→
⊕

edges e∈∆

Ze→ · · · →
⊕

i-faces σ∈∆

Zσ→ · · · → 0,
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where Zσ→ Zτ is multiplication by some integer coeff(σ, τ). Let C∆ be the category with the
non-empty faces of ∆ as objects and morphisms

MorC ∆
(σ, τ) =

{
{σ ⊆ τ} if σ ⊆ τ ,
∅ otherwise.

Fix an abelian category A and suppose there is a covariant functor Φ : C∆→ A. Let Pσ := Φ(σ)
for each σ ∈∆. A sequence of morphisms in A

I• : 0→
⊕

vertices v∈∆

Pv→
⊕

edges e∈∆

Pe→ · · · →
⊕

i-faces σ∈∆

Pσ→ · · · → 0

is cellular and supported on ∆ if the Pσ→ Pτ component of I• is coeff(σ, τ)Φ(σ ⊆ τ). Since A is
abelian, a cellular sequence is necessarily a complex.

In a manner analogous to Definition 6.7, a cellular complex supported on ∆ can also be
obtained from the chain complex C∆

• of ∆ and a contravariant functor Φ : C∆→ A. Further, we
could replace C∆

• in this construction with the reduced chain or cochain complexes of ∆. We say
that a complex in A is cellular if it can be constructed from the underlying topological data of
a cell complex and a functor Φ : C∆→ A.

When ∆ is a simplicial or polyhedral cell complex, coeff(σ, τ) of Definition 6.7 is simply 1 if
the orientation of τ induces the orientation of σ and −1 if it does not.

The generality in which we define cellular complexes is alluded to in the introduction of [JM08]
and appears as [Mil09, Definition 3.2]. An introduction to these complexes, in the polyhedral
case, can be found in [MS05, ch. 4].

Recall from Definition 5.15 that max(J) was defined so that it yields the smallest set of faces
of A that determines a direct sum of simple ranking toric modules into which P βJ embeds.

Notation 6.8. We wish to take intersections of faces in the set max(J). In order to keep track
of which faces were involved in each intersection, set

∆0
J = {F ∈ F(β) | ∃(F, b) ∈max(J)},

∆p
J = {s⊆∆0

J | |s|= p+ 1} and Fs =
⋂
G∈s

G for s ∈∆p
J .

With r + 1 = |∆0
J |, let ∆ = ∆β

J be the standard r-simplex with vertices corresponding to the
elements of ∆0

J . To the p-face of ∆ spanned by the vertices corresponding to the elements in
s ∈∆p

J , assign the ranking toric module P βFs,J . Choosing the natural maps P βFs,J → P βFt,J for s⊆ t
induces a cellular complex supported on ∆,

I•J : I0
J → I1

J → · · · → IrJ → 0 (6.3)

with

IpJ =
⊕
s∈∆p

J

P βFs,J .

Lemma 6.9. The cohomology of the cellular complex I•J of (6.3) is concentrated in cohomological

degree zero and is isomorphic to P βJ .

Proof. Given α ∈ PβJ = deg(P βJ ), let Fi1 , . . . , Fik be the faces F ∈∆0
J such that α ∈ PβF,J . The

degree-α part of I•J computes the cohomology of the (k − 1)-subsimplex of ∆ given by the
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vertices with labels corresponding to Fi1 , . . . , Fik ; in particular, it is acyclic with 0-cohomology
C∼= (P βJ )α. 2

By construction, P βJ is a Zd-graded monomial module over the saturated semigroup ring S̃A,
and it can be translated by some α ∈ Zd so that deg(P βJ (α)) = α+ PβJ ⊆ ÑA= deg(S̃A). After
translation by α, (6.3) is similar to an irreducible resolution, as defined in [Mil02, Definition 2.1].
We continue to view P βJ as an SA-module, so we use maximal Cohen–Macaulay toric face modules
instead of irreducible quotients of S̃A.

Consider the Zd-graded double complex E•,•0 with Ep,−q0 :=Kq(IpJ , β). Let hψ0 and vψ0 denote
the horizontal and vertical differentials of E•,•0 , respectively. By the exactness of (6.3), taking
homology of E•,•0 with respect to hψ0 yields

hE
p,−q
1 =

{
Kq(P βJ , β) if p= 0 and 06 q 6 d,
0 otherwise.

Hence

hE
p,−q
∞ = hE

p,−q
2 =

{
Hq(P βJ , β) if p= 0 and 06 q 6 d,
0 otherwise.

(6.4)

On the other hand, the first page of the vertical spectral sequence given by E•,•0 consists of
Euler–Koszul homologies of simple ranking toric modules:

vE
p,−q
1 =Hq(IpJ , β) =

⊕
s∈∆p

J

Hq(P βFs,J , β). (6.5)

We now apply the decomposition of these homologies given in Theorem 6.1 to obtain a new
description of the Euler–Koszul homology of the ranking toric module P βJ .

Lemma 6.10. The vertical spectral sequence obtained from the double complex

′Ep,−q0 =
⊕
s∈∆p

J

⊕
i+j=q

C[xF cs ]⊗C KFsi (P βFs,J , β)⊗Z (
∧j ZF⊥s ) (6.6)

(with differentials as in Lemma 3.5) has abutment

′Ep−q∞
∼=

{
Hq(P βJ , β) if p= 0,

0 otherwise.

Proof. By Theorem 6.1 and Lemma 3.5, the vertical differentials vψ0 of Ep,−q0 are compatible
with the quasi-isomorphism

Ep,•0 'qis

⊕
s∈∆p

J

C[xF cs ]⊗C KFs• (P βFs,J , β)⊗Z (
∧• ZF⊥s ). (6.7)

Since hE
•,•
∞ and vE

•,•
∞ converge to the same abutment, the result follows from (6.4). 2

Note that the first page of the spectral sequence in Lemma 6.10 is
′Ep,−q1 =

⊕
s∈∆p

J

C[xF cs ]⊗C HFs0 (P βFs,J , β)⊗Z (
∧q ZF⊥s ). (6.8)

For s ∈∆p
J , let κs denote the differential ofKFs• (P βFs,J , β), and let vδ and hδ respectively denote

the vertical and horizontal differentials of ′E•,•0 . If i+ j = q with i, j > 0, then, by Remark 3.3,
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the element
f ⊗ a⊗ b ∈ C[xF cs ]⊗C KFsi (P βFs,J , β)⊗C (

∧q ZF⊥s )⊆ ′Ep,−q0

has vertical differential

vδ(f ⊗ a⊗ b) = f ⊗ κs(a)⊗ b. (6.9)
We will use the fact that (6.9) is an element of

C[xF cs ]⊗KFsi−1(P βFs,J , β)⊗C (
∧j ZF⊥s )⊆ ′Ep,−q+1

0

to show that ′E•,•• degenerates quickly. This is the main technical result of this article.

Lemma 6.11. The spectral sequence ′E•,•• of Lemma 6.10 degenerates at the second page.

Proof. For ξ ∈ ′Ei,j0 , let ξ denote the image of ξ in ′Ei,j2 , if it exists. Let δr denote the differential
of ′E•,•r , so δ0 = vδ.

To see that δ2 = 0, consider an element α ∈ ′Ep,−q0 with α ∈ ′Ep,−q2 . Then there is an element
η ∈ ′Ep+1,−q−1

0 such that vδ(η) = hδ(α), which is used to define

δ2(α) = hδ(η). (6.10)

(Recall that (6.10) is independent of the choice of η.) We write α=
∑
αsij as an element of (6.6).

Note that

vδ(αsij) ∈ C[xF cs ]⊗C KFsi−1(P βFs,J , β)⊗Z (
∧j ZF⊥s ),

so αsij is in the kernel of vδ for all s, i, j. By (6.8), αsij is in the image of vδ whenever i > 0. Hence
without changing α, we may assume that, for all s ∈∆p

J , αsij = 0 when i > 0, so that

α ∈
⊕
s∈∆p

J

C[xF cs ]⊗C KFs0 (P βFs,J , β)⊗Z (
∧q ZF⊥s ).

As the differential hδ is induced by (6.3),

hδ(α) ∈
⊕

s∈∆p+1
J

C[xF cs ]⊗C KFs0 (P βFs,J , β)⊗Z (
∧q ZF⊥s ).

By hypothesis on α and (6.9), there is an element

η ∈
⊕

s∈∆p+1
J

C[xF cs ]⊗C KFs1 (P βFs,J , β)⊗Z (
∧q ZF⊥s ) (6.11)

such that vδ(η) = hδ(α). Set ζ = hδ(η) and note that δ2(α) = ζ. Using again the fact that the
differential hδ is induced by (6.3), applied now to (6.11), we see that

ζ ∈
⊕

s∈∆p+2
J

C[xF cs ]⊗C KFs1 (P βFs,J , β)⊗Z (
∧q ZF⊥s ).

Since vδ(ζ) = hδ
2(α) = 0, ζ is in the kernel of vδ = δ0. Hence (6.8) implies that δ2(α) = ζ

vanishes. 2

Lemma 6.12. For J ⊆ J (β), the tth partial Euler–Koszul characteristic of the ranking toric

module P βJ is given by

χt(P
β
J , β) =

∑
p−q>−t

(−1)p−q+t+1 rankHq(IpJ , β)−
∑

p−q=−t
rank(image δp,−q1 ). (6.12)
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Proof. For i ∈ N, let

rki :=
∑
p−q=k

rank(′Ep,−qi ).

By Lemma 6.11, rk2 = rk∞. From the abutment (6.4), we see that rk2 = 0 for k > 0. Since∑
k∈Z(−1)krk1 = 0 by Lemma 5.12, also

∑
k∈Z(−1)krk2 = 0. Thus the tth partial Euler–Koszul

characteristic of P βJ can be expressed as

χt(P
β
J , β) =

−t∑
k=−d

(−1)k+trk2

=
∞∑

k=−d
(−1)k+t+1rk1 −

−t∑
k=−d

(−1)k+t+1rk2

=
∞∑

k=−t+1

(−1)k+t+1rk1 −
∑

p−q=−t
rank(image δp,−q1 ).

Now (6.12) follows from the definition of rk1 and the quasi-isomorphism (6.7), as the isomorphic
first pages of the spectral sequences there are (6.5) and (6.8). 2

We will compute the ranks of Hq(IpJ , β) and the image of δp,−q1 from (6.12) in subsequent
lemmas. The first is an immediate consequence of Theorem 6.1.

Lemma 6.13. If q > 0, then

rankHq(IpJ , β) =
∑
s∈∆p

J

|Bβ
Fs
| ·
(

codim(Fs)
q

)
· vol(Fs).

Proof. By definition of IpJ and additivity of rank,

rankHq(IpJ , β) =
∑
s∈∆p

J

rankHq(P βFs,J , β).

Now apply Theorem 6.1. 2

The rank of the image of δp,−q1 is determined combinatorially because the spectral sequence
rows ′E•,−q1 are cellular complexes.

Lemma 6.14. The complexes ′E•,−q1 are cellular with support ∆ = ∆β
J of Notation 6.8.

Proof. In Notation 6.8, we constructed the cellular complex I•J from a labeling of the simplex
∆ = ∆β

J . If we assign in this construction

C[xF c ]⊗C HFq (P βF , β)⊗Z (
∧q ZF⊥)

in place of P βF,J and use the induced maps, we obtain the cellular complex ′E•,−q1 with differential
δ•,−q1 , see (3.3). The existence and compatibility of the differentials follows from Lemma 3.5. 2

Lemma 6.15. The rank of the image of δp,−q1 is determined by the combinatorics of EβJ .

Proof. By Lemma 6.14, the image of δp,−q1 is determined by the p-coboundaries of ∆ and the
corresponding labels of ∆, which come from EβJ . 2
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Proof of Theorem 6.6. If J is simple for M , the result follows from Theorem 6.1, so suppose that
P βJ is not simple for M . By Lemma 6.9, P βJ is the 0-cohomology of the acyclic cellular complex
I•J (6.3). Thus the abutment of the spectral sequences arising from the double complex K•(I•J , β)
is H•(PJ , β). By Lemma 6.10, the vertical spectral sequence obtained from the double complex
′Ep,−q0 of (6.6) has the same abutment. Since this spectral sequence degenerates on the second
page by Lemma 6.11, Lemma 6.12 yields the formula (6.12), and by Lemmas 6.13 and 6.15, the
summands of (6.12) are dependent only on the combinatorics of EβJ . 2

6.3 Computing partial Euler–Koszul characteristics

Recall formula (6.12):

χt(P
β
J , β) =

∑
p−q>−t

(−1)p−q+t+1 rankHq(IpJ , β)−
∑

p−q=−t
rank(image δp,−q1 ).

Lemma 6.13 computes the first summand, but Lemma 6.15 does not explicitly state the rank of
the image of δp,−q1 . A method to do this is provided by Proposition 6.18.

Definition 6.16. For 1< j 6 |∆p
J |, a subset λ⊆ {1, 2, . . . , j} corresponds to a subcomplex

∆(λ) of the simplex ∆ = ∆β
J , as described in Notation 6.8. If j ∈ λ and there is a minimal

generator of Hp(∆(λ),∆(λ)\{j}; C) of the form
∑

i∈λ vi · [si], where all coefficients vi are non-
zero, then we say that λ is a circuit for j.

Notation 6.17. For 1< j 6 |∆p
J |, let

Υp
J(j) = {λ⊆ {1, 2, . . . , j} | λ is a circuit for j}

denote the set of circuits for j, and set

Υp
J(j, k) = {Λ⊆Υp

J(j) | |Λ|= k}.

For s ∈∆p
J , λ ∈Υp

J(j), and Λ ∈Υp
J(j, k), set

sλ = {si | i ∈ λ},

F (Λ) =
⋃
λ∈Λ

⋃
i∈λ

Fsi ,

Np
J (s) = {(F, b) ∈ J | ∃t ∈∆p

J\{s} with (b+ ZF )⊆ EβFs,J ∩ E
β
Ft,J
6=∅},

Np
J (λ) = {(F, b) ∈Np

J (sj) | ∃i ∈ λ\{j} with (b+ ZF )⊆ EβFsi ,J},

Np
J (Λ) =

⋂
λ∈Λ

Np
J (λ),

νp,−q(Λ) =
(

codim(F (Λ))
q

)
· rankH0(P β

Np
J (Λ)

, β) and

νp,−q(j) =
|ΥpJ (j)|∑
k=1

∑
Λ∈ΥpJ (j,k)

(−1)|Λ|+1 · νp,−q(Λ).

(6.13)
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Proposition 6.18. Let P β
Np
J (s)

be the ranking toric module in (6.13). The rank of the image of

δp,−q1 from (6.12) is equal to

rank(image δp,−q1 ) =
∑
s∈∆p

J

(
codim(Fs)

q

)
· rankH0(P β

Np
J (s)

, β)−
|∆p
J |∑

j=2

νp,−q(j). (6.14)

Further, (6.14) can be computed by combining Theorem 6.1 and induction on the dimension

of P βJ .

Before providing the proof of Proposition 6.18, we state two lemmas.

Lemma 6.19. For s ∈∆p
J ,

rank(image δp,−q1,s ) =
(

codim(Fs)
q

)
· rankH0(P β

Np
J (s)

, β), (6.15)

where P β
Np
J (s)

is the ranking toric module given by (6.13).

Proof. The rank of the image of δp,−q1,s is
(

codim(Fs)
q

)
· rank(image δp,01,s) by Proposition 3.6. View

the image of δp,01,s as a quotient of P βFs,J . If α is one of its non-zero multigraded components, then
it also appears in the degree set of another summand of ′Ep,01 . The collection of such degrees is
exactly Pβ

Np
J (s)

. 2

Lemma 6.20. For 1< j 6 |∆p
J |,

νp,−q(j) = rank[(image δp,−q1,{s1,...,sj−1}) ∩ (image δp,−q1,{sj})]. (6.16)

Proof. To see this, notice first that, for 1< j 6 |∆p
J |,

(image δp,−q1,{s1,...,sj−1}) ∩ (image δp,−q1,{sj}) =
∑

λ∈ΥpJ (j)

(image δp,−q1,sλ\{j}
) ∩ (image δp,−q1,{sj})

is generated by the images coming from circuits for j. By Proposition 3.6, given a fixed circuit
λ for j, the rank of

(image δp,−q1,sλ\{j}
) ∩ (image δp,−q1,{sj}) (6.17)

can be computed as the rank of

(image δp,01,sλ\{j+1}
) ∩ (image δp,01,{sj+1}) (6.18)

times the Z-rank of ⋂
i∈λ

[
∧q ZF⊥si ] =

∧q ZF (λ)⊥. (6.19)

By the same reasoning used to obtain (6.15), the rank of H0(P β
Np
J (λ)

, β) equals the rank of (6.18).

The Z-rank of (6.19) is a binomial coefficient in the codimension in Cd of the span of the vectors
in F (λ), so the rank of (6.17) is(

codim(F (λ))
q

)
· rankH0(P β

Np
J (λ)

, β).

Further, for a collection of circuits Λ ∈Υp
J(j, k), νp,−q(Λ) gives the rank of the intersection over Λ

of the images of type (6.17), so the inclusion–exclusion principle yields (6.16). 2
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Proof of Proposition 6.18. Recall from (6.8) that the domain of δp,−q1 is the direct sum

′Ep,−q1 =
⊕
s∈∆p

J

C[xF cs ]⊗C HFs0 (P βFs,J , β)⊗Z (
∧q ZF⊥s ).

For S ⊆∆p
J , let δp,−q1,S denote the restriction of δp,−q1 to the summands in S. Order the elements

of ∆p
J = {s1, . . . , s|∆p

J |
}, so that

rank(image δp,−q1 ) =
∑
s∈∆p

J

rank(image δp,−q1,s )

−
|∆p
J |∑

j=2

rank[(image δp,−q1,{s1,...,sj−1}) ∩ (image δp,−q1,{sj})]. (6.20)

Lemmas 6.19 and 6.20 respectively computed the summands of (6.20), resulting in (6.14). Thus
it remains to show that (6.14) can be computed by combining Theorem 6.1 and induction on
the dimension of P βJ .

If a ranking toric module has dimension zero, then it is necessarily a simple ranking toric
module, so Theorem 6.1 computes the rank of its Euler–Koszul homology modules. Thus, by
induction on dimension, we can compute the summand in (6.15) corresponding to s ∈∆p

J if the
dimension of PNp

J (s) is strictly less than the dimension of P βFs,J .

If it is the case that the dimension of PNp
J (s) equals the dimension of P βFs,J , notice first

that each pair (F, b) ∈Np
J (s) has F � Fs. This implies that PNp

J (s) is a direct sum (as in
Proposition 5.17) of the simple ranking toric module PFs,Np

J (s) and a lower-dimensional ranking
toric module. Therefore induction together with Theorem 6.1 still completes the computation.

Finally, the same argument applies to computing the rank of H0(P β
Np
J (Λ)

, β) for Λ ∈Υp
J(j, k),

since Np
J (Λ)⊆Np

J (sj). 2

6.4 The combinatorics of rank jumps

By Lemma 5.12, our results on the partial Euler–Koszul characteristics of ranking toric modules
reveal the combinatorial nature of rank jumps of the generalized A-hypergeometric system
H0(M, β).

Proof of Theorem 1.3. By (5.6) and Lemma 5.12, j(β) = χ2(P β, β), so the result is an immediate
consequence of Theorem 6.6 and Proposition 6.18. 2

Example 6.21. If β ∈ Cd is such that ∆0 = {F1, F2}, the proof of Theorem 6.6 and § 6.3 show
that the rank jump of M at β is

j(β) =
2∑
i=1

(|Bβ
Fi
| · [codim(Fi)− 1] · vol(Fi)) + |Bβ

G| · C
β · vol(G), (6.21)

where G= F1 ∩ F2 and the constant Cβ is given by

Cβ =
(

codim(G)
2

)
− codim(G) + 1−

(
codim(F1)

2

)
−
(

codim(F2)
2

)
+
(

codim(CF1 + CF2)
2

)
.
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Example 6.22 (Continuation of Example 6.5). With b′ = β′ + b=
[

2
1
2
0

]
, the set B̂β′ = {β̂′, b̂′}, and

P β
′
= P β

′

J (β̂′)
⊕ P β

J (b̂′)
by Proposition 5.17. By (6.21),

j
β̂′

(β) =
2∑
i=1

(|β̂′ ∩Bβ
Fi
| · [codim(Fi)− 1] · vol(Fi)) + |β̂′ ∩Bβ

G| · C
β · vol(G)

= 2 + 2 + 1 · (−2) · 1 = 2,

and j
b̂′

(β) = 2 by Corollary 6.2. Thus Proposition 5.17 implies that the rank jump of the A-
hypergeometric system H0(SA, β′) =MA(β′) is j(β′) = 4.

When d= 3 and P β = P β
J (̂b)

for some b̂ ∈ B̂β, [Oku06, Theorem 2.6] implies that the rank

jump j(β) of M at β corresponds to the reduced homology of the lattice F(β). The formula given
by Okuyama involves this homology and the volumes of the one-dimensional faces of A in F(β).
For higher-dimensional cases, the cellular structure of the complex I•J (β) of Notation 6.8 shows
that, in general, more information than the reduced homology of F(β) is needed to compute
j(β), or even a single j

b̂
(β).

Recall from Definition 4.7 that a ranking slab of M is a stratum in the coarsest stratification
of EA(M) that respects a specified collection of subspace arrangements. We are now prepared to
prove Corollary 1.4, which states that the ranking slab stratification of EA(M) refines its rank
stratification. From this it follows that each E iA(M) = {β ∈ Cd | j(β)> i} is a union of ranking
slabs, making each a union of translated linear subspaces of Cd.

Proof of Corollary 1.4. If β, β′ ∈ Cd belong to the same ranking slab, then the ranking lattices
Eβ = Eβ′ coincide by Proposition 5.4. By Theorem 1.3, the rank jumps j(β) and j(β′) coincide
as well. 2

Corollary 6.23. For all integers i> 0, E iA(M) is a union of translates of linear subspaces that
are generated by faces of A.

Proof. This is an immediate consequence of Theorem 4.3 and Corollary 1.4. 2

The following is the second example promised at the end of § 4, showing that the rank of
H0(M, β) need not be constant on a slab (see Definition 4.8). Further, this example shows that
neither the arrangement stratification of EA(M) nor its refinement given by the Ext modules
in (4.2) determine its rank stratification.

Example 6.24. Consider the matrix

A=

2 3 2 2 0 0 0 0 2 5 3
0 0 0 0 2 3 2 2 2 3 5
0 0 1 2 0 0 1 2 5 7 7


with vol(A) = 185, and label the faces F1 = [a1 a2 a3 a4], F2 = [a5 a6 a7 a8], and F3 = [a9]. With

β′ =

1
1
0

 and PA =


2

3
3

,
3

2
3

,
3

5
3

,
5

3
3

,
3

3
5

,
5

5
6

,
the exceptional arrangement of SA is

EA(SA) = (β′ + CF3) ∪ PA.
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For β ∈ R>0A ∩ EA(M),

RA(SA, β) =


β if β ∈ PA,
β′ + CF3 if β ∈ [β′ + CF3]\β′,

3⋃
i=1

[β′ + CFi] if β = β′,

so by the proof of Theorem 6.6, the rank jump of M at β ∈ EA(M) is

j(β) =

{
1 if β ∈ [β′ + CF3]\β′,
2 otherwise.

Here the arrangement stratification of EA(SA) agrees with the one given by the Ext modules
that determine it, but j(−) is not constant on the slab [β′ + CF3]⊆ EA(SA).

To show that all of the arrangements in the definition of ranking slabs (Definition 4.7) are
necessary to obtain a refinement of the rank stratification of EA(M), we include the following
example. Here, j(β) changes where components of EA(SA) that correspond to different Ext
modules intersect.

Example 6.25. Let

A=


2 3 0 0 0 0 0 1 0 1
0 0 2 3 0 1 0 0 1 1
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1

,
F = [a1 a2], G= [a3 a4 a5 a6], and β′ =

[
1
1
0
0

]
. Here vol(A) = 21, and the exceptional arrangement

of SA is

EA(SA) = [β′ + CF ] ∪ [β′ + CG],

where

−qdeg(ExtiR(SA, R)(−εA)) =


b+ CG if i= 7,
b+ CF if i= 8,
∅ if i > 8.

By Corollary 6.2 and Example 6.21,

j(β) =


9 if β = β′,
6 if β ∈ [β′ + CF ]\β′,
4 if β ∈ [β′ + CG]\β′.

We include a final example to show that j(β) is not determined simply by ÑA\NA, the holes
in the semigroup NA.

Example 6.26. The matrix

A=

2 3 0 0 1 0 1
0 0 2 3 0 1 1
0 0 0 0 1 1 1
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has volume 16. The exceptional arrangement of M = SA is the union of four lines and a point:

EA(SA) =

1
1
0

+ CF

 ∪
1

1
0

+ CG

 ∪
1

0
0

+ C[a5]

 ∪
0

1
0

+ C[a6]

 ∪

2

2
1

,
where F = [a1 a2] and G= [a3 a4]. The generic rank jumps along each component are as follows:1

1
0

+ CF 7→ 3,

1
0
0

+ C[a5] 7→ 1,

1
1
0

+ CG 7→ 3,

0
1
0

+ C[a6] 7→ 1 and

2
2
1

 7→ 2.

These generic rank jumps are achieved everywhere except at the points1
1
0

,
1

0
0

,
0

1
0

 and

 0
0
−1

.
The point that may be unexpected in this collection is b=

[
0
0
−1

]
. Both of the components of

EA(SA) that contain b have generic rank jumps of 1; however, j(b) = 2. This is because the
ranking arrangement of SA has three components that contain b:

RA(SA, b) = (b+ C[a5]) ∪ (b+ C[a6]) ∪ (b+ C[a1 a2 a3 a4]). (6.22)

If the plane (b+ C[a1 a2 a3 a4]) were not in RA(SA, β), then the rank jump of SA at b would only
be 1 by (6.21). Thus the hyperplane in (6.22), although unrelated to the holes in NA, accounts
for the higher value of j(b).

The rank jumps at the other parameters are

j

SA,
1

0
0

= j

SA,
0

1
0

= 3 and j

SA,
1

1
0

= 5.

The algebraic upper semi-continuity of the rank of H0(M, β) implies that most of the
codimension-one components of the ranking arrangement RA(M) do not increase the rank of
H0(M, β). It would interesting to know if the set of such hyperplanes can be identified.

7. The isomorphism classes of A-hypergeometric systems

When M = SA, the results of § 6 apply to the A-hypergeometric system H0(SA, β) =MA(β). For
a face τ of A,

Eτ (β) = {λ ∈ Cτ | β − λ ∈ NA+ Zτ}/Zτ
is a finite set. It is shown in [Sai01, ST01] that MA(β) and MA(β′) are isomorphic as D-modules
precisely when Eτ (β) = Eτ (β′) for all faces τ of A. We will now use Euler–Koszul homology
to give a simple proof of one direction of this equivalence; first we exhibit a complementary
relationship between Eτ (β) and Eβτ (see (5.2)).

Observation 7.1. It is shown in Theorem 1.3 that as τ runs through the faces of A, the sets

Eβτ = Zd ∩ (β + Cτ)\(NA+ Zτ) = β − {λ ∈ Cτ | β − λ ∈ Zd\(NA+ Zτ)}

determine the rank jump of MA(β) at β. Notice that (β − Eβτ )/Zτ is the complement of Eτ (β)
in the group (Zd ∩Qτ)/Zτ .
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Lemma 7.2. If β, β′ ∈ Cd are such that β′ − β =Aλ for some λ ∈ Nn, then the map defined
by right multiplication ∂λA :MA(β)→MA(β′) is an isomorphism of D-modules if and only if
β′ /∈ qdeg(SA/〈∂λA〉).

Proof. See [SW09, Remark 3.6]. 2

For a vector v ∈ Cn, let the support of v be the subset supp(v) = {ai | vi 6= 0} of the columns
of A.

Lemma 7.3. If β, β′ ∈ Cd are such that β′ − β =Aλ for some λ ∈ Nn and Eτ (β) = Eτ (β′) for
all faces τ of A, then the map defined by right multiplication ∂λA :MA(β)→MA(β′) is an
isomorphism.

Proof. If ∂λA is not an isomorphism, then β′ ∈ qdeg(SA/〈∂λA〉) by Lemma 7.2. By the definition
of quasidegrees, there exist vectors v ∈ Nn and γ ∈ Cτ for some face τ such that β′ =Av + γ,
supp(λ) 6⊆ τ , and vi 6 λi for all i. Hence β′ − γ ∈ NA, so γ + Zτ ∈ Eτ (β′). Further, the condition
vi 6 λi for all i implies that γ + Zτ /∈ Eτ (β). 2

Notation 7.4. If a vector λ ∈ Nn is such that the map given by right multiplication ∂λA :MA(β)→
MA(β +Aλ) is an isomorphism, let ∂−λA denote its inverse.

Theorem 7.5. The A-hypergeometric systems MA(β) and MA(β′) are isomorphic if and only
if Eτ (β) = Eτ (β′) for all faces τ of A.

Proof. The proof of the ‘only-if’ direction holds as in [Sai01] without a homogeneity assumption
on A because it involves only the construction of formal solutions of MA(β).

For the ‘if’ direction, suppose that Eτ (β) = Eτ (β′) for all faces τ of A. As stated in [Sai01,
Proposition 2.2], EA(β) = EA(β′) implies by definition that β′ − β ∈ ZA, so β′ − β =Aλ for some
λ ∈ Zn. There are unique vectors λ+, λ− ∈ Nn with disjoint support such that λ= λ+ − λ−.
In light of Lemma 7.3, we may assume that both λ+ and λ− are non-zero. We claim that at least
one of ∂−λ−A ∂

λ+

A or ∂λ+

A ∂
−λ−
A defines an isomorphism from MA(β) to MA(β′).

If ∂λ+

A :MA(β)→MA(β +Aλ+) or ∂λ+

A :MA(β −Aλ−)→MA(β′) defines an isomorphism,
then the ‘only-if’ direction and Lemma 7.3 imply that ∂−λ−A ∂

λ+

A or ∂λ+

A ∂
−λ−
A , respectively, give the

desired isomorphism. We are left to consider the case when ∂λ+

A does not define an isomorphism
from either domain. By Lemma 7.2, this is equivalent to

β +Aλ+ ∈ qdeg(SA/〈∂λ+

A 〉) and β′ ∈ qdeg(SA/〈∂λ+

A 〉). (7.1)

From the right side of (7.1), we see that the non-empty face η := supp(λ−) is such that
β′ + Cη ⊆ qdeg(SA/〈∂λ+

A 〉), so Eη(β′) 6=∅. However, the shift Aλ+ in the left side of (7.1) implies
that (β + Cη) ∩ (NA+ Zη) =∅. Thus Eτ (β) =∅, which is a contradiction. 2

It is not yet understood how the holomorphic solution space of MA(β) varies as a function
of β; different functions of β suggest alternative behaviors. Walther showed in [Wal07] that the
reducibility of the monodromy of MA(β) varies with β in a lattice-like fashion. When the convex
hull of A and the origin is a simplex, Saito used the sets Eτ (β) to construct a basis of holomorphic
solutions of MA(β) with a common domain of convergence [Sai02]. Thus Theorem 1.3 and the
complementary relationship in Observation 7.1 between the Eτ (β) and the ranking lattices of
SA at β suggest that the ranking slabs give the coarsest stratification over which there could be
a constructible sheaf of solutions for the hypergeometric system.
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