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Shiing-Shen Chern was a towering figure in mathematics, both for his contributions
to differential geometry and as a source of inspiration and encouragement for all
mathematicians, and particularly those in China. Born in the final year of the
Qing dynasty, and educated at a time when China was only beginning to set up
Western-style universities, he lived to preside over the 2002 International Congress
of Mathematicians in Beijing. He was a co-founder of MSRI in Berkeley and its first
Director in 1981, and also set up the Nankai Institute for Mathematics in 1985. The
London Mathematical Society elected him as an Honorary Member on 16th May
1986.

1. Life

Shiing-Shen Chern was born on October 26th, 1911 in Jia Xin, Chekiang
Province, in China. His father practised law and worked for the government. At
Fu Luen Middle School in Tsientsin he first showed his mathematical ability by
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doing all the exercises in classical English textbooks on algebra and trigonometry,
and then went at the age of fifteen to Nankai University — a one-man Department
run by Li-Fu Chiang, a student of Coolidge. As a result he studied a great deal of
geometry, reading Coolidge, Salmon, Castelnuovo and Staude. He then became a
postgraduate in 1930 at Tsinghua University in Beijing (or Peiping as it was then
called) and came under the influence of Dan Sun, one of the few mathematicians in
China writing research papers. During this period he became seriously interested
in Sun’s subject, projective differential geometry, and studied in detail the works
of Wilhelm Blaschke. It was also at Tsinghua that he met his wife Shih-Ning, the
daughter of a professor. After Blaschke paid a visit to Tsinghua in 1932 and lectured
on differential-geometric invariants, Chern won a fellowship to study with him in
Hamburg for two years. In 1936 he received his DSc there for work on the theory
of webs. While in Hamburg, he also attended the lectures of Kähler on what is now
called Cartan–Kähler theory, and the following year he spent in Paris studying with
Cartan himself.

The year in Paris was formative, because his interaction with Cartan introduced
Chern to notions which are now standard in differential geometry, but which
few people understood then. As he later remarked: “Without the notation and
terminology of fibre bundles, it was difficult to explain these concepts in a
satisfactory way”, but clearly Chern absorbed Cartan’s methods, as his papers of
the time show. Cartan lectured on exterior differential systems, and Chern visited
him at his home every other week for discussions. The Julia seminar that year was
also devoted to Cartan’s work, and Chern there met André Weil and other young
French mathematicians.

In the summer of 1937, he crossed the Atlantic, the United States and the Pacific
to take up the position of Professor at Tsinghua, only to be faced with the outbreak
of the Sino-Japanese war. His university had moved, together with Peking and
Nankai University, to Kunming. There, despite the deprivations of war and the
lack of communication with the outside world, he found the time to pore over
Cartan’s work and form his own vision of where geometry should be going. He also
taught many students who later made substantial contributions in mathematics and
physics — one such was C. N. Yang of Yang–Mills fame. He was already known
internationally when in 1943 he was able, via a chain of military flights through
India, Africa, Brazil and Central America, to make his way to the Institute for
Advanced Study in Princeton.

In Princeton, Weyl and Veblen were well aware of his papers. It was a quiet
place at the time because of the absences due to war work, but he made contact
with Chevalley and Lefschetz and also with Weil in nearby Lehigh University. They
had a common background in having studied Cartan and Kähler and, in Weil’s
words 〈5〉, “. . . we seemed to share a common attitude towards such subjects, or
towards mathematics in general; we were both striving to strike at the root of each
question while freeing our minds from preconceived notions about what others
might have regarded as the right or the wrong way of dealing with it.” Discussions
with Weil revealed the properties of characteristic classes, all expressed in terms of
sphere bundles, as vector bundles were as yet unheard of. Weil explained to Chern
the Todd–Eger classes, derived in the spirit of Italian geometry. These discussions
provided the foundation of Chern’s most famous work on characteristic classes, and
at the time they emerged in his new intrinsic proof [25] of the general Gauss–Bonnet
theorem — by his own account, one of his favourite theorems 〈4〉.
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When the war ended in 1945, Chern began his return to China but only reached
Shanghai in March 1946. There, he was given the task of setting up an Institute of
Mathematics as part of the Academia Sinica. He did this very successfully, nurturing
several outstanding mathematicians, but Nanjing, where the Institute was located,
was getting more and more dangerous in the turmoil of the civil war. Weil, now in
Chicago, and Veblen and Weyl in Princeton, were getting concerned about his fate
and both Chicago and the Institute offered him visiting positions, and then a full
professorship at Chicago. So in 1949 he returned to the USA, this time with his
family, to spend most of his working life there.

Chern’s work in Nanjing and Chicago became quite topological, there being
several papers on the topology of fibre bundles, some with Spanier, as well as
differential geometric applications. His talk at the 1950 International Congress [50]
shows how far the interaction of differential geometry and topology had come by
this time. This is a thoroughly modern statement, a million miles from the work of
fifteen years earlier. Chern’s students in Chicago included K. Nomizu, L. Auslander
and J. Wolf.

In 1960, Chern took up a Professorship in Berkeley — an expanding department
and a milder climate made the move attractive. He immediately started a differential
geometry seminar (which of course continues to this day), and he attracted visitors
both young and old. P. A. Griffiths started his collaborations as a graduate student
‘sent to learn from Chern’, as did J. Simons, M. do Carmo and many others. His
own PhD students included S.-T. Yau, A. Weinstein, P. Li, J. Millson and many
more.

Although approaching retirement, in 1978 Chern, together with I. M. Singer
and C. Moore, prepared a response to the NSF’s request for proposals for
a Mathematical Institute to reflect the “need for continued stimulation of
mathematical research” in an environment that regarded American mathematics to
be in a ‘golden age’. Approval came in 1981, and Chern became the first Director of
MSRI from 1982 until 1985. It was of course a huge success, but Chern continuously
supported it in many ways, not least from the proceeds of his 2004 Shaw prize. The
new building at MSRI is, naturally, named Chern Hall.

Chern’s interest in Chinese mathematicians continued throughout his years in
the USA. He had an aim: “Chinese mathematics must be on the same level as
its Western counterpart, though not necessarily bending its efforts in the same
direction.” During the 1980s, he initiated three developments in China: an
International Conference on Differential Geometry and Differential Equations, the
Summer Education Centre for Postgraduates in Mathematics, and the Chern
Programme, aimed at organizing Chinese postgraduates in mathematics for further
study in the United States. In 1984, he was invited by China’s Ministry of Education
to return to his alma mater, Nankai University, to create the Nankai Research
Institute of Mathematics. A residence, ‘The serene garden’, was built by the
University for Chern, and he and his wife lived there every time they returned
to China. While he was the Director, he invited many overseas mathematicians to
visit; he donated more than 10,000 books to the Institute, and his $50,000 Wolf
Prize to Nankai University.

In 1999 he finally returned to China for good, and the MSRI held a farewell party
for him, at which Chern said: “The study of mathematics should be an undertaking
of youngsters. There’s nobody else my age that’s still working on frontier research
in mathematics around the world. I have a simple belief: it’s that I still want to do
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something for the development of mathematics during the remainder of my life.”
In fact, he did continue to do mathematics, and just before his death was grappling
with an old problem about the existence or otherwise of a complex structure on
the 6-sphere, but perhaps the best testament to his achievement in his final years
was sitting next to President Jiang Zemin in the Great Hall of the People, at the
opening of the 2002 International Congress of Mathematicians.

Chern received many awards for his work, including the US National Medal of
Science in 1975, the Wolf Prize in Mathematics in 1983, and the Shaw Prize in
2004. He was elected a Foreign Member of the Royal Society in 1985.

Shiing-Shen Chern died in Tianjin, China on December 3rd 2004, aged 93. His
wife of 61 years, Shih-ning, had died four years earlier. He is survived by a son,
Paul, and a daughter, May Chu.

2. Mathematical work

2.1. Characteristic classes

Chern’s proof of the general Gauss–Bonnet theorem [25] was a pivotal event in
the history of differential geometry, not just for the theorem itself but for what it led
to — in particular, the Chern classes. Recall the classical theorem of the same name
for a closed surface in R

3: it states that the integral of the Gaussian curvature is 2π
times the Euler characteristic. This link between curvature and topology has several
features: one is Gauss’s theorema eregium, which says that the Gauss curvature,
while ostensibly defined by the second fundamental form, which measures the way
in which the surface sits in Euclidean space, is in fact intrinsic and determined
by the first fundamental form, or metric, and its derivatives. So, clearly, whatever
its integral is depends only on the intrinsic geometry. On the other hand, there
is a very natural and useful extrinsic interpretation of this integral as the degree
of the Gauss map: the unit normal to the surface at each point defines a map
to the 2-sphere, and its topological degree is the invariant. The problem was to
extend this result to (even-dimensional) manifolds in higher dimension. In 1926
H. Hopf had generalized the Gauss map approach to hypersurfaces in R

n , but to
put the intrinsic problem in context, one should recall that even the definition of
a manifold was only formulated correctly by Whitney in 1936, and Cartan even in
1946 considered that“the general notion of manifold is quite difficult to define with
precision”. Basic properties such as embedding in Euclidean space, or existence of
triangulations, had not been established. Allendoerfer and Weil 〈1, 2〉 had in 1943
given a proof for manifolds embedded in Euclidean space with higher codimension:
this used Weyl’s formula for the volume of tubes: in modern language this can be
interpreted as a generalization of the Gauss map from the unit normal bundle to
a sphere. It was still an extrinsic proof, but the integrand was recognized to be
intrinsic.

Chern’s proof was entirely intrinsic — he used the unit tangent sphere bundle of
the manifold and identified a natural differential form α on it. Its exterior derivative
dα has a number of terms, one of which is the correct curvature integrand on the
manifold itself. He then applies Hopf’s theorem relating the index of a vector field
to the Euler characteristic — the vector field in modern language gives a section
of the sphere bundle outside the singular points, and Chern shows that the extra
terms in dα do not contribute in the integral.
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The novel content came from studying the intrinsic tangent sphere bundle, and
using the exterior differential calculus that Chern had learned at the hands of
Cartan. It provided a link between topology and differential geometry at a time
when the very basics of the topology of manifolds were being laid down. In fact, he
wrote several papers on the geometry and topology of fibre bundles [32, 38, 42–44],
at the same time and often independently of topologists such as Steenrod, but he
was always interested in geometrical interpretations. Given the focus over the past
25 years in four-dimensional Riemannian geometry, it is interesting to see Chern
introducing ‘a new topological invariant’ for four-manifolds [30], without knowing
that it is the signature, and in [53] discussing the formula relating this invariant
and the Euler characteristic in what is now called the ‘self-dual case’.

The successful attack on the Gauss–Bonnet theorem led him to study the
other invariants of sphere bundles, to see whether curvature could represent
them. He started with Stiefel–Whitney classes, but their mod 2 property “seemed
to be a mystery” 〈5〉, and Pontryagin classes were not known then, so he
moved into Hermitian geometry and discovered the famous Chern classes [32],
whose importance in algebraic geometry, topology and index theory cannot be
overestimated.

Chern consistently wrote about connections and curvature, absorbing the Weil
approach through invariant polynomials on the Lie algebra to generalize to principal
bundles, and — once vector bundles had replaced sphere bundles — he gave in [82]
perhaps the cleanest description of covariant derivatives and characteristic classes,
at the same time as solving problems in higher-dimensional complex geometry.

Throughout his work on characteristic classes and curvature, Chern was always
concerned with the geometry of forms living on fibre bundles. Perhaps this came
from the recognition that his early work with Cartan was really concerned with
this, though the language was not then available. In any event, he recognized
that there was more than just the topological characteristic class to be obtained,
and this emerged in a strong form in his work with J. Simons on Chern–
Simons invariants. Nowadays, the Chern–Simons functional is an everyday tool for
theoretical physicists, but in the first papers [102, 108] it was related to problems
of obstructions to conformal immersion.

2.2. Geometrical structures, connections and differential equations

Chern’s early work was influenced by Blaschke and Cartan, and involves the
consideration of differential geometries more general than Riemannian geometry,
often associated with distinguished families of submanifolds. Some of this was
motivated by attempts to extend general relativity — for example, Weyl geometry
and path geometry. The latter considers a manifold which has a distinguished
family of curves on it which behave qualitatively like geodesics: given a point and
a direction, there is a unique curve of the family passing through the point and
tangent to the direction. Veblen and his school in Princeton had worked on this,
and it was through this work that they probably first heard of Chern. There is a close
relation with projective structures, and there are curvature-type local invariants.
Cartan studied the differential equation y′′ = F (x, y, y′), where F is a polynomial
in y′ of degree three, by these methods, using a natural projective connection over
a two-dimensional space, but the general case, and a higher-order equation studied
by Chern in [6, 13], involved a connection over a fibre bundle. Chern’s papers
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follow Cartan very closely, with the then terminology of ‘infinitesimal displacement
of elements’, which makes the subject difficult to understand nowadays.

Families of submanifolds of higher dimension were considered, particularly ‘webs’,
which was Blaschke’s subject when he originally visited China. In modern language,
a web is a family of foliations in general position, but there are again local
diffeomorphism invariants of curvature type. Later in his career, Chern collaborated
with Griffiths [115, 116, 118] on a web-related problem in algebraic geometry —
an algebraic curve of degree d in projective n-space meets a generic hyperplane in
d points. By duality this gives a d-web of hyperplanes in the dual space.

Curvature invariants in another aspect of holomorphic geometry came up in his
work with J. Moser [110] on the geometry of real hypersurfaces of C

n , picking up
on a problem once considered by Cartan.

These higher-order connections are only gradually being understood nowadays,
but they were undoubtedly formative in Chern’s mathematical development, in
particular in formalizing geometrical objects as connections on intrinsically defined
bundles far more general than the tangent bundle.

The study of these connections, especially when formulated in the language of
exterior differential systems, leads continuously into the Cartan–Kähler theory,
and Chern has written a number of papers on this [133, 147, 156]. When, in
the mid-1970s, soliton equations such as the KdV equation, together with its
Bäcklund transformations, began to be studied in this way, he was well-prepared to
apply these methods [119, 124, 132, 144]. His knowledge of classical differential
geometry, not unexpectedly, also enabled him to recognize the geometrical origins
of the sinh–Gordon equation [128].

2.3. Euclidean geometry

The classical differential geometry of surfaces in Euclidean space still carries
unsolved problems, and most differential geometers are attracted to some aspect of
this — Chern was no exception. His main interest was in global properties, and in
particular the use of holomorphic methods. It is well known that any metric in two
dimensions can, by choosing isothermal coordinates (x, y), be written in the form
h(dx2 + dy2), and then the complex parameter z = x + iy gives a surface in R

n ,
the structure of a Riemann surface. The proof of this, with appropriate regularity
conditions, was somewhat obscure until Chern gave an elementary proof using the
Cauchy kernel [55, 57] and then put the method to use in globally characterizing
the sphere among surfaces where there is a functional relationship between the
mean curvature and the Gaussian curvature [58].

The holomorphic aspect came to the fore also in his proof in [81] that the
Gauss map of a minimal surface in R

n (which goes into the Grassmannian G(2, n),
a complex manifold) is antiholomorphic. Using this, he generalized to higher
dimensions the Bernstein theorem that says that a minimal graph z = f(x, y)
defined on the whole of R

2 must be a plane.
Another Euclidean area of research linking curvature and topology is the

generalization by Chern and Lashof [62, 66] of Fenchel’s theorem of 1929, that
the integral of the curvature of a closed curve is at least 2π. They use the same
Gauss map as Allendoerfer and Weil for a manifold in R

n , and pull back the absolute
value of the volume form — for Gauss–Bonnet in R

3 the integrand changes sign.
In this case they obtained a lower bound for the integral in terms of the sum of the
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Betti numbers, and they discuss the cases where equality holds. This generated a
whole area of study of taut and tight submanifolds.

2.4. Other contributions

In a life as long and full as Chern’s, there are many more, highly significant,
contributions — on holomorphic mappings, minimal submanifolds, G-structures
and Hodge theory. He also returned to some favourite themes over the decades.
One was Blaschke’s use of integral geometry and generalizations of the attractive
Crofton’s formula which measures the length of a curve by the average number of
intersections with a line [14, 16, 18].

Another was the subject of Finsler metrics. In a retrospective millennial paper
‘Back to Riemann’ [185], he pointed out: “In 1948 I published a paper solving the
problem of equivalence of Finsler manifolds . . . the paper was summarized in Rund’s
book and has been otherwise completely ignored.” Riemann originally suggested an
arbitrary norm on the tangent space, but decided to consider only one coming from
an inner product because the calculations were simpler. Chern’s exposure to other
types of geometries and connections other than the Levi–Civita connection led to a
number of papers exploring this geometrical structure, and (working together with
with Bao and Shen) to the book [184]. There is indeed now a certain resurgence in
the area, and it demonstrates once again the breadth of Chern’s view of geometry,
and his ability to isolate new and interesting developments.
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