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Abstract

In this paper we describe methods for randomly thinning certain classes of spatial
point processes. In the case of a Markov point process, the proposed method involves
a dependent thinning of a spatial birth-and-death process, where clans of ancestors
associated with the original points are identified, and where we simulate backwards
and forwards in order to obtain the thinned process. In the case of a Cox process, a
simple independent thinning technique is proposed. In both cases, the thinning results
in a Poisson process if and only if the true Papangelou conditional intensity is used, and,
thus, can be used as a graphical exploratory tool for inspecting the goodness-of-fit of a
spatial point process model. Several examples, including clustered and inhibitive point
processes, are considered.
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1. Introduction

A useful graphical method for inspecting a fitted model λ̂ for the conditional intensity λ of
a temporal or space–time point process, where the conditioning is based on all observations at
all previous times, is via random thinning. This technique, described in Schoenberg (2003),
involves keeping each point τi independently with a probability proportional to λ̂(τi). If the
true conditional intensity λ is used in place of λ̂, then the resulting process is a homogeneous
Poisson process (see Schoenberg (2003)). The residual points, obtained after thinning using
the estimate λ̂ in place of λ, may readily be inspected for homogeneity using standard methods.

The question of how to extend this technique to the case of a purely spatial point process
remains open. For example, Markov (or Gibbs) point processes are characterized by their
Papangelou conditional intensities, where the conditioning is based on the observations at all
other locations; see, e.g. Ripley and Kelly (1977) and Baddeley and Møller (1989). While
Schoenberg (2005) conjectured that a thinning method similar to that used for space–time point
processes should be valid for purely spatial point processes as well, this conjecture was shown
in Baddeley et al. (2005, p. 664) to be false. Schoenberg and Zhuang (2008) introduced a
method for thinning spatial point processes based on considering all possible subsets of points
and selecting among these subsets with the appropriate probability, but this method relies
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on certain rather restrictive assumptions and also, since it requires O(2n) computations for
thinning a point pattern consisting of n points, is excessively computationally intensive and
impractical for all but very small values of n. Furthermore, the method of Schoenberg and
Zhuang (2008) only applies to spatial point processes with known Papangelou intensities, but
not to many important classes of point processes, including Cox processes (see Cox (1955)),
whose Papangelou intensities may be intractable.

Here, we introduce alternative methods for thinning a spatial point process X. For simplicity
and specificity, we assume that X is finite, simple (i.e. has no multiple points), and defined on a
bounded Borel set S ⊂ R

k (k ∈ {1, 2, . . .}) so that X can be considered as a random subset of S.
This setting covers most cases of practical interest, but our methods can easily be extended both
to nonsimple Markov point processes defined on a general state space and using an exponential
state space setting (see Carter and Prenter (1972), Preston (1977), and Ripley and Kelly (1977)),
and to nonsimple Cox processes which may be defined on R

k or more complicated state spaces.
For background material on spatial point processes, particularly Markov point processes and
Cox processes, see Møller and Waagepetersen (2004), (2007) and the references therein.

In Section 2 we consider the case where X is a Markov point process and λ(x, ξ) denotes its
Papangelou conditional intensity, which is assumed to be bounded from below by a nonnegative
deterministic function ρ(ξ) for all finite point configurations x ⊂ S and points ξ ∈ S \ x. We
consider X = X0 as an equilibrium state of a spatial birth-and-death process Xt at time 0, and
we consider coupling this with another spatial birth-and-death process Wt with equilibrium
distribution given by a Poisson process with intensity function ρ such that Wt ⊆ Xt for all
times t ∈ R. The proposed method involves first simulating Xt backwards for t ≤ 0. At the ith
jump backwards in time, with respect to the neighbour relation used for defining the Markov
point process, we identify the ith generation ancestors associated with the points in X, and
the simulation is stopped the first time T before time 0 such a generation is empty. Second,
WT = ∅ is the empty point configuration, and we use a dependent thinning technique to obtain
Wt for T ≤ t ≤ 0. This procedure has some similarity to perfect simulation algorithms for
spatial point processes (see Kendall (1998), Kendall and Møller (2000), and Fernández et al.
(2002)), but in contrast these algorithms assume an upper bound V (ξ) ≥ λ(x, ξ) (the so-called
local stability condition) and use this to couple Xt with a birth-and-death process Dt such that
Xt ⊆ Dt, t ∈ R, and each Dt is a Poisson process with intensity function V . In fact, our
procedure needs only to first simulate the jump chain of births and deaths for Xt with t running
from time 0 to time T , then examine what happens at these jump times in Wt with t running
from T to 0, and finally return W0. We illustrate how this works for an area-interaction point
process (see Baddeley and Van Lieshout (1995)).

In Section 3 we consider the case where λ(ξ) is a nonnegative random function, X is a Cox
process driven by λ, and λ is bounded from below by a nonnegative deterministic function ρ

(note that λ is hence not the Papangeleou conditional intensity of X). This case is much simpler,
since X can be viewed as a superposition of a Cox process driven by λ − ρ and an independent
Poisson process with intensity function ρ. We show how an independent thinning technique
applies to obtain a Poisson process with intensity function ρ. This is illustrated in the case of
a modified Thomas process (see Thomas (1949)).

Our main result is the following.

Theorem 1. For both a Markov point process and a Cox process model, the thinning results
in a Poisson process with intensity function ρ if and only if the true λ is used.
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A consequence of Theorem 1 is that thinning can be used as a graphical exploratory tool for
visualizing the fit of a spatial point process model. In Sections 2.4 and 3.3 we show illustrations,
using the L-function to check if the thinned process is Poisson. The L-function is a stabilized
variance version of Ripley’s K-function (see Ripley (1976), (1977)) and both can be extended
to the inhomogeneous case (see Baddeley et al. (2000)), though many other techniques for
checking whether a point process is Poisson have been developed; see, e.g. Cressie (1993) and
Stoyan et al. (1995). In practical applications, in both Bayesian and frequentist settings, λ is
typically replaced by an estimate λ̂ (for a discussion on how such estimates can be obtained,
see Møller and Waagpetersen (2004), (2007) and the references therein), but, for simplicity and
specificity, in all examples we consider simulated data where the true λ is known and hence not
estimated.

2. Thinning Markov point processes

Suppose that X has a density f with respect to the homogeneous Poisson process on S with
intensity equal to unity. We assume that f is hereditary, that is, f (x ∪ {ξ}) > 0 whenever
f (x) > 0 for a finite point configuration x ⊂ S and a point ξ ∈ S \ x. The Papangelou
conditional intensity (see Kallenberg (1984)) is defined by

λ(x, ξ) = f (x ∪ {ξ})
f (x)

,

where the hereditary condition ensures that f and λ are in a one-to-one correspondence. (Here
and throughout this paper, we use the convention that 0/0 = 0.) Heuristically, λ(x, ξ) dξ can
be interpreted as the conditional probability of X having a point in an infinitesimally small
region containing ξ and of size dξ given that the rest of X is x.

Let ‘∼’ denote a symmetric relation on S, and let Nξ = {η ∈ S : ξ ∼ η} denote the
neighbours to ξ ∈ S. If, for any finite x ⊂ S and ξ ∈ S \ x, λ(x, ξ) depends only on ξ and
Nξ , then X is said to be a Markov point process (with respect to ‘∼’); cf. Ripley and Kelly
(1977) and Van Lieshout (2000). Obviously, any hereditary density f defines a Markov point
process if we let all pairs of points be neighbours (ξ ∼ η for all ξ, η ∈ S), but, as we note in
Sections 2.3–2.4, we have much more restricted relations in mind.

2.1. Lower bound on the Papangelou conditional intensity

Assume that, for any finite x ⊂ S and ξ ∈ S \ x,

λ(x, ξ) ≥ ρ(ξ) ≥ 0, (1)

where ρ is a (deterministic) Borel function. Since the Poisson process with intensity function ρ

is considered below, in order to avoid the trivial case where this process is almost surely empty,
we also assume that the Lebesgue integral

∫
S

ρ(ξ) dξ is positive. Thus (1) is a rather strong
condition on λ. For example, pairwise interaction processes are in general excluded; cf. the
Strauss process, the hard-core Gibbs point process, and many other examples in Baddeley
and Møller (1989), Van Lieshout (2000), and Møller and Waagepetersen (2004). However,
condition (1) is satisfied for a saturation process (see Geyer (1999)) and for the area-interaction
point process studied in Section 2.4.

2.2. Coupling

Consider a spatial birth-and-death process (Xt ; t ∈ R) with birth rate λ and death rate
equal to unity, whereby (Xt ; t ∈ R) is reversible with respect to the equilibrium distribution
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specified by f (see Preston (1977) and Ripley (1977)). Let Xt− denote the state just before
time t . The spatial birth-and-death process is a jump process, i.e. it is a continuous-time Markov
process where a jump at time t is either a birth Xt = Xt− ∪ {ξ} of a new point ξ or a death
Xt = Xt− \ {η} of an old point η ∈ Xt−. If the process is in a state x (a finite subset of S) after
a jump, the waiting time to the next jump is exponentially distributed with mean 1/A(x), where
A(x) = B(x)+n(x), B(x) = ∫

S
λ(x, ξ) dξ , and n(x) is the number of points in x. Conditional

on t being a jump time and Xt− = x, a birth Xt = x∪{ξ} happens with probability B(x)/A(x),
in which case the newborn point ξ has density λ(x, ξ)/B(x), otherwise a death Xt = x \ {η}
happens, where η is a uniformly picked point from x. For the present paper, as we describe in
Section 2.3, we need to generate only a finite number of jumps of Xt for t ≤ 0.

Assume that ∅ (the empty point configuration) is an ergodic state of (Xt ; t ∈ R). This
condition implies that f specifies the unique equilibrium distribution; see Preston (1977), where
examples satisfying this condition are discussed. For instance, ergodicity of ∅ is implied by
the local stability condition,

λ(x, ξ) ≤ V (ξ), (2)

where V is an integrable function. In turn (2) is satisfied for most models used in practice; see
Møller and Waagepetersen (2004, Section 6.1.1).

Suppose that X = X0 follows f , and imagine that we have generated Xt forwards for
t ≥ 0 and backwards for t ≤ 0 (by reversibility, the same generation can be used forwards
and backwards). We can then couple (Xt ; t ∈ R) with a lower spatial birth-and-death process
(Wt ; t ∈ R) obtained as follows. Each time t where Xt = ∅ is a regeneration time, and then we
set Wt = ∅. These regeneration times split ((Xt , Wt ); t ∈ R) into independent and identically
distributed cycles, and so it suffices to consider the generation of (Wt ; t ∈ R) within each
cycle. If a birth Xt = Xt− ∪{ξ} happens then, with probability ρ(ξ)/λ(x, ξ) (independently of
what else has happened at previous jump times), we let Wt = Wt− ∪ {ξ}, otherwise Wt = Wt−
is unchanged. If a death Xt = Xt− \ {η} happens then we let Wt = Wt− \ {η} (meaning that
Wt = Wt− is unchanged if η 	∈ Wt−). Thereby (Wt ; t ∈ R) is a spatial birth-and death process
with birth rate ρ and death rate equal to unity, and W0 is then a Poisson process on S with
intensity function ρ (see Appendix G of Møller and Waagepetersen (2004)). Thus, Theorem 1
follows in the case of a Markov point process satisfying condition (1) (strictly speaking, the
Markov property of the point process is not of importance; all that is required is that the density
is hereditary and that (1) holds). Clearly, Wt ⊆ Xt for all t ∈ R.

2.3. Dependent thinning procedure

As above, suppose that (1) is satisfied and ∅ is an ergodic state of the spatial birth-and-death
processes (Xt ; t ∈ R), where X = X0 follows f . Assume also that X is a Markov point process
(see Section 2.1). We can then generate the Poisson process W0 with intensity function ρ within
a random but finite number of steps, as described below.

Denote by Z0, Z1, . . . the jump chain of (Xt ; t ≤ 0) considered backwards in time, meaning
that Z0 = X0, Z1 is the state just before the first jump time before time 0 occurs, and so
on. Similarly, define Y0, Y1, . . ., again in reverse chronological order, as the jump chain of
(Wt ; t ≤ 0). Let G0 = Z0, and, for i = 1, 2, . . ., define recursively the ith generation
ancestors of X by

Gi = {ξ ∈ Zi : Nξ ∩ Gi−1 	= ∅}.
Since ∅ is an ergodic state, we can define a discrete nonnegative random variable I by I = 0
if X = ∅, and G0 	= ∅, . . . , GI−1 	= ∅, GI = ∅ otherwise. We also define a discrete
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nonnegative random variable J by J = 0 if X = ∅, and Z0 	= ∅, . . . , ZJ−1 	= ∅, ZJ = ∅

otherwise.
Now, the dependent thinning procedure works as follows. If X0 = ∅ then simply W0 = ∅.

In most practical applications we expect X0 = ∅ to be a very unlikely event. Below we assume
that X0 	= ∅.

First, for each i = 1, . . . , I , simulate Zi and determine Gi . Here we use the fact that,
conditional on Zi−1 = x, a (backwards) birth Zi = x∪{ξ} happens with probability B(x)/A(x),
in which case the newborn point ξ has density λ(x, ξ)/B(x), otherwise a (backwards) death
Zi = x \ {η} happens, where η is a uniformly picked point from x. This requires the evaluation
of the function B(x), which may necessitate numerical integration.

Second, considering the jump chain for the lower birth-and-death process forwards in time,
set YI = ∅, and, for i = I − 1, . . . , 0, generate Yi in the same way as in the coupling
construction in Section 2.2, but where of course we only need to consider the ancestors
of X, since all other points will be irrelevant for the output W0. Specifically, for i = I −
1, . . . , 1, let Ui be a uniform random variable on [0, 1] which is independent of what has so
far been generated forwards from step I to step i; that is, (ZI , ZI−1, YI ) if i = I − 1, and
(ZI , . . . , Zi, YI , . . . , Yi+1, UI−1, . . . , Ui+1) if i < I − 1. Then

• if Zi = Zi+1 ∪ {ξi} is a (forwards) birth and Ui ≤ ρ(ξi)/λ(Zi+1, ξi), then Yi = Yi+1 ∪
{ξi}, and Yi = Yi+1 otherwise;

• if Zi = Zi+1 \ {ηi} is a (forwards) death then Yi = Yi+1 \ {ηi}.
Thereby we can return W0 = Y0 within the 2I steps given above. In many applications, the

mean value of J might be extremely large (see Berthelsen and Møller (2002)). In the extreme
case where all points are neighbours, I = J . However, in most application examples, I � J .
See Fernández et al. (2002) and Berthelsen and Møller (2002).

2.4. Example: area-interaction point process

For S a bounded planar region, the area-interaction point process X has Papangelou condi-
tional intensity

λ(x, ξ) = βγ −|b(ξ,r)\∪η∈xb(η,r)|, (3)

where β, γ , and r are positive parameters, | · | denotes the area, and b(ξ, r) is the disc with
radius r centred at ξ (see Baddeley and Van Lieshout (1995)). For γ > 1, λ(x, ξ) is increasing
in x (the attractive case, originally studied by Widom and Rowlinson (1970)). For γ < 1,
λ(x, ξ) is decreasing in x (the repulsive case). For γ = 1, X is simply a homogeneous Poisson
process on S with intensity β. Consequently, both (1) and (2) are satisfied, with

ρ(ξ) = βγ −πr2
, V (ξ) = β, if γ ≥ 1

and
ρ(ξ) = β, V (ξ) = βγ −πr2

, if 0 < γ ≤ 1.

An inhomogeneous version of the area-interaction point process, satisfying (1) and (2), is
obtained by replacing all instances of β above with a nonnegative Borel function β(ξ), assuming
that

∫
S

β(ξ) dξ < ∞, which ensures the existence of the process. Clearly, no matter which
version is used, (3) implies that X is Markov with respect to the relation given by ξ ∼ η if and
only if b(ξ, r)∩b(η, r) 	= ∅, i.e. when the distance between ξ and η is less than or equal to 2r .

To illustrate the use of the proposed method as a graphical technique for inspecting the fit
of a spatial point process model, in Figures 1 and 2 we show examples of random thinnings of

https://doi.org/10.1239/aap/1275055232 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1275055232


352 • SGSA J. MØLLER AND F. P. SCHOENBERG

0.2

0.1

0.0

0.0 0.5 1.0 1.5 2.0

Distance, d

(d)

*
*
*
*

****

************
*
*
***
***************

**********

0.1

0.2

−

−

−
−

10

8

6

4

2

0
0 2 4 6 8 10

(c)

0.08

0.04

0.02

0.06

0.00

0.0 0.5 1.0 1.5 2.0

Distance, d

(b)

*
*

*
*

*
**
**
*
*
*
**
*
*
*****

**
****

*
*
*********************

0.02

0.04

10

8

6

4

2

0
0 2 4 6 8 10

(a)

Figure 1: Thinning of a simulated attractive area-interaction process on S = [0, 10] × [0, 10], with
γ = 103, β = 7, and r = 0.3. (a) The simulated area-interaction process, X. (b) The estimated centred
L-function corresponding to X, and the empirical pointwise 95% upper and lower envelopes obtained
by simulating 1000 homogeneous Poisson processes on [0, 10] × [0, 10], each with an expected number
of points equal to the number observed in X. (c) The thinned process W corresponding to X. (d) The
estimated centred L-function corresponding to W , and the empirical pointwise 95% upper and lower
envelopes from 1000 simulated homogeneous Poisson processes, each with an expected number of points

equal to the number observed in W .

simulated homogeneous area-interaction processes with γ > 1 and γ < 1, respectively. The
aggregation in the area-interaction process for γ > 1 can be seen in Figure 1(a) and is confirmed
in Figure 1(b), which shows the estimated centred L-function, L̂(d) − d, corresponding to the
realization in Figure 1(a), along with the pointwise 95% upper and lower envelopes based
on simulations of 1000 homogeneous Poisson processes whose rates are equivalent to those
observed by the process in Figure 1(a). Specifically, in terms of Ripley’s K-function (see
Ripley (1976), (1977)), L(d) = √

K(d)/π , where d > 0 denotes the distance, and we use

Ripley’s nonparametric estimate K̂ to obtain the estimate L̂(d) =
√

K̂(d)/π . Note that in
the special case of a stationary Poisson process, the centred L-function, L(d) − d, is equal
to 0. Figure 1(c) shows W , the random thinning of the process shown in Figure 1(a), using the
method described in Section 2.3. Here I = 4192, while we stopped the backward run after
107 iterations, so J > 107. The number of points has decreased from 330 in Figure 1(a) to
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Figure 2: The same four plots as in Figure 1, but for the inhibitive case where γ = 10−3, β = 1, and
r = 0.3. (a) The simulated area-interaction process, X. (b) The estimated centred L-function for X,
and the empirical pointwise 95% upper and lower envelopes obtained by simulating 1000 homogeneous
Poisson processes on [0, 10] × [0, 10], each with an expected number of points equal to the number
observed in the process X. (c) The thinned process W corresponding to X. (d) The estimated centred
L-function corresponding to W , and the empirical pointwise 95% upper and lower envelopes from 1000
simulated homogeneous Poisson processes on [0, 10] × [0, 10], each with an expected number of points

equal to the number observed in the process W .

96 in Figure 1(c). We see that several of the clusters of points in Figure 1(a) have been almost
completely removed in Figure 1(c). Figure 1(d), which shows the estimated L-function for the
thinned process in Figure 1(c), demonstrates that the clustering in the area-interaction process
with γ > 1 is removed by the thinning procedure, resulting in a homogeneous Poisson process,
and illustrates how this method may be used in practice in conjunction with the L-function as
a visualization tool for examining the fit of the model used in the random thinning.

Similarly, Figure 2 illustrates the random thinning of an area-interaction process with γ < 1.
The inhibition in Figure 2(a) may not be immediately obvious by eye, but Figure 2(b) and 2(d),
which show the estimated centred L-function for the realization of the area-interaction process
and its corresponding thinned process, demonstrate that the inhibition in the original process
is statistically significant, compared to the homogeneous Poisson process, for distances of
0.3 to 0.6, and that this inhibition is removed by the random thinning procedure. The thinning
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procedure allows the difficult task of examining the fit of a model for the clustering or inhibition
in a spatial point process model to be simplified to that of merely inspecting the homogeneity of a
thinned process. However, as these examples show, the thinned process may have substantially
fewer points than the original process, which results in a loss of information and an impediment
to the examination of homogeneity.

3. Thinning Cox processes

In the sequel, let λ(ξ) be a random nonnegative function defined for all ξ ∈ S such that,
conditional on λ, X is a Poisson process with intensity function λ. In other words, X is a Cox
process driven by λ. We assume that, almost surely,

∫
S

λ(ξ) dξ is finite, meaning that X is a
finite point process.

3.1. Lower bound on the random intensity

Assume that, with probability 1,

λ(ξ) ≥ ρ(ξ) ≥ 0, (4)

where, as in Section 2, ρ is a (deterministic) Borel function with
∫
S

ρ(ξ) dξ > 0. Condition (4)
implies that X can be viewed as the superposition Q∪R of a Cox process Q driven by γ = λ−ρ

and an independent Poisson process R with intensity function ρ. For example, γ may be log
Gaussian and Q then a log Gaussian Cox process (see Møller et al. (1998)), or a shot noise
process and Q then a shot noise Cox process (see Møller (2003)).

3.2. Independent thinning procedure

If λ were known then we could directly obtain a Poisson process W on S with intensity
function ρ as an independent thinning of X with retention probabilities ρ(ξ)/λ(ξ). Indeed,
since conditional on λ, the independent thinning X is a Poisson process with intensity function
ρ, and W is a Poisson process independent of λ and with intensity function ρ. This verifies
Theorem 1 in the case of a Cox point process satisfying condition (4).

In practice we usually only observe a realization of X = x, and, hence, we first need to
generate λ conditional on X = x. Hence, the independent thinning procedure works by

• firstly generating a realization of λ conditional on X = x;

• secondly generating W as an independent thinning of X with retention probabilities
ρ(ξ)/λ(ξ), ξ ∈ x.

How to simulate λ conditional on X = x depends on the particular model. For example, if
γ is log Gaussian, a Langevin–Hastings algorithm can be used (see Møller et al. (1998) and
Møller andWaagepetersen (2004, Section 10.2.3)), and if γ is a shot-noise process, a birth–death
Metropolis–Hastings algorithm applies (Møller (2003) and Møller and Waagepetersen (2004,
Section 10.2.2)). We run one of these Metropolis–Hastings algorithms until it is effectively in
equilibrium, and then return an (approximate) simulation of λ conditional on X = x.

3.3. Example: Thomas process

Let S be a bounded planar region, and let Q be a modified Thomas process (see Thomas
(1949)), i.e. a Cox process driven by

γ (ξ) = ω
∑
η∈


ϕ(ξ − η), ξ ∈ S,
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Figure 3: Thinning of a simulated superposition of a homogeneous Poisson process with rate ρ = 6
and a Thomas process on S = [0, 10] × [0, 10] with κ = 2, ω = 3, and σ = 0.2. (a) The simulated
superposition, X. (b) The estimated centred L-function for X, and the empirical pointwise 95% upper
and lower envelopes obtained via 1000 simulated homogeneous Poisson processes, each with an expected
number of points equal to the number observed in X. (c) The thinned process W corresponding to X.
(d) The estimated centred L-function for W , and the empirical pointwise 95% upper and lower envelopes
obtained via 1000 simulated homogeneous Poisson processes, each with an expected number of points

equal to the number observed in W .

where ϕ is the bivariate normal density with mean 0 and covariance matrix σ 2I , 
 is a
homogeneous Poisson process with intensity κ defined on a bounded Borel set Sext ⊇ S, and
ω, σ , and κ are positive parameters. Here Sext is chosen sufficiently large that edge effects can
effectively be ignored; see Møller (2003) and Møller and Waagepetersen (2004, Section 5.5).
In the following examples,

S = [0, 10] × [0, 10] and Sext = [−10, 20] × [−10, 20].
As an illustration, Figure 3 shows the thinning of the superposition X = Q ∪ R when the

Poisson process R has constant rate ρ = 6 and the Thomas process has parameters (κ, ω, σ ) =
(2, 3, 0.2). We see from Figure 3(b) that the process is highly clustered, which is a result
of the fact that points tend to be clustered around the cluster centres 
. Figure 3(c) shows
the corresponding thinned process using the method described in Section 3.2, and the centred
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Figure 4: Thinning of a simulated superposition of an inhomogeneous Poisson process and Thomas
process on S = [0, 10]×[0, 10], where the Poisson process has intensity function ρ(x, y) = exp(ax+by)

with (a, b) = (0.1, 0.2), and the Thomas process has parameters (κ, ω, σ ) = (1, 5, 0.5). (a) The
simulated superposition, X. (b) The thinned process W corresponding to X. (c) The centred
estimate of the inhomogeneous L(d) corresponding to W , using intensity ρ, and the pointwise 95%
upper and lower envelopes based on the normal approximation in Veen and Schoenberg (2005),
i.e. ±1.96

√
2π102d/ E(#R), where E(#R) = ∫

S ρ(x, y) dx dy = [exp(10a) − 1][exp(10b) − 1]/(ab)

is the expected number of points in the Poisson process R.

L-function estimate in Figure 3(d) verifies the homogeneity of the resulting thinned process
and, thus, confirms that the clustering in the initial point process was accurately characterized.

We may also consider an inhomogeneous version where ρ(ξ) depends on ξ . For instance,
Figure 4(a) shows a simulation of such a process with ρ(x, y) = exp(ax+by), where (x, y) are
the Cartesian coordinates of ξ . Unlike the previous examples, in this case the thinned process
is an inhomogeneous Poisson process with intensity function ρ, rather than a homogeneous
Poisson process. Figure 4(b) shows the resulting thinned process, and Figure 4(c) displays a
centred version of the estimated inhomogeneous L-function (see Baddeley et al. (2000) and
Veen and Schoenberg (2005)), confirming that the process in Figure 4(c) is an inhomogeneous
Poisson process. Figures 3 and 4 illustrate how the random thinning method may be used in
practice, in conjunction with the L-function or other standard graphical tools for inspecting
clustering and inhibition, as a graphical tool for inspecting the fit of a spatial point process
model. An important area for future work is the comparison of the methods proposed here to
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alternative graphical tools for point process residual analysis, such as the rescaled residuals
used in Schoenberg (2003) and the quadrat residuals described in Baddeley et al. (2005).
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