Canad. Math. Bull. Vol. **59** (3), 2016 pp. 521–527 http://dx.doi.org/10.4153/CMB-2016-002-3 © Canadian Mathematical Society 2016

The Relationship Between ϵ -Kronecker Sets and Sidon Sets

Kathryn Hare and L. Thomas Ramsey

Abstract. A subset *E* of a discrete abelian group is called ϵ -Kronecker if all *E*-functions of modulus one can be approximated to within ϵ by characters. *E* is called a Sidon set if all bounded *E*-functions can be interpolated by the Fourier transform of measures on the dual group. As ϵ -Kronecker sets with $\epsilon < 2$ possess the same arithmetic properties as Sidon sets, it is natural to ask if they are Sidon. We use the Pisier net characterization of Sidonicity to prove this is true.

1 Introduction

A subset *E* of the dual of a compact, abelian group *G* is called an ϵ -*Kronecker set* if for every function ϕ mapping *E* into the set of complex numbers of modulus one, there exists $x \in G$ such that

 $|\phi(\gamma) - \gamma(x)| < \epsilon$ for all $\gamma \in E$.

The infimum of such ϵ is called the *Kronecker constant* of *E* and is denoted $\kappa(E)$. Trivially, $\kappa(E) \leq 2$ for all sets *E*, and this is sharp if the identity of the dual group belongs to *E*. ϵ -Kronecker sets have been studied for over 50 years since the concept was introduced by Kahane in [9], and the terminology was coined by Varapoulos in [14]. Examples of recent work include [1,2] (where they are called ϵ -free) and [3–7,10].

If $\kappa(E) < \sqrt{2}$, then *E* is known to be an example of a Sidon set, meaning every bounded *E*-function is the restriction to *E* of the Fourier transform of a measure on *G*. In fact, the interpolating measure can be chosen to be discrete, and $\sqrt{2}$ is sharp with this additional property. Like ϵ -Kronecker sets, Sidon sets have also been extensively studied for many years; we refer the reader to [8] or [12] for an overview of what was known prior to the early 1970's and to [5] for more recent results. But many fundamental problems remain open, including a full understanding of the connections between these two classes of interpolation sets.

As sets with Kronecker constant less than 2 possess many of the known arithmetic properties satisfied by Sidon sets, it was asked in [5] whether all such sets are Sidon. Here we answer this question affirmatively by using Pisier's remarkable net characterization of Sidon sets. We also construct non-trivial examples of Sidon sets with Kronecker constant 2.

As well, we define a weaker interpolation property than *e*-Kronecker by only requiring the approximation of target functions whose range lies in the set of *n*-th roots

Received by the editors June 2, 2015.

Published electronically January 29, 2016.

This research is supported in part by NSERC #44597.

AMS subject classification: 43A46, 42A15, 42A55.

Keywords: Kronecker set, Sidon set.

of unity. Sets that satisfy a suitable quantitative condition for this less demanding interpolation property are also shown to be Sidon.

2 Kronecker-like Sets that are Sidon

Let *G* be a compact abelian group and Γ its discrete abelian dual group. An example of such a group *G* is the circle group \mathbb{T} , the complex numbers of modulus one, whose discrete dual is the group of integers, \mathbb{Z} .

Definition 2.1 (i) A subset $E \subseteq \Gamma$ is said to be *\varepsilon*-Kronecker if for every $\phi: E \to \mathbb{T}$ there exists $x \in G$ such that

(2.1)
$$|\phi(\gamma) - \gamma(x)| < \epsilon \text{ for all } \gamma \in E$$

By the *Kronecker constant* of *E*, $\kappa(E)$, we mean the infimum of the constants ϵ for which (2.1) is satisfied.

(ii) A subset $E \subseteq \Gamma$ is said to be *Sidon* if for every bounded function $\phi: E \to \mathbb{C}$ there is a measure μ on *G* with $\widehat{\mu}(\gamma) = \phi(\gamma)$ for all $\gamma \in E$. If the interpolating measure μ can always be chosen to be discrete, then the set *E* is said to be I_0 .

Hadamard sets $E = \{n_j\} \subseteq \mathbb{N}$ with inf $n_{j+1}/n_j = q > 2$ are known to satisfy $\kappa(E) \leq |1 - e^{i\pi(q-1)}|$, and this tends to 0 as q tends to infinity. More generally, every infinite subset of a torsion-free dual group Γ contains subsets of the same cardinality that are ϵ -Kronecker for any given $\epsilon > 0$. If Γ is not torsion-free, but the subset E does not contain "too many" elements of order 2, then E will contain a subset F of the same cardinality, having $\kappa(F) = 1$ (see [3, 4]).

Obviously, every I_0 set is Sidon, but the converse is not true. It is unknown whether every Sidon set is a finite union of I_0 sets.

For a set *E* to be Sidon (or I_0), it is enough that there be a constant $\delta < 1$ such that for every *E*-function ϕ with $|\phi(\gamma)| \leq 1$ for all γ , there is a (discrete) measure μ such that

$$|\phi(\gamma) - \widehat{\mu}(\gamma)| < \delta$$
 for all $\gamma \in E$.

Since $\gamma(x) = \hat{\delta}_x(\gamma)$ for δ_x the point mass measure at x, it is easy to see that if E is ϵ -Kronecker for some $\epsilon < 1$, then E is I_0 . With more work this can be improved: if $\kappa(E) < \sqrt{2}$, then E is I_0 . This result is sharp, as there are non- I_0 sets that are $\sqrt{2}$ -Kronecker; see [3].

It is well known that Sidon sets satisfy a number of arithmetic properties such as not containing large squares or long arithmetic progressions. In [3] (or see the discussion in [5, p. 35]), it was shown that sets *E* with $\kappa(E) < 2$ also satisfy these conditions, thus it is natural to ask if such sets are always Sidon. Here we answer this question affirmatively.

Theorem 2.2 If the Kronecker constant of $E \subseteq \Gamma$ is less than two, then E is Sidon.

Proof We use Pisier's ε -net condition, which states that a subset *E* is Sidon if and only if there is some $\varepsilon > 0$ such that for each finite subset $F \subset E$ there is a set $Y \subset G$

522

with $|Y| \ge 2^{\varepsilon |F|}$, and whenever $x \ne y \in Y$,

$$\varepsilon \leq \sup_{\gamma \in F} |\gamma(x) - \gamma(\gamma)|.$$

This was proven by Pisier in [13]. Proofs can also be found in [5, Thm. 9.2.1] and [11, Thm. V.5].

Since we are assuming that $\kappa(E) < 2$, we can choose $\varepsilon > 0$ such that $\kappa(E) + \varepsilon < 2$. Let *F* be any finite subset of *E*.

For all $g \in G$ and $\lambda > 0$, the sets

$$U(g,\lambda) = \left\{ h \in G : \lambda > \sup_{\gamma \in F} |\gamma(h) - \gamma(g)| \right\}$$

are among the basic open sets for the topology on *G* (the topology of pointwise convergence as functions on Γ). We claim there is a finite maximal set *S* \subset *G* such that

$$x \neq y \in S \Longrightarrow \varepsilon \leq \sup_{y \in F} |\gamma(x) - \gamma(y)|.$$

This is a consequence of the compactness of *G*. If it was not true, one could choose an infinite set *S* having this separation property. As *G* is compact, *S* would have a cluster point $z \in G$. The open set $U(z, \varepsilon/2)$ would then contain infinitely many members of *S*, violating the required separation assumption.

By the maximality of *S*, for each $g \in G$ there is some $h \in S$ such that $g \in U(h, \varepsilon)$.

Consider any function $\phi: F \to \mathbb{T}$. By the Kronecker property, there is some $g \in G$ such that $\sup_{\gamma \in F} |\gamma(g) - \phi(\gamma)| \le \kappa(E)$. Since there is some $h \in S$ such that $g \in U(h, \epsilon)$, we have that $\phi \in W(h)$, where

$$W(h) := \left\{ \psi: F \to \mathbb{T} : \sup_{\gamma \in F} |\gamma(h) - \psi(\gamma)| \le \kappa(E) + \varepsilon < 2 \right\}.$$

Consequently,

$$\mathbb{T}^F = \bigcup_{h \in S} W(h).$$

We identify \mathbb{T}^F with $[0, 2\pi)^F$, with the group operation being addition mod 2π , and in this way put |F|-dimensional Euclidean volume on \mathbb{T}^F . With this identification,

$$W(h) \subseteq \prod_{\gamma \in F} [\gamma(h) - \eta, \gamma(h) + \eta],$$

where $\eta < \pi$ depends only on the number $\kappa(E) + \varepsilon$ (and not on *h* or *F*). Thus, the |F|-dimensional volume of each set W(h) is bounded by $(2\eta)^{|F|}$, while the volume of \mathbb{T}^F is $(2\pi)^{|F|}$. It follows that

$$\operatorname{card}(S) \ge \left(\frac{2\pi}{2\eta}\right)^{|F|} = 2^{\epsilon'|F|}$$

for a suitable choice of $\varepsilon' > 0$.

The minimum of ε and ε' meet the Pisier net condition and are independent of *F*. Thus, *E* is Sidon.

523

Remark 2.3 In number theory, a set $E \subseteq \Gamma$ is sometimes called a Sidon set if whenever $\gamma_j \in E$, $\gamma_1\gamma_2 = \gamma_3\gamma_4$ if and only if $\{\gamma_3, \gamma_4\}$ is a permutation of $\{\gamma_1, \gamma_2\}$. This is a different class of sets from the Sidon sets defined above. ε -Kronecker sets need not be Sidon in this sense; indeed, any finite subset $E \subseteq \mathbb{Z}$ that does not contain 0 has $\kappa(E) < 2$. However, if *E* is ε -Kronecker for some $\varepsilon < \sqrt{2}$, then there are a bounded number of pairs with common product, with the bound depending only on ε (see [3]).

Next, we alter the definition of the Kronecker constant by only considering target functions whose range is restricted to a finite subgroup of \mathbb{T} . This is a natural variation to consider, for if Γ is a torsion group, the characters of *G* take on only the values in a suitable finite subgroup of \mathbb{T} . Moreover, there are even subsets *E* of \mathbb{Z} (including all subsets of size 2 and many of size 3) whose Kronecker constant is realized with target functions ϕ mapping *E* into $\{-1, +1\}$ (*cf.* [7]).

Definition 2.4 Let \mathbf{T}_n denote the set of *n*-th roots of unity in \mathbb{T} for $n \ge 2$. Let $\kappa_n(E)$ be the infimum of $\epsilon \ge 0$ such that *E* is (ϵ, n) -Kronecker, where $E \subseteq \Gamma$ is (ϵ, n) -Kronecker if for every $\phi: E \to \mathbf{T}_n$ there exists $x \in G$ such that

$$\gamma \in E \Longrightarrow |\phi(\gamma) - \gamma(x)| < \epsilon.$$

Theorem 2.5 Let $E \subset \Gamma$. If $\kappa_n(E) < |1 - e^{i\pi(1-1/n)}|$, then E is Sidon.

Proof Choose $\varepsilon > 0$ such that $\kappa_n(E) + \varepsilon < |1 - e^{i\pi(1-1/n)}|$. Let $F \subset E$ be finite. Choose $S \subset G$ as in the proof of Theorem 2.2. Arguing in a similar fashion to that proof, we again deduce that for every $\phi: E \to \mathbf{T}_n$, there is some $h \in S$ such that $\phi \in V(h)$, where

$$V(h) := \left\{ \psi: F \to \mathbf{T}_n : \sup_{\gamma \in F} |\gamma(h) - \psi(\gamma)| \le \kappa_n(E) + \varepsilon \right\}.$$

Consequently,

$$(\mathbf{T}_n)^F = \bigcup_{h \in S} V(h).$$

For each $h \in S$ and every $\gamma \in F$, there is an *n*-th root of unity, $\omega \in \mathbf{T}_n$, such that $|\gamma(h)-\omega| \ge |1-e^{i\pi(1-1/n)}|$. Whenever $\phi_h(\gamma) = \omega$, it follows that $\phi_h \notin V(h)$. Thus, each V(h) has at most $(n-1)^{|F|}$ elements. Consequently, there is some $\varepsilon' > 0$, independent of *F*, such that

$$\operatorname{card}(S) \ge \frac{n^{|F|}}{(n-1)^{|F|}} = 2^{\epsilon'|F|}.$$

Again, the minimum of ε and ε' meets the Pisier net condition to be Sidon.

It is sometimes more convenient to measure angular distances when comparing elements of \mathbb{T} and to express Kronecker constants in those terms. Towards this, put $\mathbf{Z}_n = \{2\pi j/n : j = 0, 1, ..., n-1\}$, and for $z \in \mathbb{T}$, let $\arg(z)$ be the angle $\theta \in [0, 2\pi)$ such that $\exp(i\theta) = z$. Let $\alpha_n(E)$ be the infimum of $\epsilon \ge 0$ such that for every $\phi: E \to \mathbf{Z}_n$ there exists $x \in G$ such that

$$\gamma \in E \Longrightarrow |\phi(\gamma) - \arg \gamma(x)| \leq \epsilon.$$

A set *E* satisfying this condition is called weak (ϵ, n) -angular Kronecker. Here $|\phi(\gamma) - \arg \gamma(x)|$ should be understood mod 2π , so $\alpha_n(E) \in [0, \pi]$.

It is easy to see that $\kappa_n(E) = |1 - e^{i\alpha_n(E)}|$, thus the previous theorem can be restated as: *E* is Sidon if $\alpha_n(E) < \pi(1 - 1/n)$.

We can similarly define weak angular ϵ -Kronecker sets and the angular Kronecker constant, $\alpha(E)$, by considering the approximation problem for functions $\phi: E \rightarrow [0, 2\pi)$. One can easily check that $\kappa(E) = |1 - e^{i\alpha(E)}|$, hence Theorem 2.2 can be restated as: *E* is Sidon if $\alpha(E) < \pi$.

Example 2.6 Let n > 1 be any integer. The set $E = 1 + n\mathbb{Z}$ is not a Sidon subset of \mathbb{Z} being a coset of an infinite subgroup, but $\alpha_n(E) = \pi - \pi/n$. That shows Theorem 2.5 is sharp. In fact, for odd n, $\alpha_n(E) \le \pi - \pi/n$ for all subsets E of any discrete abelian group Γ . This is because the n-th root of unity farthest from 1 is $e^{i\pi(1-1/n)}$, so that if we let 1 denote the identity element of G, then for all \mathbf{T}_n -valued functions ϕ , and any $\gamma \in \Gamma$ we have $|\phi(\gamma) - \gamma(1)| \le |1 - e^{i\pi(1-1/n)}|$.

To see that $\alpha_n(1+n\mathbb{Z}) \le \pi - \pi/n$ for *n* even, take $g = \exp(\pi i/n)$. For any character $\gamma = 1 + nk \in E$, we have $\arg \gamma(g) = \pi(nk+1)/n$ with nk + 1 an odd integer. Thus, $|z - \arg \gamma(x)| \le \pi - \pi/n$ for any $z \in \mathbb{Z}_n$.

3 Some Examples of Sidon Sets with Kronecker Constant Equal to 2

Since any subset of Γ that contains the identity character 1 has Kronecker constant equal to 2, we are interested in constructing examples of Sidon subsets *E* of $\Gamma \setminus \{1\}$ with $\kappa(E) = 2$ and $\kappa_n(E) \ge |1 - e^{i\pi(1-1/n)}|$. We give one example with a set of elements of finite order and a second example where all the elements of *E* have infinite order.

Example 3.1 Let $\Gamma = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$, where $\mathbb{Z}_2 = \{0,1\}$. Then $E = \Gamma \setminus \{(0,0,0)\}$ is Sidon, but $\kappa(E) = 2$ and $\kappa_n(E) \ge |1 - e^{i\pi(1-1/n)}|$ for $n \ge 2$.

Proof Being a finite set, $\Gamma \setminus \{(0,0,0)\}$ is Sidon. Let e_j be the standard basis vectors of $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ and let $E' = \{e_2, e_3, e_1 + e_2, e_1 + e_3\}$.

We will first show that $\kappa(E') = 2$, whence $\kappa(E) = 2$. Define ϕ by $\phi(e_2) = \phi(e_3) = \phi(e_1 + e_2) = 1$ and $\phi(e_1 + e_3) = -1$. Suppose that $g \in G$ and $\epsilon > 0$ satisfies

$$|\gamma(g) - \phi(\gamma)| < 2 - \epsilon$$
 for all $\gamma \in E$.

Because $\gamma(g) \in \{-1, +1\}$ for every $\gamma \in \Gamma$, we must have

$$e_2(g) = e_3(g) = 1 = (e_1 + e_2)(g)$$
 and $(e_1 + e_3)(g) = -1$.

This forces $e_1(g)$ to be equal to both -1 and 1, a contradiction. Hence $\kappa(E) = 2$.

Since ϕ takes on only *n*-th roots of unity for even *n*, this argument also proves $\kappa_n(E) = 2$ when *n* is even.

If *n* is odd, then, instead, define $\phi(e_1 + e_3) = \omega_n$, where $\omega_n = e^{i\pi(1-1/n)}$, an *n*-th root of unity nearest to -1. If $\kappa_n(E) < |1 - e^{i\pi(1-1/n)}|$, then we obtain the same contradiction as before by noting that the identity $|1 - \phi(e_1 + e_3)| = |1 - e^{i\pi(1-1/n)}|$ forces $(e_1 + e_3)(g) = -1$.

Example 3.2 Let $\Gamma = \mathbb{Z} \oplus \Gamma_2$ where Γ_2 is the countable direct sum of copies of \mathbb{Z}_2 . Let e_n be the character $e^{2\pi i n(\cdot)}$ on \mathbb{T} and let γ_n be the projection onto the *n*-th- \mathbb{Z}_2 factor, both viewed as elements of Γ in the canonical way. Set

$$E = \{(e_n, \gamma_n)\}_{n=1}^{\infty} \cup \{(e_n^{-1}, \gamma_n)\}_{n=1}^{\infty}.$$

Then *E* is Sidon, but $\kappa(E) = 2$ and $\kappa_n(E) \ge |1 - e^{i\pi(1-1/n)}|$ for $n \ge 2$.

Proof We argue first that $E_1 = \{(e_n, \gamma_n)\}_{n=1}^{\infty}$ and $E_2 = \{(e_n^{-1}, \gamma_n)\}_{n=1}^{\infty}$ both satisfy algebraic conditions to be Sidon. Let $f: \mathbb{N} \to \{-1, 0, 1\}$ be finitely non-zero and satisfy

$$\prod_{n} (e_n, \gamma_n)^{f(n)} = 1$$

By the algebraic independence of the factors of Γ this implies $\gamma_n^{f(n)} = 1$ for all n and hence f(n) = 0. Therefore, E_1 is quasi-independent and such sets are well known to be Sidon. Likewise, E_2 is Sidon, and hence the union, $E = E_1 \cup E_2$, is Sidon.

Let $\epsilon > 0$ and suppose *E* is $(2 - \epsilon)$ -Kronecker. Define ϕ to be -1 on E_1 and 1 on E_2 . The compact group $G = \mathbb{T} \otimes G_2$, where G_2 is the direct product of countably many copies of (the multiplicative group) \mathbb{Z}_2 , is the dual of Γ . Choose $g \in G$ such that for all $\gamma \in E$,

$$|\phi(\gamma) - \gamma(g)| < 2 - \epsilon.$$

Write $g = (u, (g_n))$ where $u \in \mathbb{T}$ and g_n is the projection of g onto the n-th- \mathbb{Z}_2 factor. With this notation, $(e_n^{\pm 1}, \gamma_n)(g) = e^{\pm 2\pi i n u} g_n$, hence for all n,

$$|-e^{-2\pi i n u} - g_n| = |-1 - e^{2\pi i n u} g_n| < 2 - \epsilon$$
 and
 $|e^{2\pi i n u} - g_n| = |1 - e^{-2\pi i n u} g_n| < 2 - \epsilon.$

If *u* is rational, then $e^{2\pi i n u} = e^{-2\pi i n u} = 1$ periodically as a function of *n*. For these infinitely many *n*, we have $|-1-g_n| < 2-\epsilon$ and $|1-g_n| < 2-\epsilon$. But $g_n = \pm 1$, so this is impossible.

Otherwise, $\{e^{2\pi i n u}\}_{n=1}^{\infty}$ is dense in \mathbb{T} . Choose *n* such that

$$|1 - e^{2\pi i n u}| = |1 - e^{-2\pi i n u}| < \epsilon/2.$$

But then $|-1-g_n| < 2-\epsilon/2$ and $|1-g_n| < 2-\epsilon/2$, and again these cannot be simultaneously satisfied for $g_n = \pm 1$. This impossibility proves $\kappa(E) = 2$ and also establishes $\kappa_n(E) = 2$ for *n* even.

If, instead, we define $\phi = \omega_n$ on E_1 , where ω_n is an *n*-th root of unity nearest -1, then similar arguments show that $\kappa_n(E) = |1 - e^{i\pi(1-1/n)}|$ for *n* odd and $\kappa_n(E) = 2$ for *n* even.

Remark 3.3 It would be interesting to know whether non-trivial examples of 2-Kronecker Sidon sets could be found in a torsion-free group and also whether every Sidon set is a finite union of sets that are ϵ -Kronecker for some $\epsilon < 2$.

References

 J. Galindo and S. Hernandez, The concept of boundedness and the Bohr compactification of a MAP abelian group. Fund. Math. 159(1999), no. 3, 195–218.

526

The Relationship Between *\varepsilon*-Kronecker Sets and Sidon Sets

- [2] B. N. Givens and K. Kunen, Chromatic numbers and Bohr topologies. Topology Appl. 131(2003), no. 3, 189–202. http://dx.doi.org/10.1016/S0166-8641(02)00341-3
- [3] C. C. Graham and K. E. Hare, ε-Kronecker and I₀ sets in abelian groups. I. Arithmetic properties of ε-Kronecker sets. Math. Proc. Cambridge Philos. Soc. 140(2006), no. 3, 475–489. http://dx.doi.org/10.1017/S0305004105009059
- [4] _____, Existence of large ε-Kronecker and FZI₀ sets in discrete abelian groups. Colloq. Math. 127(2012), no. 1, 1–15. http://dx.doi.org/10.4064/cm127-1-1
- [5] _____, Interpolation and Sidon sets for compact groups. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5392-5
- [6] C. C. Graham and A. T-M. Lau, Relative weak compactness of orbits in Banach spaces associated with locally compact groups. Trans. Amer. Math. Soc. 359(2007), no. 3, 1129–1160. http://dx.doi.org/10.1090/S0002-9947-06-04039-6
- [7] K. E. Hare and L. T. Ramsey, Kronecker constants of three element sets. Acta. Math. Hungar. 146(2015), no. 2, 306–331. http://dx.doi.org/10.1007/s10474-015-0529-2
- [8] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. II. Springer-Verlag, New York, 1970.
- [9] J-P. Kahane, Algèbres tensorielles et analyseharmonique (d'après N. T. Varapoulos). Séminaire Bourbaki, 9, no. 291, Soc. Math. France, Paris, 1995, pp. 221–230.
- [10] K. Kunen and W. Rudin, Lacunarity and the Bohr topology. Math. Proc. Cambridge Philos. Soc. 126(1999), no. 1, 117–137. http://dx.doi.org/10.1017/S030500419800317X
- [11] D. Li and H. Queffélec, Introduction à l'étude des espaces de Banach. Analyse et probabilités. Cours Spécialisés, 12, Société Mathématique de France, Paris, 2004.
- [12] J. Lopez and K. A. Ross, Sidon sets. Lecture Notes in Pure and Applied Mathematics, 13, Marcel Dekker, New York, 1975.
- [13] G. Pisier, Conditions d'entropie et caractérisations arithmétiques des ensembles de Sidon. In: Topics in modern harmonic analysis, Vol. I, II (Turin/Milan, 1982), Ist. Naz. Alta Mat. Francesco Severi, Rome, 1983, pp. 911–944.
- [14] N. Th. Varapoulos, Tensor algebras and harmonic analysis. Acta Math. 119(1967), 51–112. http://dx.doi.org/10.1007/BF02392079

Dept. of Pure Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1 e-mail: kehare@uwaterloo.ca

Dept. of Mathematics, University of Hawaii, Honolulu, HI 96822, USA e-mail: ramsey@math.hawaii.edu