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The Relationship Between є-Kronecker Sets
and Sidon Sets

Kathryn Hare and L. _omas Ramsey

Abstract. A subset E of a discrete abelian group is called є-Kronecker if all E-functions ofmodulus
one can be approximated towithin є by characters. E is called a Sidon set if all bounded E-functions
can be interpolated by the Fourier transform of measures on the dual group. As є-Kronecker sets
with є < 2 possess the same arithmetic properties as Sidon sets, it is natural to ask if they are Sidon.
We use the Pisier net characterization of Sidonicity to prove this is true.

1 Introduction

A subset E of the dual of a compact, abelian group G is called an є-Kronecker set if for
every function ϕ mapping E into the set of complex numbers of modulus one, there
exists x ∈ G such that

∣ϕ(γ) − γ(x)∣ < є for all γ ∈ E .
_e inûmum of such є is called the Kronecker constant of E and is denoted κ(E).
Trivially, κ(E) ≤ 2 for all sets E, and this is sharp if the identity of the dual group
belongs to E. є-Kronecker sets have been studied for over 50 years since the concept
was introduced by Kahane in [9], and the terminology was coined by Varapoulos in
[14]. Examples of recentwork include [1,2] (where they are called є-free) and [3–7,10].

If κ(E) <
√

2, then E is known to be an example of a Sidon set, meaning every
bounded E-function is the restriction to E of the Fourier transform of ameasure on
G. In fact, the interpolating measure can be chosen to be discrete, and

√
2 is sharp

with this additional property. Like є-Kronecker sets, Sidon sets have also been exten-
sively studied formany years;we refer the reader to [8] or [12] for an overview ofwhat
was known prior to the early 1970’s and to [5] for more recent results. But many fun-
damental problems remain open, including a full understanding of the connections
between these two classes of interpolation sets.
As setswith Kronecker constant less than 2 possess many of the known arithmetic

properties satisûed by Sidon sets, it was asked in [5] whether all such sets are Sidon.
Here we answer this question aõrmatively by using Pisier’s remarkable net charac-
terization of Sidon sets. We also construct non-trivial examples of Sidon sets with
Kronecker constant 2.
As well, we deûne a weaker interpolation property than є-Kronecker by only re-

quiring the approximation of target functionswhose range lies in the set of n-th roots
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of unity. Sets that satisfy a suitable quantitative condition for this less demanding
interpolation property are also shown to be Sidon.

2 Kronecker-like Sets that are Sidon

Let G be a compact abelian group and Γ its discrete abelian dual group. An example
of such a group G is the circle group T, the complex numbers ofmodulus one, whose
discrete dual is the group of integers, Z.

Deûnition 2.1 (i) A subset E ⊆ Γ is said to be є-Kronecker if for every ϕ∶ E → T
there exists x ∈ G such that

(2.1) ∣ϕ(γ) − γ(x)∣ < є for all γ ∈ E .

By the Kronecker constant of E, κ(E), we mean the inûmum of the constants є for
which (2.1) is satisûed.

(ii) A subset E ⊆ Γ is said to be Sidon if for every bounded function ϕ∶ E → C
there is ameasure µ on G with µ̂(γ) = ϕ(γ) for all γ ∈ E. If the interpolating measure
µ can always be chosen to be discrete, then the set E is said to be I0.

Hadamard sets E = {n j} ⊆ N with inf n j+1/n j = q > 2 are known to satisfy κ(E) ≤
∣1 − e iπ(q−1)∣, and this tends to 0 as q tends to inûnity. More generally, every inûnite
subset of a torsion-free dual group Γ contains subsets of the same cardinality that are
є-Kronecker for any given є > 0. If Γ is not torsion-free, but the subset E does not
contain “too many” elements of order 2, then E will contain a subset F of the same
cardinality, having κ(F) = 1 (see [3,4]).

Obviously, every I0 set is Sidon, but the converse is not true. It is unknownwhether
every Sidon set is a ûnite union of I0 sets.
For a set E to be Sidon (or I0), it is enough that there be a constant δ < 1 such that

for every E-function ϕ with ∣ϕ(γ)∣ ≤ 1 for all γ, there is a (discrete) measure µ such
that

∣ϕ(γ) − µ̂(γ)∣ < δ for all γ ∈ E .

Since γ(x) = δ̂x(γ) for δx the point mass measure at x, it is easy to see that if E is
є-Kronecker for some є < 1, then E is I0. With more work this can be improved: if
κ(E) <

√
2, then E is I0. _is result is sharp, as there are non-I0 sets that are

√
2-

Kronecker; see [3].
It is well known that Sidon sets satisfy a number of arithmetic properties such

as not containing large squares or long arithmetic progressions. In [3] (or see the
discussion in [5, p. 35]), it was shown that sets E with κ(E) < 2 also satisfy these
conditions, thus it is natural to ask if such sets are always Sidon. Here we answer this
question aõrmatively.

_eorem 2.2 If the Kronecker constant of E ⊆ Γ is less than two, then E is Sidon.

Proof We use Pisier’s ε-net condition, which states that a subset E is Sidon if and
only if there is some ε > 0 such that for each ûnite subset F ⊂ E there is a set Y ⊂ G
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with ∣Y ∣ ≥ 2ε∣F∣, and whenever x /= y ∈ Y ,

ε ≤ sup
γ∈F

∣γ(x) − γ(y)∣ .

_is was proven by Pisier in [13]. Proofs can also be found in [5, _m. 9.2.1] and
[11,_m. V.5].

Since we are assuming that κ(E) < 2, we can choose ε > 0 such that κ(E) + ε < 2.
Let F be any ûnite subset of E.
For all g ∈ G and λ > 0, the sets

U(g , λ) = {h ∈ G ∶ λ > sup
γ∈F

∣γ(h) − γ(g)∣}

are among the basic open sets for the topology on G (the topology of pointwise con-
vergence as functions on Γ). We claim there is a ûnitemaximal set S ⊂ G such that

x /= y ∈ S Ô⇒ ε ≤ sup
γ∈F

∣γ(x) − γ(y)∣.

_is is a consequence of the compactness ofG. If itwas not true, one could choose an
inûnite set S having this separation property. As G is compact, S would have a cluster
point z ∈ G. _e open set U(z, ε/2) would then contain inûnitely many members of
S, violating the required separation assumption.
By themaximality of S, for each g ∈ G there is some h ∈ S such that g ∈ U(h, ε).
Consider any function ϕ∶ F → T. By the Kronecker property, there is some g ∈ G

such that supγ∈F ∣γ(g)−ϕ(γ)∣ ≤ κ(E). Since there is some h ∈ S such that g ∈ U(h, є),
we have that ϕ ∈W(h), where

W(h) ∶= {ψ∶ F → T ∶ sup
γ∈F

∣γ(h) − ψ(γ)∣ ≤ κ(E) + ε < 2} .

Consequently,

TF = ⋃
h∈S

W(h).

We identify TF with [0, 2π)F , with the group operation being addition mod 2π,
and in thisway put ∣F∣-dimensionalEuclidean volume onTF . With this identiûcation,

W(h) ⊆∏
γ∈F

[γ(h) − η, γ(h) + η] ,

where η < π depends only on the number κ(E) + ε (and not on h or F). _us, the
∣F∣-dimensional volume of each setW(h) is bounded by (2η)∣F∣, while the volume of
TF is (2π)∣F∣. It follows that

card(S) ≥ ( 2π
2η

)
∣F∣

= 2ε
′
∣F∣

for a suitable choice of ε′ > 0.
_eminimum of ε and ε′ meet the Pisier net condition and are independent of F.

_us, E is Sidon.
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Remark 2.3 In number theory, a set E ⊆ Γ is sometimes called a Sidon set if when-
ever γ j ∈ E, γ1γ2 = γ3γ4 if and only if {γ3 , γ4} is a permutation of {γ1 , γ2}. _is is
a diòerent class of sets from the Sidon sets deûned above. ε-Kronecker sets need not
be Sidon in this sense; indeed, any ûnite subset E ⊆ Z that does not contain 0 has
κ(E) < 2. However, if E is ε-Kronecker for some ε <

√
2, then there are a bounded

number of pairswith common product,with the bound depending only on ε (see [3]).

Next, we alter the deûnition of the Kronecker constant by only considering target
functionswhose range is restricted to a ûnite subgroup ofT. _is is a natural variation
to consider, for if Γ is a torsion group, the characters of G take on only the values in
a suitable ûnite subgroup of T. Moreover, there are even subsets E of Z (including all
subsets of size 2 andmany of size 3) whose Kronecker constant is realized with target
functions ϕ mapping E into {−1,+1} (cf. [7]).

Deûnition 2.4 LetTn denote the set of n-th roots of unity inT for n ≥ 2. Let κn(E)
be the inûmum of є ≥ 0 such that E is (є, n)-Kronecker, where E ⊆ Γ is (є, n)-Kro-
necker if for every ϕ∶ E → Tn there exists x ∈ G such that

γ ∈ E Ô⇒ ∣ϕ(γ) − γ(x)∣ < є.

_eorem 2.5 Let E ⊂ Γ. If κn(E) < ∣1 − e iπ(1−1/n)∣, then E is Sidon.

Proof Choose ε > 0 such that κn(E)+ε < ∣1− e iπ(1−1/n)∣. Let F ⊂ E be ûnite. Choose
S ⊂ G as in the proof of _eorem 2.2. Arguing in a similar fashion to that proof, we
again deduce that for every ϕ∶ E → Tn , there is some h ∈ S such that ϕ ∈ V(h), where

V(h) ∶= {ψ∶ F → Tn ∶ sup
γ∈F

∣γ(h) − ψ(γ)∣ ≤ κn(E) + ε} .

Consequently,
(Tn)F = ⋃

h∈S
V(h).

For each h ∈ S and every γ ∈ F , there is an n-th root of unity, ω ∈ Tn , such that
∣γ(h)−ω∣ ≥ ∣1−e iπ(1−1/n)∣. Whenever ϕh(γ) = ω, it follows that ϕh ∉ V(h). _us, each
V(h) has atmost (n−1)∣F∣ elements. Consequently, there is some ε′ > 0, independent
of F, such that

card(S) ≥ n∣F∣

(n − 1)∣F∣ = 2є
′
∣F∣ .

Again, theminimum of ε and ε′ meets the Pisier net condition to be Sidon.

It is sometimes more convenient to measure angular distances when comparing
elements of T and to express Kronecker constants in those terms. Towards this, put
Zn = {2π j/n ∶ j = 0, 1, . . . , n−1}, and for z ∈ T, let arg(z) be the angle θ ∈ [0, 2π) such
that exp(iθ) = z. Let αn(E) be the inûmum of є ≥ 0 such that for every ϕ∶ E → Zn
there exists x ∈ G such that

γ ∈ E Ô⇒ ∣ϕ(γ) − arg γ(x)∣ ≤ є.

A set E satisfying this condition is called weak (є, n)-angular Kronecker. Here
∣ϕ(γ) − arg γ(x)∣ should be understoodmod 2π, so αn(E) ∈ [0, π].
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It is easy to see that κn(E) = ∣1−e iαn(E)∣, thus the previous theorem can be restated
as: E is Sidon if αn(E) < π(1 − 1/n).

We can similarly deûneweak angular є-Kronecker sets and the angular Kronecker
constant, α(E), by considering the approximation problem for functions ϕ∶ E →
[0, 2π). One can easily check that κ(E) = ∣1 − e iα(E)∣, hence _eorem 2.2 can be
restated as: E is Sidon if α(E) < π.

Example 2.6 Let n > 1 be any integer. _e set E = 1 + nZ is not a Sidon subset of Z
being a coset of an inûnite subgroup, but αn(E) = π − π/n. _at shows _eorem 2.5
is sharp. In fact, for odd n, αn(E) ≤ π − π/n for all subsets E of any discrete abelian
group Γ. _is is because the n-th root of unity farthest from 1 is e iπ(1−1/n), so that if
we let 1 denote the identity element of G, then for all Tn-valued functions ϕ, and any
γ ∈ Γ we have ∣ϕ(γ) − γ(1)∣ ≤ ∣1 − e iπ(1−1/n)∣.

To see that αn(1+nZ) ≤ π−π/n for n even, take g = exp(πi/n). For any character
γ = 1 + nk ∈ E, we have arg γ(g) = π(nk + 1)/n with nk + 1 an odd integer. _us,
∣z − arg γ(x)∣ ≤ π − π/n for any z ∈ Zn .

3 Some Examples of Sidon Sets with Kronecker Constant Equal to
2

Since any subset of Γ that contains the identity character 1 has Kronecker constant
equal to 2, we are interested in constructing examples of Sidon subsets E of Γ Ó {1}
with κ(E) = 2 and κn(E) ≥ ∣1−e iπ(1−1/n)∣. We give one examplewith a set of elements
of ûnite order and a second example where all the elements of E have inûnite order.

Example 3.1 Let Γ = Z2 ⊕ Z2 ⊕Z2, where Z2 = {0, 1}. _en E = Γ Ó {(0, 0, 0)} is
Sidon, but κ(E) = 2 and κn(E) ≥ ∣1 − e iπ(1−1/n)∣ for n ≥ 2.

Proof Being a ûnite set, Γ Ó {(0, 0, 0)} is Sidon. Let e j be the standard basis vectors
of Z2 ⊕Z2 ⊕Z2 and let E′ = {e2 , e3 , e1 + e2 , e1 + e3}.

We will ûrst show that κ(E′) = 2, whence κ(E) = 2. Deûne ϕ by ϕ(e2) = ϕ(e3) =
ϕ(e1 + e2) = 1 and ϕ(e1 + e3) = −1. Suppose that g ∈ G and є > 0 satisûes

∣γ(g) − ϕ(γ)∣ < 2 − є for all γ ∈ E .

Because γ(g) ∈ {−1,+1} for every γ ∈ Γ, wemust have

e2(g) = e3(g) = 1 = (e1 + e2)(g) and (e1 + e3)(g) = −1.

_is forces e1(g) to be equal to both −1 and 1, a contradiction. Hence κ(E) = 2.
Since ϕ takes on only n-th roots of unity for even n, this argument also proves

κn(E) = 2 when n is even.
If n is odd, then, instead, deûne ϕ(e1 + e3) = ωn , where ωn = e iπ(1−1/n), an n-th

root of unity nearest to −1. If κn(E) < ∣1 − e iπ(1−1/n)∣, then we obtain the same con-
tradiction as before by noting that the identity ∣1 − ϕ(e1 + e3)∣ = ∣1 − e iπ(1−1/n)∣ forces
(e1 + e3)(g) = −1.
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Example 3.2 Let Γ = Z ⊕Γ2 where Γ2 is the countable direct sum of copies of Z2.
Let en be the character e2πin( ⋅ ) on T and let γn be the projection onto the n-th-Z2
factor, both viewed as elements of Γ in the canonical way. Set

E = {(en , γn)}∞n=1 ∪ {(e−1
n , γn)}∞n=1 .

_en E is Sidon, but κ(E) = 2 and κn(E) ≥ ∣1 − e iπ(1−1/n)∣ for n ≥ 2.

Proof We argue ûrst that E1 = {(en , γn)}∞n=1 and E2 = {(e−1
n , γn)}∞n=1 both satisfy

algebraic conditions to be Sidon. Let f ∶N→ {−1, 0, 1} be ûnitely non-zero and satisfy

∏
n
(en , γn) f (n) = 1.

By the algebraic independence of the factors of Γ this implies γ f (n)n = 1 for all n
and hence f (n) = 0. _erefore, E1 is quasi-independent and such sets arewell known
to be Sidon. Likewise, E2 is Sidon, and hence the union, E = E1 ∪ E2 , is Sidon.

Let є > 0 and suppose E is (2 − є)-Kronecker. Deûne ϕ to be −1 on E1 and 1 on
E2. _e compact group G = T⊗G2, whereG2 is the direct product of countablymany
copies of (the multiplicative group) Z2, is the dual of Γ. Choose g ∈ G such that for
all γ ∈ E,

∣ϕ(γ) − γ(g)∣ < 2 − є.

Write g = (u, (gn)) where u ∈ T and gn is the projection of g onto the n-th-Z2
factor. With this notation, (e±1

n , γn)(g) = e±2πinu gn , hence for all n,

∣ − e−2πinu − gn ∣ = ∣ − 1 − e2πinu gn ∣ < 2 − є and

∣e2πinu − gn ∣ = ∣1 − e−2πinu gn ∣ < 2 − є.

If u is rational, then e2πinu = e−2πinu = 1 periodically as a function of n. For these
inûnitelymany n, we have ∣− 1− gn ∣ < 2− є and ∣1− gn ∣ < 2− є. But gn = ±1, so this is
impossible.

Otherwise, {e2πinu}∞n=1 is dense in T. Choose n such that

∣1 − e2πinu ∣ = ∣1 − e−2πinu ∣ < є/2.
But then ∣− 1− gn ∣ < 2− є/2 and ∣1− gn ∣ < 2− є/2, and again these cannot be simulta-
neously satisûed for gn = ±1. _is impossibility proves κ(E) = 2 and also establishes
κn(E) = 2 for n even.

If, instead, we deûne ϕ = ωn on E1, where ωn is an n-th root of unity nearest −1,
then similar arguments show that κn(E) = ∣1− e iπ(1−1/n)∣ for n odd and κn(E) = 2 for
n even.

Remark 3.3 Itwould be interesting to knowwhethernon-trivial examples of 2-Kro-
necker Sidon sets could be found in a torsion-free group and alsowhether every Sidon
set is a ûnite union of sets that are є-Kronecker for some є < 2.
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