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Abstract
We investigate how various forms of bisimulation can be characterised using the technology of logical rela-
tions. The approach taken is that each form of bisimulation corresponds to an algebraic structure derived
from a transition system, and the general result is that a relation R between two transition systems on state
spaces S and T is a bisimulation if and only if the derived algebraic structures are in the logical relation
automatically generated from R. We show that this approach works for the original Park–Milner bisimula-
tion and that it extends to weak bisimulation, and branching and semi-branching bisimulation. The paper
concludes with a discussion of probabilistic bisimulation, where the situation is slightly more complex,
partly owing to the need to encompass bisimulations that are not just relations.

Keywords: Strong bisimulation; weak bisimulation; branching bisimulation; probabilistic bisimulation; logical relation;
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1. Introduction
This paper is dedicated to John Power, long-time friend and collaborator of the authors, whose
work in abstract algebra, for example Anderson and Power (1997), is guided by a concern for
practicality led by an understanding of abstract structures that we can only aspire to.

This work forms part of a programme to view logical relations as a structure that arises natu-
rally from interpretations of logic and type theory and to expose the possibility of their use as a
wide-ranging framework for formalising links between instances of mathematical structures. See
Hermida et al. (2014) for an introduction to this. The purpose of this paper is to show how several
notions of bisimulation (strong, weak, branching and probabilistic) can be viewed as instances of
the use of logical relations. It is not to prove new facts in process algebra. Indeed the work we pro-
duce is based on concrete facts, particularly about weak bisimulation, that have long been known
in the process algebra community. What we do is look at them in a slightly different light.

Our work is also related to that of the coalgebra community, but is, we believe, quite different in
emphasis. The main thrust of the related work there has been on algebraic theories as formalised
by monads. In particular, there are abstract notions of bisimulation given in terms of monads
and monad liftings. This is a presentation-free approach, which has both advantages and disad-
vantages. In this paper, though, we are focusing more on presentations of theories and concrete
constructions of models. The difference is between presenting a group structure as an algebra for
the group monad, and presenting it directly in terms of operations and constants: multiplication,
inverse and identity. There is a natural notion of congruence between algebras for this approach,
and it is given by logical relations.

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S0960129522000020 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000020
https://orcid.org/0000-0002-8148-8057
https://orcid.org/0000-0002-3075-2217
https://orcid.org/0000-0001-7683-5221
e.p.robinson@qmul.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129522000020&domain=pdf
https://doi.org/10.1017/S0960129522000020


Mathematical Structures in Computer Science 443

The primary thrust of this paper is to test the idea that a presentation of what is in general a
many-sorted mathematical structure, given by types and operations, should give a natural notion
of congruence between models. We call this the logical relations approach. Our tests consist of
looking at some of the larger inhabitants of the zoo of bisimulations produced by the process
algebra community. We will show that a number of different notions of bisimulation can be seen
as the congruences coming from different ways of modelling state transition systems. This area
has also been studied by the coalgebra community, and there are relations between their work and
ours that we shall discuss later.

We see there as being advantages in this. A key one is that the concept of bisimulation is incor-
porated as a formal instance of a framework that also includes other traditional mathematical
structure, such as group homomorphisms.

Formally speaking, the theory of groups is standardly presented as an algebraic theory with
operations of multiplication (.), inverse (( )−1) and a constant (e) giving the identity of the mul-
tiplication operation. A group is a set equipped with interpretations of these operations under
which they satisfy certain equations. We will not need to bother with the equations here. If G
and H are groups, then a group homomorphism θ : G−→H is a function G−→H between the
underlying sets that respects the group operations. We will consider the graph of this function
as a relation between G and H. We abuse notation to conflate the function with its graph, and
write θ ⊆G×H for the relation (g, θg). Logical relations give a formal way of extending relations
to higher types. In particular, the type for multiplication is [(X× X)→ X], and the recipe for
[(θ × θ)→ θ] tells us that (.G, .H) ∈ [(θ × θ)→ θ] if and only if for all g1, g2 ∈G and h1, h2 ∈H, if
(g1, h1) ∈ θ and (g2, h2) ∈ θ , then (g1.Gg2, h1.Hh2) ∈ θ . Rewriting this back into the standard func-
tional style, this says precisely that θ(g1.Gg2)= (θg1).H(θg2), the part of the standard requirements
for a group homomorphism relating to multiplication. In other words, this tells us that a relation
θ is a group homomorphism between G andH if and only if the operations are in the appropriate
logical relations for their types and θ is functional:

• (.G, .H) ∈ [(θ × θ)→ θ]
• (( )−1(G), ( )−1(H)) ∈ [θ→ θ]
• (eG, eH) ∈ θ , and
• θ is functional and total.

We get an equivalent characterisation of (strong) bisimulation. We can take a labelled tran-
sition system (with labels A and state space S) to be an operation of type [(A× S)→P S], or
equivalently [A→ [S→P S]]. Let F and G be two such (with the same set of labels, but state
spaces S and T), then we show that R⊆ S× T is a bisimulation if and only if the transition
operations are in the appropriate logical relation:

• (F,G) ∈ [(A× R)→P R], or equivalently
• (F,G) ∈ [A→ [R→P R]].

Since Rel is a cartesian closed category it does not matter which of these presentations we use, the
requirement on R will be the same.

In order to do this, we need to account for the interpretation ofP on relations and this leads us
into a slightly more general discussion of monadic types. This includes some results about monads
on Set that we believe are new, or at least are not widely known.

Weak and branching bisimulation can be made to follow. These forms of bisimulation arise
in order to deal with the extension of transition systems to include silent τ actions. It is widely
known that weak bisimulation can be reduced to the strong bisimulation of related systems, and
we follow this approach. The interest for us is the algebraic nature of the construction of the related
system, and we give two such, one of which explicitly includes τ actions and the other does not.

https://doi.org/10.1017/S0960129522000020 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000020


444 C. Hermida et al.

In this case, we get results of the form: R⊆ S× T is a weak bisimulation if and only if the derived
transition operations F and G are in the appropriate logical relation:

• (F,G) ∈ [A→ [R→P R]].

This seems something of a cheat but there is an issue here. The τ actions form a formal part of the
semantic structure, but are not supposed to be visible. You can argue that is also cheating, and that
you would really like a semantic structure that does not include mention of τ , and that is what our
second construction does.

Branching and semi-branching bisimulations were introduced to deal with perceived deficien-
cies in weak bisimulation. We show that they arise naturally out of a variant of the notion of
transition system in which the system moves first by internal computations to a synchronisation
point, and then by the appropriate action to a new state.

Bisimulations between probabilistic systems are a little more problematic. They do not quite
fit the paradigm because, in the continuous case, we have a Markov kernel rather than transitions
between particular states. Secondly, there are different approaches to bisimilarity. We investigate
these and show that the logical relations approach can still be extended to this setting, and that
when we do so there are strong links with these approaches to bisimilarity.

The notion of probabilistic bisimulation for discrete probabilistic systems is due originally to
Larsen and Skou (1991), with further work in van Glabbeek et al. (1995). The continuous case
was instead discussed first in Desharnais et al. (2002), where bisimulation is described as a span of
zig-zag morphisms between probabilistic transition systems, there called labelled Markov processes
(LMP), whose set of states is an analytic space. The hypothesis of analyticity is sufficient in order
to prove that bisimilarity is a transitive relation, hence an equivalence relation. In Panangaden
(2009), the author defined instead the notion of probabilistic bisimulation on a LMP (again with
an analytic space of states) as an equivalence relation satisfying a property similar to Larsen and
Skou’s discrete case. For two LMPs with different sets of states, S and S′ say, one can consider
equivalence relations on S+ S′.

Here we follow the modus operandi of de Vink and Rutten (1999), where they showed the con-
nections between Larsen and Skou’s definition in the discrete case and the coalgebraic approach
of the ‘transition-systems-as-coalgebras paradigm’ described at length in Rutten (2000); then they
used the same approach to give a notion of probabilistic bisimulation in the continuous case of
transition systems whose set of states constitutes an ultrametric space. In this article, we see LMPs
as coalgebras for the Giry functor � : Meas→Meas (hence we consider arbitrary measurable
spaces) and a probabilistic bisimulation is defined as a �- bisimulation: a span in the category
of �-coalgebras. At the same time, we define a notion of logical relation for two such coalge-
bras F : S−→�S and G : T −→�T as a relation R⊆ S× T such that (F,G) ∈ [R→�R], for an
appropriately defined relation �R. It is easy to see that if S= T and if R is an equivalence relation,
then the definitions of logical relation and bisimulation of Panangaden (2009) coincide. What is
not straightforward is the connection between the definition of�-bisimulation and of logical rela-
tion in the general case: here we present some sufficient conditions for them to coincide, obtaining
a similar result to de Vink and Rutten, albeit the set of states are not necessarily ultrametric spaces.

A second benefit of this approach using explicit algebraic constructions of models is that
placing these constructions in this context opens up the possibility of applying them in more
general settings than Set, by generalising the constructions to other frameworks. The early work
of Hermida (1993, 1999) shows that logical predicates can be obtained from quite general inter-
pretations of logic, and more recent work of the authors of this paper shows how to extend this
to general logical relations. The interpretation of covariant powerset given here is via an alge-
braic theory of complete sup-lattices opening up the possibility of also extending it to more
general settings (though there will be design decisions about the indexing structures allowed).
The derived structures used to model weak bisimulation are defined through reflections, and so
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can be interpreted in categories with the correct formal properties. All of this gives, we hope, a
framework that can be used flexibly in a wide range of settings, see e.g. Ghani et al. (2010).

As we have indicated, much of this is based on material well-known to the process algebra
community. We will not attempt to give a full survey of sources here.

1.1 Related work
The idea that bisimulation is related to more general notions goes back a long way: at least to
Aczel’s theory of non-well-founded sets Aczel (1988), see also Rutten (1992). More recently the
coalgebra community has engaged heavily with this, both in terms of abstracting the notion to gen-
eral coalgebras and working on abstractions of weak bisimulation and, quite recently, branching
bisimulation, along with forms of probabilistic bisimulation.

Most of these are based on the notion of transition system as coalgebra for a functor that effec-
tively gives the set of possible endpoints for a transition starting at a given input state. If this
functor is suitably well-behaved, or has the right additional structure, then we can get an abstract
version of, say, weak bisimulation.

In the specific case of weak bisimulation, the basic idea is often to construct the saturation of a
transition system with τ moves and to use strong bisimulation on the result. This idea dates back
a long time to the process algebra community around Milner and has to be carried out carefully
because expressed as simply as above it will yield the wrong results. This is the basic idea behind
the work of, for example, Brengos (2015), or Sokolova et al. (2009), though in both cases the
authors extend the idea significantly. Brengos shows that it can be made to carry through in a
very abstract setting (when the coalgebras on a given object are partially ordered and the saturated
ones form a reflexive subcategory of that partial order). Similarly much of the content of Sokolova
et al. (2009) is that the same abstract approach yields a standard form of bisimulation for certain
probabilistic systems.

We have not, however, found work that compares with our characterisation in terms of lax
transition systems. In fact we suggest that this approach departs from ones natural for the coal-
gebra community. If F is a strong monad on a cartesian closed category C, then the internal hom
[c→ Fc] is a monoid in C. We can view an a-labelled transition system as either a morphism
a−→ [c→ Fc], or as a monoid homomorphism a∗ −→ [c→ Fc], where a∗ is the free monoid on
a. We use this formulation to define the notion of lax transition system.

Some very recent independent work on branching bisimulation deserves mention. Beohar and
Küpper (2017) uses a fairly similar approach to us, but is more abstract and less specific about
synchronisation points. Jacobs and Geuvers (2021) adopts a completely different approach using
apartness.

In Section 6, our digression on monads, we have a short discussion of lifting functors to Pred
and to Rel. There is a considerable body of work in this area, some quite general and abstract
(including Hermida and Jacobs 1998), and we cannot cover the relationships with other work in
full detail. This kind of area is central for the coalgebra community, but we are generally working
with specific examples, while they are concerned with the abstract properties that make arguments
go through. Much of the extant work in the area makes use of some form of image factorisation
in order to get round the issue that if R⊆A× B is a relation between A and B, andM is a functor,
then MR has a canonical map to MA×MB, but that map is not necessarily monic. Examples
include the early work of Hesselink and Thijs (2000), and the foundational work of Goubault-
Larrecq et al. (2008). There is a nice review in Kurz and Velebil (2016). There is also interesting
work that employs different techniques: Sprunger et al. (2018) employs a Kan extension technique,
Katsumata and Sato (2015) uses a double orthogonality technique to induce closure, Baldan et al.
(2014) uses quantale-valued relations. Hasuo et al. (2013) uses closure under ω-sequences, a term
closure, to induce liftings. Researchers have developed the basic image factorisation idea in other
directions, for example to handle “up to" techniques, Bonchi et al. (2018).
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The authors would like to thank Matthew Hennessy for suggesting that weak bisimulation
would be a reasonable challenge for assessing the strength of this technology, the referees of an
earlier version for pointing us at branching bisimulation as a test case, and referees of this version
for helpful suggestions and in particular pressing us to improve the situation of the paper with
respect to other work.

2. Bisimulation
The notion of bisimulation was introduced for automata in Park (1981), extended by Milner
to processes and then further modified to allow internal actions of those processes, Milner
(1989). The classical notion is strong bisimulation, defined as a relation between labelled transition
systems.

Definition 1. A transition system consists of a set S, together with a function f : S−→P S. We
view elements s ∈ S as states of the system, and read f (s) as the set of states to which s can evolve in a
single step. A labelled transition system consists of a set A of labels (or actions), a set S of states, and
a function F :A−→ [S→P S]. For a ∈A and s ∈ S we read Fas as the set of states to which s can
evolve in a single step by performing action a. s′ ∈ Fas is usually written as s a→ s′, using different
arrows to represent different F’s.

This definition characterises a labelled transition system as a function from labels to unla-
belled transition systems. For each label, we get the transition system of actions with that label.
By uncurrying F we get an equivalent definition as a function A× S−→P S.

We can now define bisimulation.

Definition 2. Let S and T be labelled transition systems for the same set of labels, A. Then a relation
R⊆ S× T is a strong bisimulation if and only if for all a ∈A, whenever sRt

– for all s a→ s′, there is t′ such that t a→ t′ and s′Rt′

– and for all t a→ t′, there is s′ such that s a→ s′ and s′Rt′.

3. Logical Relations
The idea behind logical relations is to take relations on base types, and extend them to relations
on higher types in a structured way. The relations usually considered are binary, but they do not
have to be. Even the apparently simple unary logical relations (logical predicates) are a useful tool.
In this paper, we will be considering binary relations except for a few throwaway remarks. We will
also keep things simple by just working with sets.

As an example, suppose we have a relation R0 ⊆ S0 × T0 and a relation R1 ⊆ S1 × T1, then
we can construct a relation [R0→ R1] between the function spaces [S0→ S1] and [T0→ T1]. If
f : S0 −→ S1 and g : T0 −→ T1, then f [R0→ R1]g if and only if for all s, t such that sR0t, then
f (s)R1g(t).

The significance of this definition for us is that it arises naturally out of a broader view of the
structure. We consider categories of predicates and relations.

Definition 3. The objects of the category Pred are pairs (P,A) where A is a set and P is a subset
of A. A morphism (P,A)−→ (Q, B) is a function f : A−→ B such that ∀a ∈A.a ∈ P =⇒ f (a) ∈Q.
Identities and composition are inherited from Set.
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Pred also has a logical reading. We can take (P,A) as a predicate on the type A, and associate
it with a judgement of the form a :A	 P(a) (read “in the context a :A, P(a) is a proposition”).
A morphism t : (a :A	 P(a))→ (b : B	Q(b)) has two parts: a substitution b 
→ t(a), and the
logical consequence P(a)⇒Q(t(a)) (read “whenever P(a) holds, then so does Q(t(a))”).

Definition 4. The objects of the category Rel are triples (R,A1,A2) where A1 and A2 are sets and
R is a subset of A1 ×A2 (a relation between A1 and A2). A morphism (R,A1,A2)−→ (S, B1, B2) is
a pair of functions f1 : A1 −→ B1 and f2 : A2 −→ B2 such that ∀a1 ∈A1, a2 ∈A2.(a1, a2) ∈ R =⇒
(f1(a1), f2(a2)) ∈ S. Identities and composition are inherited from Set× Set.

Reln is the obvious generalisation of Rel to n-ary relations.
Pred has a forgetful functor p : Pred−→ Set, p(P,A)=A, and similarly Rel has a forgetful

functor q : Rel−→ Set× Set, q(R,A1,A2)= (A1,A2), giving rise to two projection functors π0
and π1 Rel−→ Set. These functors carry a good deal of structure and are critical to a deeper
understanding of the constructions.

Moreover, both Pred and Rel are cartesian closed categories.

Lemma 5. Pred is cartesian closed and the forgetful functor p : Pred→ Set preserves that struc-
ture. Rel is also cartesian closed and the two projection functors π0 and π1 preserve that structure.
Moreover the function space in Rel is given as in the example above.

So the definition we gave above to extend relations to function spaces can be motivated as the
description of the function space in a category of relations.

4. Covariant Powerset
We can do similar things with other type constructions. In particular, we can extend relations to
relations between powersets.

Definition 6. Let R⊆ S× T be a relation between sets S and T. We define P R⊆P S×P T by:
U[P R]V if and only if

– for all u ∈U, there is a v ∈V such that uRv
– and for all v ∈V, there is a u ∈U such that uRv

Again this arises naturally out of the lifting of a construction on Set to a construction on Rel.
In this case, we have the covariant powerset monad, in which the unit η : S−→P S is ηs= {s},
and the multiplication μ :P2 S−→P S is μX=⋃

X.
There are two ways to motivate the definition we have just given. They both arise out of

constructions for general monads, and in the case of monads on Set they coincide.
In Pred our powerset operator sends (Q,A) to (P Q,P A) with the obvious inclusion. In Rel

it almost sends (R,A1,A2) to (P R,P A1,P A2), where the “relation" is as follows: if U ⊆ R
(i.e. U ∈P R) then U projects onto π1 U and π2 U. So for example, if R is the total relation on
{0, 1, 2} and U = {(0, 1), (1, 2)}, then U projects onto {0, 1} and {1, 2}. The issue is that there are
other subsets that project onto the same elements, e.g. U ′ = {(0, 1), (1, 1), (1, 2)}, and hence this
association does not give a monomorphic embedding of P R into P A1 ×P A2.
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Lemma 7. If R is a relation between sets A1 and A2, P1 ⊆A1 and P2 ⊆A2, then the following are
equivalent:

(1) there is U ⊆ R such that π1 U = P1 and π2 U = P2
(2) for all a1 ∈ P1 there is an a2 ∈ P2 such that a1Ra2 and for all a2 ∈ P2 there is an a1 ∈ P1 such

that a1Ra2.

The latter is the Egli–Milner condition arising in the ordering on the Plotkin powerdomain,
Plotkin (1976).

Thus for Rel we take the powerset of (R,A1,A2) to be (P R,P A1,P A2), where P1(P R)P2
if and only if P1 and P2 satisfy the equivalent conditions of Lemma 7.

Covariant powerset as the algebraic theory of complete ∨-semilattices. This form of powerset does
not characterise predicates on our starting point. Rather it characterises arbitrary collections of
elements of it. Tomake this precise, consider the following formalisation of the theory of complete
sup-semilattices. For each set X, we have an operation

∨
X : LX −→ L. In addition, for any f :

X−→ Y , composition with Lf : LY −→ LX is a substitution that takes an operation of arity X into
one of arity Y . These operations satisfy the following equations:

(1) given a surjection f : X−→ Y ,
∨

X ◦Lf =
∨

Y .
(2) given an arbitrary function f : X−→ Y ,

∨
Y ◦(λy ∈ Y .

∨
f−1{y} ◦Liy)=

∨
X , where iy :

f−1{y} −→ X is the inclusion of f−1{y} in X.

The first axiom generalises idempotence and commutativity of the∨-operator. The second says
that if we have a collection of sets of elements, take their

∨
’s, and take the

∨
of the results, then

we get the same result by taking the union of the collection and taking the
∨

of that. A particular
case is that

∨
∅ is the inclusion of a bottom element.

The fact that this theory includes a proper class of operators and a proper class of equations
does not cause significant problems.

Lemma 8. In the category of sets, P A is the free complete sup-semilattice on A.

Proof. (Sketch) Interpreting the
∨

operators as unions, it is clear that P A is a model of our
theory of complete sup-semilattices.

Suppose now that f :A−→ B and B is a complete sup-semilattice. Then we have a map f ∗ :
P A−→ B defined by f ∗(X)=∨

X (λx ∈ X.f (x)). Equation (1) tells us that the operators
∨

X are
stable under isomorphisms of X, and hence we do not need to be concerned about that level of
detail. Equation (2) now tells us that f ∗ is a homomorphism. Moreover, if X⊆A then in P A,
X=∨

X (λx ∈ X.{x}). Hence f ∗ is the only possible homomorphism extending f . This gives the
free property for P A.

Lemma 9. In Pred, (P P,P A) is the free complete sup-semilattice on (P,A) and in Rel,
(P R,P A1,P A2) is the free complete sup-semilattice on (R,A1,A2).

Proof. We start with Pred. For any set X, (X, X) is the coproduct in Pred of X copies of (1, 1), and
(QX , BX) is the product of X copies of (Q, B). X-indexed union in the two components gives a map⋃

X : ((P P)X , (P A)X)−→ (P P,P A). Since this works component-wise, these operators
satisfy the axioms in the same way as in Set. (P P,P A) is thus a complete sup-semilattice.

Moreover, if f : (P,A)−→ (Q, B) where (Q, B) is a complete sup-semilattice, then we have f ∗ :
P A−→ B and (the restriction of) f ∗ also maps P P−→Q. The proof is now essentially as in
Set.
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The proof in Rel is similar.

This type constructor has notable differences from a standard powerset. It (obviously) supports
collecting operations of union, including a form of quantifier:

⋃ :P P X−→P X. However, it
does not support either intersection or a membership operator.

Lemma 10.

(1) ∩ :P X×P X→P X is not parametric.
(2) ∈: X×P X→ 2= {�,⊥} is not parametric.

Proof. Consider sets A and B and a relation R in which aRb and aRb′ where b �= b′.

(1) {a}P R{b} and {a}P R{b′}, but {a} ∩ {a} = {a}, while {b} ∩ {b′} = ∅, and it is not the case
that {a}P R∅.

(2) aRb′ and {a}P R{b}, but applying ∈ to both left and right components of this gives differ-
ent results:
∈ (a, {a})=�, while ∈ (b′, {b})=⊥.

Hence, ∩ and ∈ are not parametric.

Despite the lack of these operations, this type constructor is useful to model non-determinism.

Covariant powerset in Rel using image factorisation. SupposeQ⊆A, thenP Q⊆P A, and hence
we can easily extend P to Pred. However, if R⊆A× B, then P R is a subset of P (A× B), not
P A×P B. The consequence is that P does not automatically extend to Rel in the same way.

The second way to get round this is to note that we have projection maps R−→A and
R−→ B. Applying the covariant P we get P R−→P A and P R−→P B, and hence a map
ϕ :P R−→ (P A×P B). ϕ sends U ⊆ R to

(πA(U), πB(U))= ({a ∈A | ∃b ∈ B. (a, b) ∈U}, {b ∈ B | ∃a ∈A. (a, b) ∈U})
This map is not necessarily monic:

Example 11. Let A= {0, 1}, B= {x, y}, and R=A× B. Take U = {(0, x), (1, y)}, and V =
{(0, y), (1, x)}. Then ϕU = ϕV = ϕR=A× B, and hence ϕ is not monic.

We therefore take its image factorization:

Using this definition, P R is

{(U,V) ∈P A×P B | ∃S⊆ R. U = πAS∧V = πBS}
Now by Lemma 7 we have that this gives the same extension of covariant powerset to relations as
the algebraic approach.

Lemma 12. The following are equivalent:

(1) U[P R]V
(2) there is S⊆ R such that πA S=U and πB S=V
(3) for all a ∈U there is an b ∈V such that aRb and for all b ∈V there is an a ∈U such that aRb.
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5. Strong Bisimulation via Logical Relations
This now gives us the ingredients to introduce the notion of a logical relation between transition
systems.

Definition 13. Suppose f : S−→P S and g : T −→P T are two transition systems. Then we say
that R⊆ S× T is a logical relation of transition systems if (f , g) is in the relation [R→P R].
Similarly, if A is a set of labels and F :A−→ [S→P S] and G :A−→ [T→P T] are labelled
transition systems, then we say that R⊆ S× T is a logical relation of labelled transition systems if
(Fa,Ga) is in the relation [R→P R] for all a ∈A.

The following lemma is trivial to prove, but shows that we could take our uniform approach a
step further to include relations on the alphabet of actions:

Lemma 14. R is a logical relation of labelled transition systems if and only if (F,G) is in the relation
[IdA→ [R→P R]].

More significantly, we have

Lemma 15. If F :A−→ [S→P S] and G :A−→ [T→P T] are two labelled transition sys-
tems, then R⊆ S× T is a logical relation of labelled transition systems if and only if it is a strong
bisimulation.

Proof. The proof is simply to expand the definition of what it means to be a logical relation of
labelled transition systems. If R is a logical relation and sRt then, applying the definition of log-
ical relation for function space twice, {s′|s a→ s′}P R{t′|t a→ t′}. So if s a→ s′, then s′ ∈ {s′|s a→ s′}.
Hence, by definition of P R there is a t′ ∈ {t′|t a→ t′} such that s′Rt′. In other words, t a→ t′ and
s′Rt′.

Conversely, if R is a strong bisimulation, then λas. {s′|s a→ s′} and λat. {t′|t a→ t′} are in the
relation [IdA→ [R→P R]]. We have to check that if aIdAa′ and sRt then {s′|s a→ s′}P R{t′|t a′→
t′} But if aIdAa′, then a= a′, so this reduces to {s′|s a→ s′}P R{t′|t a→ t′}. Now Definition 6 says
that we need to verify that:

– for all s a→ s′, there is t′ such that t a→ t′ and s′Rt′
– and for all t a→ t′, there is s′ such that s a→ s′ and s′Rt′.

This is precisely the bisimulation condition.

This means that we have rediscovered strong bisimulation as the specific notion of congru-
ence for transition systems arising out of a more general theory of congruences between typed
structures.

6. A Digression on Monads
The covariant powerset functor is an example of a monad, and the two approaches given to extend
it to Rel at the end of Section 4 extend to general monads. In the case of monads on Set, they are
equivalent.
Set satisfies the Axiom Schema of Separation:

∀v.∃w.∀x.[x ∈w↔ x ∈ v∧ ϕ(x)]
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This restricted form of comprehension says that for any predicate ϕ on a set v, there is a subset of
v containing exactly the elements of v that satisfy ϕ. Since this is a set, we can apply functors to it.

Moreover, classical sets have the property that any monic whose domain is a non-empty set has
a retraction. It follows that ifm is such a monic, then Fm is also monic, where F is any functor.

Lemma 16.

(1) Let F : Set−→ Set be a functor, and i :A� B a monic, where A �= ∅, then Fi is also monic.
(2) Let M : Set−→ Set be a monad, and i :A� B any monic, then Mi is also monic.
(3) Let M : Set−→ Set be a monad, then M extends to a functor Pred−→ Pred over Set.

Proof.

(1) i has a retraction which is preserved by F.
(2) If A is non-empty, then this follows from the previous remark. If A is empty, then there are

two cases. IfM∅= ∅, thenMi : ∅ =M∅=MA−→MB is automatically monic. IfM∅ �= ∅,
then let r be any map B−→M∅. MB is the free M-algebra on B, and therefore there is a
uniqueM-algebra homomorphism r∗ :MB−→M∅ extending this.Mi is also anM-algebra
homomorphism and hence so is the composite r∗(Mi). SinceM∅ is the initialM-algebra, it
must be the identity, and henceMi is monic.

(3) Immediate.

This means that we can make logical predicates work for monads on Set, though there
are limitations we will not go into here. We cannot necessarily do the same for monads on
arbitrary categories, and we have already seen that this approach does not work for logical rela-
tions. In order to extend to logical relations, we have our algebraic and image factorisation
approaches.

It is widely known that a large class of monads, monads where the functor preserves filtered (or
more generally α-filtered) colimits correspond to algebraic theories. However, it is less commonly
understood that arbitrary monads can be considered as being given by operations and equations,
and that the property on the functor is really only used to reduce the collection of operations and
equations down from a proper class to a set.

LetM be an arbitrary monad on Set, and θ :MB−→ B be anM-algebra. Let A be an arbitrary
set, then any element ofMA gives rise to an A-ary operation on B. Specifically, let t be an element
of MA. An A-tuple of elements of B is given by a function e :A−→ B, then we apply t to e by
composing θ andMe and applying this to t: (θ ◦ (Me))(t). The monad multiplication can be inter-
preted as a mechanism for applying terms to terms, and we get equations from the functoriality of
M and this interpretation of the monad operation.

We can look at models of this algebraic theory in the category Rel and interpret MR as the
free model of this theory on R. That is the algebraic approach we followed for the covariant
powerset P .

Alternatively we can follow the second approach and use image factorisation.

Because of the particular properties of Set, monads preserve image factorisation.
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Lemma 17. Let M be a monad on Set.

(1) M preserves surjections: if f :A� B is a surjection fromA onto B, thenMf is also a surjection.
(2) M preserves image factorisations: if is the image factorisation of f = i ◦ p,

then is the image factorisation of Mf .

Proof.

(1) Any surjection in Set is split. The splitting is preserved by functors, and hence surjections
are preserved by all functors.

(2) By Lemma 16, M preserves both surjections and monics, hence it preserves image
factorisations.

Given any monad M on Set, MA×MB is automatically an M-algebra with operation 〈μA ◦
(MπMA),μB ◦ (MπMB)〉 :M(MA×MB)−→MA×MB. Moreover,MR is also anM-algebra.

Lemma 18. MR is the smallest M sub-algebra of MA×MB containing the image of R.

Proof. This follows immediately from the fact thatMR is anM sub-algebra ofMA×MB.

In the diagram above, the bottom horizontal composite is 〈MπA,MπB〉, and the top composite is
M applied to this. By Lemma 17,M preserves the image factorization in the bottom composite. It
is easy to see that the outer rectangle commutes. It follows that there is a unique map across the
centre making both squares commute, and hence thatMR is anM sub-algebra ofMA×MB.

The immediate consequence of this is thatMR is the freeM algebra on R in Rel and hence the
two constructions by free algebra, and by direct image coincide in the case of monads on Set.

7. Monoids
Bisimulation is only one of the early characterisations of equivalence for labelled transition sys-
tems. Another was trace equivalence. That talks overtly about possible sequences of actions in a
way that bisimulation does not. However, the sequences are buried in the recursive nature of the
definition.

We extend our notion of transition from A to A∗, in the usual way. The following is a simple
induction:

Lemma 19. If S and T are two labelled transition systems, then R⊆ S× T is a bisimulation if and
only if for all w ∈A∗, whenever sRt

– for all s w→ s′, there is t′ such that t w→ t′ and s′Rt′

– and for all t w→ t′, there is s′ such that s w→ s′ and s′Rt′.

In other words, we could have used sequences instead of single actions, and we would have got
the same notion of bisimulation (but we would have had to work harder to use it).
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Another way of looking at this is to observe that the set of transition systems on S, [S→P S],
carries a monoid structure. One way of seeing that is to note that [S→P S] is equivalent to the
set of

⋃
-preserving endofunctions on P S. Another is that it is the set of endofunctions on S in

the Kleisli category for P .
More concretely, the unit of the monoid is id= η= λs.{s}, and the product is got from

collection, f0 · f1 = λs.
⋃

s′∈f0(s)f1(s
′).

Unsurprisingly, since this structure is essentially obtained from the monad, for any R⊆ S× T,
[R→P R] also carries the structure of a monoid, and the projections to [S→P S] and [T→
P T] are monoid homomorphisms. This means that we could characterise strong bisimulations
as relationsR for which themonoid homomorphisms giving the transition systems lift to amonoid
homomorphism into the relation.

8. Weak Bisimulation
The need for a different form of bisimulation arises when modelling processes. Processes can
perform internal computations that do not correspond to actions that can be observed directly or
synchronised with. In essence, the state of the system can evolve on its own. This is modelled by
incorporating a silent τ action into the set of labels to represent this form of computation. Strong
bisimulation is then too restrictive because it requires a close correspondence in the structure of
the internal computations.

In order to remedy this, Milner introduced a notion of “weak” bisimulation. We follow the
account given in Milner (1989), in which he refers to this notion just as “bisimulation”.

We writeA (this is Milner’sAct), for the set of possible actions including τ and L for the actions
not including τ . So L=A− {τ } and A= L+ {τ }. If w ∈A∗, then we write ŵ for the sequence
obtained from w by deleting all occurrences of τ . So ŵ ∈ L∗. For example, if w= τa0a1ττa0τ ,
then ŵ= a0a1a0, and if w′ = τττ , then ŵ′ = ε, the empty string.

Definition 20. (Milner 1989) Let S be a labelled transition system for A= L+ {τ }, and v ∈ L∗, then
s v⇒ s′ iff there is a w ∈A∗ = (L+ {τ })∗ such that v= ŵ and s w→ s′.

We can type⇒ as⇒ : [L∗ → [S→P S]], and we refer to it as the system derived from→ .

Observe that s ε⇒ s′ corresponds to s τ∗→ s′. It follows that⇒ is not quite a transition system in
the sense previously defined. If S is a labelled transition system for A, then the extension of→ to
A∗ gives a monoid homomorphism A∗ −→ [S→P S]. However⇒ preserves composition but
not the identity. We have therefore only a semigroup homomorphism L∗ −→ [S→P S]. This
prompts the definition of a lax labelled transition system (Definition 31).

We now return to the classical definition of weak bisimulation fromMilner (1989).

Definition 21. If S and T are two labelled transition systems for A= L+ {τ }, then a relation R⊆
S× T is a weak bisimulation iff for all a ∈A= L+ {τ }, whenever sRt

– for all s a→ s′, there is t′ such that t a⇒ t′ and s′Rt′

– and for all t a→ t′, there is s′ such that s a⇒ s′ and s′Rt′.

The combination of two different transition relations in this definition is ugly, but fortunately
it is well known that we can clean it up by just using the derived relation.
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Lemma 22. R is a weak bisimulation iff for all a ∈A= L+ {τ }, whenever sRt

– for all s a⇒ s′, there is t′ such that t a⇒ t′ and s′Rt′

– and for all t a⇒ t′, there is s′ such that s a⇒ s′ and s′Rt′

where for x ∈ L, x is “x” seen as a one-letter word, and for x= τ , x= ε.

We can now extend as before to words in L∗.

Lemma 23. R is a weak bisimulation iff for all v ∈ L∗, whenever sRt

– for all s v⇒ s′, there is t′ such that t v⇒ t′ and s′Rt′
– and for all t v⇒ t′, there is s′ such that s v⇒ s′ and s′Rt′.

Note that we can restrict the underlying alphabet from A= L+ {τ } to L because ε ∈ L∗ is
playing the role of τ ∈A.

This now looks very similar to the situation for strong bisimulation. But as we have noted above,
there is a difference. Previously our transition system was given by a monoid homomorphism
A∗ −→ [S→P S]. Here the identity is not preserved and we only have a homomorphism of
semi-groups.

Lemma 24. If S is a labelled transition system for A, then for all v0, v1 ∈ L∗, v0v1⇒ = v0⇒· v1⇒ .

In the following sections we present different approaches to understanding weak transition
systems.

9. Weak Bisimulation through Saturation
For this section, we enrich our setting. For any S, P S has a natural partial order, and hence so do
the transition systems on any set S, given by the inherited partial order on A→ [S→P S].

Definition 25. Given transition systems F :A−→ [S→P S] and G :A−→ [T→P T], we say
that F ≤G iff S= T and ∀a ∈A.∀s ∈ S.Fas≤Gas. This gives a partial order A-TS that we can view
as a category.

If A= L+ {τ }, where τ is an internal (silent) action, then we shall refer to these as labelled
transition systems with internal action and write the partial order as (L+τ )-TS.

The notion of weak bisimulation applies to transition systems with internal action, while strong
bisimulation applies to arbitrary transition systems. Our aim is to find a systematic way of deriving
the notion of weak bisimulation from strong.

In the following definition, we make use of the fact that [S→P S] is a monoid, as noted in
Section 7.

Definition 26. Let F : (L+ {τ })−→ [S→P S] be a transition system with internal action.We say
that F is saturated if

(1) id≤ F(τ ) and F(τ ).F(τ )≤ F(τ ) and
(2) for all a ∈ L, F(τ ).F(a).F(τ )≤ F(a)

We write L-Sat-TS for the full subcategory of saturated transition systems with internal actions.
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These conditions are purely algebraic, and so can easily be interpreted in more general settings
than Set.

Note that some of the inequalities are, in fact, equalities:

F(τ )= F(τ ).id≤ F(τ ).F(τ )≤ F(τ )

hence F(τ ).F(τ )= F(τ ). Similarly F(a)= id.F(a).id≤ F(τ ).F(a).F(τ )≤ F(a), therefore
F(τ ).F(a).F(τ )= F(a).

Moreover, if we look at the partial order consisting of unlabelled transition systems on
a set S, then the fact that the monoid multiplication preserves the partial order means that
([S→P S], ., id) is a monoidal category. Condition 26.1 says precisely that F(τ ) is a monoid in
this monoidal category, and Condition 26.2 that F(a) is an (F(τ ), F(τ ))-bimodule.

The notions of weak and strong bisimulation coincide for saturated transition systems.

Proposition 27. Suppose F : (L+ {τ })−→ [S→P S] and G : (L+ {τ })−→ [T→P T] are sat-
urated transition systems with internal actions, then R⊆ S× T is a weak bisimulation between the
systems if and only if it is a strong bisimulation between them.

Proof. In one direction, any strong bisimulation is also a weak one. In the other, suppose R is
a weak bisimulation, that sRt, and that s a→ s′. Then by definition of weak bisimulation there is
t a⇒ t′ where s′Rt′. We show that t a→ t′. There are two cases:

a �= τ : Then, by definition of a⇒ , we have t( τ→ )∗ a→ ( τ→ )∗t′. But since F is saturated, this
implies t a→ t′ as required.
a= τ : Then t( τ→ )∗t′, and again since F is saturated, this implies t τ→ t′.

Hence, we have t a→ t′ and tRt′. The symmetric case is identical, so R is a strong bisimulation.

Given any transition system with internal action, there is a least saturated transition system
containing it.

Proposition 28. The inclusion L-Sat-TS ↪→ (L+τ )-TS has a reflection: ( · ).

Proof. Suppose F : (L+ {τ })−→ [S→P S] is a transition system with internal action. Then F is
saturated if and only if F(τ ) is a monoid, and F(a) is an (F(τ ), F(τ ))-bimodule. So we construct
the adjoint by taking F(τ ) to be the free monoid on F(τ ) and each F(a) to be the free (F(τ ), F(τ ))-
bimodule on F(a). This construction works in settings other than Set, but in Set we can give a
concrete construction:

F(τ )= F(τ )∗
F(a)= F(τ ).F(a).F(τ ) (a �= τ )

Proposition 29. Suppose F : (L+ {τ })−→ [S→P S] and G : (L+ {τ })−→ [T→P T] are
transition systems with internal actions (not necessarily saturated), then R⊆ S× T is a weak
bisimulation between F and G if and only if it is a strong bisimulation between F and G.

Proof. This is a direct consequence of the concrete construction of the saturated reflection. It
follows from Lemma 22, since the transition relation on the saturation is the derived transition
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relation on the original transition system: s a→ s′ in F if and only if s a⇒ s′ with respect to F (and
similarly for G).

Corollary 30. Suppose F : (L+ {τ })−→ [S→P S] and G : (L+ {τ })−→ [T→P T] are tran-
sition systems with internal actions, and R⊆ S× T. Then the following are equivalent:

(1) R is a weak bisimulation between F and G
(2) F and G are in the appropriate logical relation: (F,G) ∈ [IdL+{τ } → [R→P R]]
(3) R is the state space of a saturated transition system in Relwhose first projection is F and whose

second is G.

The consequence of this is that we now have two separate ways of giving semantics to transition
systems with inner actions. Given F : (L+ τ )−→ [S→P S], we can just take F as a transition
system. If we then apply the standard logical relations framework to this definition, we get that
two such, F and G, are related by the logical relation [Id(L+τ )→ [R→P R]] if and only if R is
a strong bisimulation between F and G. If instead we take the semantics to be F, typed as F :
(L+ τ )−→ [S→P S], then F and G are related by the logical relation [Id(L+τ )→ [R→P R]]
if and only if R is a weak bisimulation between F and G.

10. Lax Transition Systems
Saturated transition systems still include explicit τ -actions even though these are supposed to be
internal actions only indirectly observable. We can however avoid τ ’s appearing explicitly in the
semantics by giving a relaxed variant of the monoid semantics.

We recall that for an arbitrary set of action labels A, the set of A-labelled transition systems
A−→ [S→P S] is isomorphic to the set of monoid homomorphisms A∗ −→ [S→P S], and
moreover that for any transition systems F and G and relation R⊆ S× T, F is related to G by
[IdA→ [R→P R]] iff F is related to G as monoid homomorphism by [IdA∗ → [R→P R]] iff
R is a strong bisimulation between F and G.

We can model transition systems with internal actions similarly, by saying what transitions
correspond to sequences of visible actions. The price we pay is that, since τ is not visible, we
have genuine state transitions corresponding to the empty sequence. We no longer have a monoid
homomorphism.

Definition 31. A lax transition system on an alphabet L (not including an internal action τ ) is a
function F : L∗ −→ [S→P S] such that:

(1) id≤ F(ε) (reflexivity)
(2) F(vw)= F(v).F(w) (composition)

Definition 32. Let F : (L+ {τ })−→ [S→P S] be a transition system with internal action, then
its laxification F̂ : L∗ −→ [S→P S] is the lax transition system defined by

(1) F̂(ε)= F(τ )∗
(2) F̂(a)= F(τ )∗.F(a).F(τ )∗, for any a ∈ L.
(3) F̂(vw)= F̂(v).F̂(w).

It is trivial that F̂ is a lax transition system.
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Lemma 33. If F : (L+ {τ })−→ [S→P S] is a transition system with internal action, then its
laxification F̂ : L∗ −→ [S→P S] is a lax transition system.

We have reproduced the derived transition system.
Note that if G is a lax transition system, then G(w) depends only on G(ε) and the G(a), all

other values are determined by composition. Note also that if F is saturated, then F̂(ε)= F(τ ) and
F̂(a)= F(a).

We can also go the other way. Given a lax transition system, F : L∗ −→ [S→P S], then we can
define a transition system with inner action: F̌ : (L+ {τ })−→ [S→P S] where

• F̌(τ )= F(ε)
• F̌(a)= F(a)

Lemma 34. If F : (L+ {τ })−→ [S→P S] is a transition system with internal action, then its
saturation F can be constructed as ˇ̂F.

One way of looking at this is that a lax transition system is just a saturated one in thin disguise.
But from our perspective it gives us a different algebraic semantics for transition systems with
inner action that can also be made to account for weak bisimulation, and this time the τ actions
do not appear in the formal statement.

Lemma 35. Suppose F : (L+ {τ })−→ [S→P S] and G : (L+ {τ })−→ [T→P T] are transi-
tion systems with internal actions, and R⊆ S× T. Then the following are equivalent:

(1) R is a weak bisimulation between F and G
(2) (F̂, Ĝ) ∈ [IdL∗ → [R→P R]]
(3) R is the state space of a lax transition system in Rel whose first projection is F̂ and whose

second is Ĝ.

11. (Semi-)Branching Bisimulations
In this section, we shall always consider two labelled transition systems F : (L+ {τ })−→ [S→
P S] and G : (L+ {τ })−→ [T→P T] with an internal action τ . We begin by introducing the
following notation: we say that x τ∗→ y, for x and y in S (or in T) if and only if there is a finite,
possibly empty, sequence of τ actions

x τ→· · · τ→ y;

if the sequence is empty, then we require x= y.
We now recall the notion of branching bisimulation, which was introduced in van Glabbeek

and Weijland (1996).

Definition 36. A relation R⊆ S× T is called a branching bisimulation if and only if whenever sRt:

• s a→ s′ implies
(
(∃t1, t2 ∈ T. t τ∗→ t1

a→ t2 ∧ sRt1 ∧ s′Rt2) or (a= τ ∧ s′Rt)),
• t a→ t′ implies

(
(∃s1, s2 ∈ S. s τ∗→ s1

a→ s2 ∧ s1Rt ∧ s2Rt′) or (a= τ ∧ sRt′)).
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Remark 37. In particular, if R is a branching bisimulation, sRt and s τ→ s′ then there exists t′ ∈ T
such that t τ∗→ t′ and s′Rt′.

We show how branching bisimulation is also an instance of logical relation between appropri-
ate derived versions of F and G.

Definition 38. The branching saturation of F, denoted by Fb, is a function

Fb : (L+ {τ })−→ [S→P(S× S)]

defined as follows. Given s ∈ S and a ∈ L+ {τ },

Fbas= {(s1, s2) ∈ S× S | (s τ∗→ s1
a→ s2) or (a= τ and s= s1 = s2)}.

Theorem 39. Let R⊆ S× T. Then R is a branching bisimulation if and only if (Fb,Gb) ∈
[IdL+{τ } → [R→P (R× R)]].

Proof. Let us unpack the definition of the relation [IdL+{τ } → [R→P (R× R)]]. We have that
(Fb,Gb) ∈ [IdL+{τ } → [R→P (R× R)]] if and only if for all a ∈ L+ {τ } and for all s ∈ S and t ∈ T
such that sRt we have (Fbas)[P (R× R)](Gbat). By definition of P (R× R), this means that for
all (s1, s2) ∈ Fbas there exists (t1, t2) in Gbat such that s1Rt1 and s2Rt2.

Suppose then that R is a branching bisimulation, consider sRt and take (s1, s2) ∈ Fbas. We have
two possible cases to discuss: a= τ and s= s1 = s2, or s

τ∗→ s1
a→ s2. In the first case, consider the

pair (t, t): this clearly belongs to Gbat. In the second case, we are in the following situation:

If τ ∗ is the empty list, then s= s1, hence s1Rt: by definition of branching bisimulation, there are
indeed t1 and t2 such that:

hence (t1, t2) ∈Gbat. If τ ∗ = τn, with n≥ 1, then by Remark 37 applied to every τ in the list
τ ∗, there exists t′ in T such that t τ∗→ t′ and s1Rt′. Now apply again the definition of branching
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bisimulation for sRt′: we have that there are t1 and t2 in T such that:

hence (t1, t2) ∈Gbat. This proves that if R is a branching bisimulation, then (Fb,Gb) ∈ [IdL+{τ } →
[R→P (R× R)]].

Conversely, suppose (Fb,Gb) ∈ [IdL+{τ } → [R→P (R× R)]] and that we are in the following
situation:

Then we have (s, s′) ∈ Fbas, because indeed s τ∗→ s a→ s′. By definition of the relation P(R× R),
there exists (t1, t2) ∈Gbat such that sRt1 and s′Rt2. It is immediate to see that this is equivalent to
the condition required by Definition 36, hence R is in fact a branching bisimulation.

In van Glabbeek and Weijland (1996) also a weaker notion of branching bisimulation was
introduced, which we recall now.

Definition 40. A relation R⊆ S× T is called a semi-branching bisimulation if and only if
whenever sRt:

• s a→ s′ implies
(
(∃t1, t2 ∈ T. t τ∗→ t1

a→ t2 ∧ sRt1 ∧ s′Rt2) or (a= τ ∧ ∃t′ ∈ T. t τ∗→ t′ ∧ sRt′ ∧
s′Rt′)

)
,

• t a→ t′ implies
(
(∃s1, s2 ∈ S. s τ∗→ s1

a→ s2 ∧ s1Rt ∧ s2Rt′) or (a= τ ∧ ∃s′ ∈ S. s τ∗→ s′ ∧ s′Rt ∧
s′Rt′)

)
.

Every branching bisimulation is also semi-branching, but the converse is not true. The differ-
ence between branching and semi-branching bisimulation is in what is allowed to happen in the
τ -case. Indeed, if s τ→ s′ and sRt, in the branching case it must be that either also s′Rt, or t can
“evolve” into t1, for sRt1, by means of zero or more τ actions, and then t1 has to evolve into a t2
via a τ action with s′Rt2. In the semi-branching case, t is always allowed to evolve into t′ with zero
or more τ steps, as long as s is still related to t′, as well as s′Rt′. Figure 1 shows this in graphical
terms.

We can prove a result analogous to Theorem 39 for semi-branching bisimulations. To do so,
we introduce an appropriate derived version of a labelled transition system F : (L+ {τ })−→ [S→
P(S× S)].
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Figure 1. Difference between branching (left) and semi-branch-
ing (right) case for τ actions.

Definition 41. The semi-branching saturation of F, denoted by F̃, is a function

F̃ : (L+ {τ })−→ [S→P(S× S)]

defined as follows. Given s ∈ S and a ∈ L+ {τ },
F̃as= {(s1, s2) ∈ S× S | (s τ∗→ s1

a→ s2) or (a= τ and s1 = s2 and s
τ∗→ s1}.

Notice that Remark 37 continues to hold for semi-branching bisimulations too.

Theorem 42. Let R⊆ S× T be a relation. Then R is a semi-branching bisimulation if and only if
(̃F, G̃) ∈ [idL+{τ } → [R→P (R× R)]].

Proof. Same argument of the proof of Theorem 39.

12. The Almost-Monad
In Section 7, we observed that [S→P S] enjoys a monoid structure inherited from the monadic-
ity of the covariant powersetP . Sadly, we cannot say quite the same for [S→P (S× S)]. Indeed,
consider the functor T(A)=P (A×A):

where P (f × f )(S)= {(f (x), f (y)) | (x, y) ∈ S}. We can define two natural transformations
η : IdSet −→ T and μ : T2 −→ T as follows: ηA(a)= {(a, a)} and

It is not difficult to see that η and μ are indeed natural, and that the following square commutes
for every set A:
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However, although the left triangle in the following diagram commutes, the right one fails to do
so in general:

Indeed, given S⊆A×A, it is true that S∪ S= S, but

μA
(
TηA(S)

)=μA
({({(x, x)}, {(y, y)}) | (x, y) ∈ S})= ⋃

(x,y)∈S

({(x, x)} ∪ {(y, y)}) �= S.

This means that (T, η,μ) falls short of being a monad: it is only a “left-semi-monoid” in the cate-
gory of endofunctors and natural transformations on Set, in the sense that η is only a left unit for
the multiplication μ.

One can go further, and build up the “Kleisli non-category” associated to (T, η,μ), following
the usual definition for Kleisli category of a (proper) monad, where morphisms A−→ B are func-
tions A−→P (B× B), and composition of f : A−→P (B× B) and g : B−→P (C× C) is the
composite in Set:

This composition law has η as a left-but-not-right identity. Whereas the set of endomorphisms on
A in the Kleisli category of a proper monad is always a monoid with the multiplication defined as
the composition above, here we get that [A→P (A×A)] is only a left-semi-monoid.

We can define a partial order on [A→P (A×A)] in a canonical way, by setting f ≤ g if and
only if for all a ∈A f (a)⊆ g(a); by doing so, we can regard [A→P (A×A)] as a category. The
multiplication f · g : A−→P (A×A), defined as f · g(a)=⋃

(x,y)∈f (a) (g(x)∪ g(y)), preserves the
partial order, therefore [A→P (A×A)] is a “left-semi-monoidal” category.

13. Branching and Semi-branching Saturated Systems

In this section, we investigate the properties of Fb(τ ) and F̃(τ ) as elements of [S→P (S× S)],
for F : (A+ {τ })−→ [S→P (S× S)], to explore whether it is possible to define an appropriate
notion of branching or semi-branching saturated systems, where strong and branching (or semi-
branching) bisimulations are the same, cf. weak case in Sections 9 and 10.

Lemma 43. ηS ≤ Fb(τ ), but Fb(τ ) · Fb(τ )� Fb(τ ) in general.

Proof. By definition, the pair (s, s), for s ∈ S, belongs to Fbτ (s), hence ηS ≤ Fb(τ ).
Let now (x, y) ∈ (Fb(τ ) · Fb(τ ))(s)=⋃

(s1,s2)∈Fbτ (s)
(
Fbτ (s1)∪ Fbτ (s2)

)
: we want to check

whether (x, y) ∈ Fbτ (s). Suppose that (x, y) ∈ Fbτ (s1) for some (s1, s2) ∈ Fbτ (s). Then we are in
one of the following four situations:
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In cases 1 and 2, we can conclude that , while in case 4 we get s= x= y, hence (x, y) ∈
Fbτ (s). However, if in case 3 we are in the situation whereby s �= s1, then (x, y) /∈ Fbτ (s), as it is
neither the case that s= x= y nor

It turns out, however, that the semi-branching saturation of F behaves much better than Fb.

Lemma 44. F̃(τ ) is a left-semi-monoid in [S→P (S× S)], and F̃(a) is a left F̃(τ )-module for all
a ∈A.

Proof. Again, it is immediate to see that ηS ≤ F̃(τ ), because for any s, given that τ ∗ can be
the empty list of τ ’s.

Now we prove that F̃(τ ) · F̃(τ )≤ F̃(τ ). Let s ∈ S and (x, y) ∈ (̃F(τ ) · F̃(τ ))(s). Then there exists
a pair (s1, s2) ∈ F̃τ (s) such that (x, y) ∈ F̃τ (s1) or (x, y) ∈ F̃τ (s2). Suppose that (x, y) ∈ F̃τ (s1), then
we are in one of the four following cases:

In every case, we can conclude that (x, y) ∈ F̃τ (s). Thus F̃(τ ) is a left-semi-monoid.
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Finally, we show that F̃(τ ) · F̃(a)≤ F̃(a) for all a ∈A. Let s ∈ S and consider (x, y) ∈ (̃Fτ · F̃a)(s).
Then (x, y) ∈ F̃a(s1) or (x, y) ∈ F̃a(s2) for some (s1, s2) ∈ F̃τ (s). In the first case (and similarly for
the second), it is

and in both cases we have (x, y) ∈ F̃a(s), as required.

Remark 45. It is not true, in general, that F̃a · F̃τ ≤ F̃a. Indeed, consider s ∈ S and (x, y) ∈ (̃Fa ·
F̃τ )(s)=⋃

(s1,s2)∈F̃a(s) (̃Fτ (s1)∪ F̃τ (s2)). Then the following is one of four possible scenarios:

where it is clear that (x, y) /∈ F̃a(s).

14. The CategoryMeas
Our next goal is to discuss bisimulation for continuous Markov processes (see de Vink and Rutten
1999; Panangaden 2009). In order to do this, we need to step cautiously out of the world of sets
and functions, and into that of measurable spaces and measurable functions.

We recall that a measurable space (X,) is a set X equipped with a σ -algebra, , the algebra
of measurable sets. A measurable function f : (X,X)−→ (Y ,Y ) is a function f : X−→ Y such
that if U is a measurable set of (Y ,Y ), then f−1U is a measurable set of (X,X). Together these
form a category, Meas.

Lemma 46. Meas has all finite limits and � =Meas(1,−) :Meas−→ Set preserves them.

Proof. Let F :D−→Meas be a functor from a finite category D. Then lim←− F is the measurable
space on the set lim←− (�F) equipped with the least σ -algebra making the projections lim←− (F)−→ Fd
measurable.

Lemma 47. Meas has coequalisers. If is a pair of parallel measurable func-
tions, then their coequaliser is E : (Y ,Y )−→ (Y/∼,), where ∼ is the equivalence relation on Y
generated by fx∼ gx, and  is the largest σ -algebra on Y/∼ making Y −→ Y/∼ measurable, i.e.
 = {V | e−1V ∈Y}.

Corollary 48. A morphism e : (Y ,Y )−→ (Z,Z) in Meas is a regular epi if and only if �e is a
surjection in Set, and U ∈Z iff e−1U ∈Y .

Corollary 49. Any morphism in Meas factors essentially uniquely as a regular epi followed by a
monomorphism.

However, Meas is not regular because the pullback of a regular epi is not necessarily regular, as
exhibited by this counterexample:
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Example 50. Let (Y ,Y ) be the measurable space on Y = {a0, a1, b0, b1} with Y generated by
the sets {a0, a1} and {b0, b1}. Let (Z,Z) be the measurable space on Z= {a′0, a′1, b′}, where the
only measurable sets are ∅ and Z. Let e : Y −→ Z be given by e(ai)= a′i, and e(bi)= b′. Then e is
a regular epi. Now let (X,X) be the measurable space on X= {a′0, a′1} where X = {∅, X}, and
let : : X−→ Z be the inclusion of X in Z. Then i∗Y = {a0, a1} with σ -algebra generated by the
singletons, but i∗e is not regular epi because (i∗e)−1{a′0} = {a0} is measurable, but {a′0} is not.

The consequence of this is that Meas has all the apparatus to construct a relational calculus,
but that calculus does not have all the properties we expect. Specifically it is not an allegory.
Accordingly, when we want to construct logical relations on Meas, we will take the measurable
spaces as structures in Set and use the constructs in Set.

15. Probabilistic Bisimulation
We follow the standard approach by defining a continuous Markov process to be a coalgebra for
the Giry functor. For simplicity, we will work with unlabelled processes.

Definition 51. Giry monad. Let (X,X) be a measurable space. The Giry functor, �, is defined as
follows, �(X,X)= (�X,�X):

• �X is the set of sub-probability measures on (X,X).
• �X is the least σ -algebra on �X such that for every U ∈X, λπ .π(U) is measurable.

If f : (X,X)−→ (Y ,Y ) is a measurable function, then �f (π)= λV ∈Y .π(f−1V). � forms
part of a monad in which the unit maps a point x to the Dirac measure for x, and the multiplication
is defined by integration, Giry (1982).

Definition 52. continuous Markov process. A continuous Markov process is a coalgebra in Meas
for the Giry functor, i.e. a continuous Markov process with state space (S,S) is a measurable
function F : (S,S)−→�(S,S). A homomorphism of continuous Markov processes is simply
a homomorphism of coalgebras.

There are now two similar, but slightly different approaches to defining the notion of a prob-
abilistic bisimulation. Panangaden (2009) follows Larsen and Skou’s original definition for the
discrete case. This begins by enabling a state space reduction for a single process and generates a
notion of bisimulation between processes as a by-product. The second is the standard notion of
bisimulation of coalgebras, as described in Rutten (2000).

We begin with Panangaden’s extension of the original definition of Larsen and Skou,
Panangaden (2009), Larsen and Skou (1991).

Definition 53. Strong probabilistic bisimulation. Suppose F : S−→�S is a continuous Markov
process, then an equivalence relation R on S is a (strong probabilistic) bisimulation if and only if
whenever sRs′, then for all R-closed measurable sets U ∈S, FsU = Fs′U.

We note that the R-closed measurable sets are exactly those inducing the σ -algebra on S/R,
and hence that this definition of equivalence corresponds to the ability to quotient the state space
to give a continuous Markov process on S/R.
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Lemma 54. An equivalence relation R on (X,X) is a strong probabilistic bisimulation relation if
and only if when we equip X/R with the largest σ -algebra such that X→ X/R is measurable, X/R
carries the structure of a Giry coalgebra and the quotient is a coalgebra homomorphism in Meas.

This definition assumes that R is total. However, that is not essential. We could formulate it for
relations that are symmetric and transitive, but not necessarily total (partial equivalence relations).
In this case, we have a correspondence with subquotients of the coalgebra. We do, however, have
to be careful that the domain of R is a well-defined sub-algebra.

Panangaden goes on to define a bisimulation between two coalgebras. We simplify his
definition as we do not consider specified initial states.

Given a binary relation R between S and T, we extend R to a binary relation on the single set
S+ T. In order to apply the previous definition, we will want the equivalence relation on S+ T
generated by R.

Now (S+ T)× (S+ T)= (S× S)+ (S× T)+ (T × S)+ (T × T), and each of these compo-
nents has a simple relation derived from R, specifically RR◦, R, R◦ and R◦R.

Definition 55. z-closed. R⊆ S× T is z-closed iff RR◦R⊆ R, in other words, iff whenever sRt ∧
s1Rt ∧ s1Rt1 then sRt1.

Lemma 56. R⊆ S× T is z-closed if and only if R∗ = RR◦ + R+ R◦ + R◦R is transitive as a relation
on (S+ T)× (S+ T). Since R∗ is clearly symmetric, R is z-closed iff R∗ is a partial equivalence
relation.

Secondly, given continuousMarkov processes F on S andG on T we can define their sum F+G
on S+ T:

(F+G)xU =
{
Fx(U ∩ S) if x ∈ S
Gx(U ∩ T) if x ∈ T

We can now make a definition that seems to us to contain the essence of Panangaden’s
approach:

Definition 57. strong probabilistic bisimulation between processes. R is a strong probabilistic
bisimulation between the continuous Markov processes F on S and G on T iff R∗ = RR◦ + R+ R◦ +
R◦R is a strong probabilistic bisimulation as defined in Definition 53 on the sum process F+G on
S+ T.

Note that any such relation will be z-closed. Given that R∗ must be total, it also induces an
isomorphism between quotients of the continuous Markov processes.

This definition corresponds exactly to what we get by taking the obvious logical relations
approach.

Logical relations of continuous Markov Processes. Given a measurable space (S,S), we treat the
σ -algebraS as a subset of the function space [S→ 2], and use the standardmechanisms of logical
relations in Set to extend a relation R⊆ S× T between two measurable spaces to a relation R

between S and T : URV if and only if ∀s, t.sRt =⇒ (s ∈U ⇐⇒ t ∈V).

Lemma 58.

(1) If R is an equivalence relation then URV iff U =V and is R-closed.
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(2) If R is z-closed, then URV iff U +V is an R∗-closed subset of S+ T.
(3) If R is the graph of a function f : S−→ T, then URV iff U = f−1V.

Unpacking the definition of the Giry functor, a Giry coalgebra structure on the measurable
space (S,S) has type S−→ [S→ [0, 1]], or equivalently S×S −→ [0, 1], where for the pur-
poses of defining logical relations we regardS as a subset of [S→ 2].We again apply the standard
machinery to this.

Definition 59. logical relation of continuous Markov processes. If R⊆ S× T is a relation between
the state spaces of continuous Markov processes F : S−→�S and G : T −→�T, then R is a logical
relation of continuous Markov processes iff whenever sRt and URV, FsU =GtV.

The following lemmas follow readily from the definitions.

Lemma 60. If R⊆ S× T is a total and onto z-closed relation between continuous Markov processes
F : S−→�S and G : T −→�T, then R is a logical relation of continuous Markov processes if and
only if R is a strong probabilistic bisimulation.

Lemma 61. If R⊆ S× T is the graph of a measurable function f between continuous Markov pro-
cesses F : S−→�S and G : T −→�T, then R is a logical relation of continuous Markov processes
if and only if f is a homomorphism of continuous Markov processes.

Proof. Observe that f is a homomorphism if and only if for all s ∈ S and V ∈T , G(fs)V =
Fs(f−1V).

So logical relations capture both the concept of strong probabilistic bisimulation (given that
the candidate relations are restricted in nature), and the concept of homomorphism of systems.
But they do not capture everything.

�-bisimulation. Recall from Rutten (2000) that for a functor H : C−→ C and two H-coalgebras
f : A−→HA and g : B−→HB, anH-bisimulation between f and g is aH-coalgebra h : C−→HC
together with two coalgebra-homomorphisms l : C−→A and r : C−→ B, that is, it is a span in
the category of coalgebras for H:

where the above diagram is required to be commutative.

Definition 62. A �-bisimulation is simply an H-bisimulation in the category Meas where the
functor H is �.

It is implicit in this definition that a bisimulation includes a coalgebra structure, and is not
simply a relation. Where the functor H corresponds to a traditional algebra generated by first-
order terms and equations, the algebraic structure on the relation is unique. But that is not the
case here.

Example 63. Consider a continuous Markov process F : S−→�S, then S× S typically carries
a number of continuous Markov process structures for which both projections are homomor-
phisms. For example:
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(1) a “two independent copies” structure given by

FF(s, s′)(U,U ′)= (FsU)× (Fs′U ′)
(2) a “two observations of a single copy” structure given by

F2(s, s′)(U,U ′)=
{
Fs(U ∩U ′) if s= s′
FsU × Fs′U ′ if s �= s′

Example 64. More specifically, consider the process t modelling a single toss of a fair coin. This
can be modelled as a process with three states, C= {S,H, T}: Start (S), Head tossed (H) and Tail
tossed (T). From Swemove randomly to one of H and T and then stay there. The transitionmatrix
is given below. This is a discrete process, and we take all subsets to be measurable.

t is given by

S H T
S 0 0.5 0.5
H 0 1 0
T 0 0 1

Now consider the state space C× C. We define two different process structures on this. The first,
t∗, is simply the product of the two copies of C. The transition matrix for this is the tensor of the
transition matrix for C with itself: the pairwise product of the entries. This represents the process
of two independent tosses of a coin.

t∗ is given by

SS HH TT HT TH SH HS ST TS
SS 0 0.25 0.25 0.25 0.25 0 0 0 0
HH 0 1 0 0 0 0 0 0 0
TT 0 0 1 0 0 0 0 0 0
HT 0 0 0 1 0 0 0 0 0
. . .

TS 0 0 0.5 0 0.5 0 0 0 0

The second, t+ is identical except for the first row:

t+ is given by
SS HH TT HT TH SH HS ST TS

SS 0 0.5 0.5 0 0 0 0 0 0
. . .

This is motivated by the process of two observers watching a single toss of a coin.
The projections are homomorphisms for both these structures. For example, the first projection

is a homomorphism for t+ because for each I, J, K:

tI{K} =
∑
L

t+IJ{KL}

This means that in order to establish that a relation is a �-bisimulation, we have to define a
structure and prove the homomorphisms, and not simply validate some closure conditions.

Moreover, in contrast to the case for first-order theories, this non-uniqueness of algebra
structures implies that we cannot always reduce spans of homomorphisms to relations.
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Example 65. Consider the sum of the two algebra structures from Example 63 as an algebra
t∗ + t+ on (C× C)+ (C× C). This is a �-bisimulation from C to itself in which the legs of the
span are the co-diagonal,∇ , followed by the projections. The co-diagonalmaps (C× C)+ (C× C)
to its relational image, but is not an algebra homomorphism for any algebra structure on C× C.
If there were an algebra homomorphism, for an algebra structure δ, say, then we would have that
both (t∗ + t+)( inl SS)(∇−1{HT})= t∗(SS){HT} and (t∗ + t+)( inr SS)(∇−1{HT})= t+(SS){HT}
would be equal to δ(SS){HT}. But the first is t∗(SS){HT} = 0.25, and the second is t+(SS){HT} = 0.

We now show that, despite these issues, �-bisimulations give rise to logical relations.

Theorem 66. Suppose

is a �-bisimulation between the continuous Markov processes F and G. Let R⊆ S× T be the
relation which is the image of 〈l, r〉 : P−→ S× T, i.e. sRt iff ∃p.lp= s∧ rp= t. Then R is a logical
relation between F and G.

Proof. Suppose sRt and URV for U ∈S and V ∈T . We must show that F(s)(U)=G(t)(V).
We begin by showing that l−1U = r−1V . Suppose p ∈ P, then (lp)R(rp), and hence p ∈ l−1U iff

lp ∈U iff rp ∈V (since URV) iff p ∈ r−1V . Hence l−1U = r−1V , as required.
Now, since sRt, there is a p such that lp= s and rp= t. Then

F(s)(U)=Hp(l−1U) because l is a �-homomorphism
=Hp(r−1V) because l−1U = r−1V
=G(t)(V) because r is a �-homomorphism

as required.

Establishing a converse is more problematic. There are a number of issues. One is that �-
bisimulations work on spans, not relations. Another is that there might not be much coherence
between the relation R and the σ -algebras S and T . And a third is the fact that in order to
define a �-algebra structure H on R, we have to define H(s, t)W, where W is an element of
the σ -algebra generated by the sets R∩ (U ×V), where U ∈S and V ∈T . It is not clear that
such an extension will always exist, and Example 63 shows that there is no canonical way to
construct it.

Nevertheless we can show that a logical relation gives rise to a �-bisimulation, unfortunately
not on the original algebras, but on others with the same state space but a cruder measure
structure.

The following lemma is immediate.

Lemma 67. Suppose F : (S,S)−→�(S,S) is a continuous Markov process. Suppose also that
′ is a sub-σ -algebra of S, then F restricts to a continuous Markov process F′ on (S,′), and
1S : (S,S)−→ (S,′) is a homomorphism.

If R is a logical relation between continuous Markov processes F on S and G on T, then R
only gives us information about the measurable sets included in R . The following lemmas are
immediate from the definitions.
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Lemma 68. If R⊆ S× T is a relation between the state spaces of two continuous Markov processes
F and G and π1 : R−→ S, π2 : R−→ T are the two projections, then the following are equivalent
for U ⊆ S and V ⊆ T:

(1) U[R→{0, 1}]V
(2) U is closed under RR◦, and UR=V ∩ cod R
(3) π−11 U = π−12 V.

Lemma 69. If R⊆ S× T is a relation between the state spaces of two continuous Markov processes
F and G, then the sets linked by [R→{0, 1}] have the following closure properties:

(1) If U[R→{0, 1}]V then Uc [R→{0, 1}] Vc

(2) If for all α ∈A, Uα[R→{0, 1}]Vα then
⋃

α∈AUα [R→{0, 1}] ⋃
α∈AVα .

Corollary 70. Themeasurable subsets linked by [R→{0, 1}] have the same closure properties and
hence the following are σ -algebras:

(1) R(S)= {U ∈S|∃V ∈T .URV}
(2) R(T)= {V ∈T |∃U ∈S.URV}
(3) R = {W ⊆ R|∃U ∈S,V ∈T . URV ∧W = π−11 U}

= {W ⊆ R|∃U ∈S,V ∈T . URV ∧W = π−11 U = π−12 V}.

Theorem 71. Suppose R⊆ S× T is a relation between the state spaces of two continuous Markov
processes F and G. If R is a logical relation then there is a �-bisimulation:

Proof. Suppose (s, t) ∈ R andW ∈R, then we need to define H(s, t)W. Suppose U ∈R(S), V ∈
R(T), such that W = π−11 U = π−12 V and URV . Then, since R is a logical relation, F(s)(U)=
G(t)(V).

We claim that this is independent of the choice of U and V . Suppose U ′ ∈R(S), V ′ ∈R(T),
such that W = π−11 U ′ = π−12 V ′ and U ′RV ′. Then π−11 U ′ = π−12 V =W, and hence U ′RV , so
F(s)(U ′)=G(t)(V)= F(s)(U).

We now define H(s, t)(W)= F(s)(U).
We need to show that this is a �-algebra structure.
First, we show that H(s, t) is a sub-probability measure. We use a slightly non-standard

characterisation of measures:

(1) Since ∅ ∈R(S), H(s, t)∅= F(s)∅= 0.
(2) ForW,W′ in R, let U and U ′ be in R(S) such that π−11 U =W and π−11 U ′ =W′. Then,

since F(s) is a measure: F(s)(U)+ F(s)(U ′)= F(s)(U ∪U ′)+ F(s)(U ∩U ′). Now, since
π−11 preserves unions and intersections, H(s, t)(W)+H(s, t)(W′)=H(s, t)(W ∪W′)+
H(s, t)(W ∩W′).

(3) IfWi is an increasing chain of elements ofR, then letUi be an increasing chain of elements
of R(S) such that π−11 (Ui)=Wi. Then H(s, t)(

⋃
Wi)= F(s)(

⋃
Ui)= lim F(s)(Ui)=

limH(s, t)(Ui).
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To complete the proof it suffices to show that for each W ∈R, H(− )(W) is a measurable
function. Choose U ∈R(S) and V ∈R(T) such that URV and W = π−11 U = π−12 V . Now,
given q ∈ [0, 1], let Uq = {s ∈ S | F(s)(U)≤ q} and Vq = {t ∈ T |G(t)(V)≤ q}. Now suppose sRt,
then, since R is a logical relation, F(s)(U)=G(t)(V), hence s ∈Uq iff t ∈Vq. Therefore, UqRVq.
Moreover, H(s, t)(W)= F(s)(U)=G(t)(V), and hence H(s, t)(W)≤ q iff s ∈Uq iff t ∈Vq. It
follows that {(s, t)|H(s, t)(W)≤ q} ∈R, and hence thatH(− )(W) is measurable as required.

Putting this together we see that if we have a logical relation between F and G, then we get
the following diagram, in which the non-horizontal maps in the top section are identities on state
spaces:

We can view Theorem 71 as saying that we may be given too fine a measure structure on S and
T for a logical relation to generate a �-bisimulation, but we can always get a �-bisimulation with
a coarser structure. Just how coarse and how useful this structure might be depends on the logical
relation and its relationship with the original σ -algebras on the state spaces.

Example 72.

• In the contrived examples of 63, we have taken the relation R to be the whole of C× C and
in effect used the algebra structure to restrict the effect of this. However, since R= C× C,
R(C) contains only the empty set and the whole of C. As a result, the continuous Markov
process we get is not useful: the probability of evolving into the empty set is always 0, and the
probability of evolving into something is always 1.

• In the same examples, we can restrict the state spaces for t∗ and t+. For t∗ we take
R∗ = {SS,HH, TT,HT, TH}, reflecting the states accessible from SS. In this case, R(C)=
{∅, {S}, {H, T}, {S,H, T}}. For t+ we take R+ = {SS,HH, TT}, and R(C) contains all the
subsets of C.
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