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The (y,r) summation method, 0<r <1, isthe "circle

method' employed by G.H. Hardy and J. E. Littlewood. It is
also known as the Taylor method. Its Lebesgue constants, say

I(T ,n), n=1, 2, ..., were studied by K. Ishiguro [1] in
r
*
the notation L (n;1-r). He noted that
La
2 n+1
_2 1 1-r (2n+1)it
(1)  L(T_n)== oj — | Im {(1 reZit) e } | at,

where Im{z} denotes the imaginary part of the complex
number z, and proved that

2 2
(2) LT .n)=Slog== +a+o(t), O<r<1
r 2 r -

™
Here
2 2} osint 2 242
© sin . .
(3) a—-—-zC+—_; j . dt—;/-{{;-lsmt,} dt ,
T 0 1
where C =.577 ... 1is Euler's constant.

In this note, we provide an alternative derivation of (2),
relating it to the computation of an asymptotic expression for
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the Lebesgue constants, L(F,d ), for the [F,d ] means of
n n

Fourier series [2]. This is done by representing (1), with
error 9_(1), in terms of an expression [2,(5.2)] which yields
also an asymptotic evaluation of L(F,d ) [2,(5.4)].

n

First, using the expansion for log (1-x) and exponenti-
ating, we note

1-r 1
2it r 2it
1-re 1+——(1-e )
{-r

1

2
4 - — (2it-2t ) + O(t3)
1-r —

2

=1+ 2r (it - tZ) +—= (it - tZ) +O(t3)

1-r 2 —

(1-r)
2 2
= exp {% (it - tZ) + z > (it - tZ) } +9(t3)
(1-1)
= exp {iir t - 2x tz} +9(t3) .
T (4-x)

And so, by the Lemma of [2, §2],

n+1 2ir
—) =exp {(n+1) [ t -
1-re’tt L n?

2r

tz]} + 9(nt3) .

As for I(F,d ), we need also an estimate particularly
n

suited for t outside a neighbourhood of the origin. This is

2
1- - 6nt 1
~—~—~r—) = Qe n ), for some &> 0, OEtEETr.

Proof of (5): Now, cus 2t <1 -
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, 1-r 2 _ (1-1‘)2 < (1-r)2

2"cl 2 — 2 2
1-re ! 1 -2rcos?2t+r (1-r) + rt
~ 1
- =227
14+ r(1-r) t
. -26t .
and this is clearly <e for some & > 0, since
1
O<t<—m.
—_ _ZTr

Analogously to what was done [2, § 3] in connection with
I(F,d ), we decompose L(T ,n) and then introduce simplifying
n r

-3/8
estimates. As there, we write, with § =n /

¢ 1

=T
2 2 2

KT ,n) == [ += |

r ™ m
0 3

. . . -3/8 1

and infer, as in [2, § 3], that the integral from n to =

is o(1) , from (5). Likewise, the remainder term in (4)
contributes only _(2(1) to the first integral. Moreover, sin't
can be replaced by t with an error of o(1). Finally, the

. . . -3/8 1
upper limit of integration, § =n , can be replaced by -Zﬁ
with an error of o(1).

This done, we have

1
5 2 Jsin U;l‘c'

I(T ,n)=— - S't — ' dt + o(1) ,
(6) (rn>ﬁj0exp{ Y = o(1)
where

2

(1) s = —ﬂ’iz) and U' =§‘-:—1-+—r.

n (1-r) n -r

Now, putting S' =s , U' =u , formula (6), with the
n n n

n
error term o(1) disregarded, becomes \(n) defined by
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[2,(5.2)]. This identification is permissible since (7) clearly
imvolies that the restrictions [2,(5.3)] placedon s and u
n

are satisfied also by S' and U' .
n n

This done, formula (5.4) of [2] for A(n) becomes
Ishiguro's formula (2) above and the derivation is complete.
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