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1. General remarks. The heuristic strength of the general principle of rela­
tivity lies in the fact that it considerably reduces the number of imaginable 
sets of field equations ; the field equations must be covariant with respect to all 
continuous transformations of the four coordinates. But the problem be­
comes mathematically well-defined only if we have postulated the dependent 
variables which are to occur in the equations, and their transformation proper­
ties (field-structure). But even if we have chosen the field-structure (in such 
a way that there exist sufficiently strong relativistic field-equations), the 
principle of relativity does not determine the field-equations uniquely. The 
principle of "logical simplicity" must be added (which, however, cannot be 
formulated in a non-arbitrary way). Only then do we have a definite theory 
whose physical validity can be tested a posteriori. 

The relativistic theory of gravitation bases its field-structure on a symmetric 
tensor gik. The most important physical reason for this is that in the special 
theory we are convinced of the existence of a "light-cone" {gikdxxdxh = 0) at 
each world-point, which separates space-like line-elements from time-like ones. 
What is the most natural way of generalizing this field-structure? The use 
of a non-symmetric tensor seems to be the simplest possibility, although this 
cannot be justified convincingly from a physical standpoint. But the follow­
ing formal reason seems to me important. For the general theory of gravita­
tion it is essential that we can associate with the covariant tensor gik a con­
tra v a r i a n t ^ , through the relation giSg

ks = ô / = gSig
8k (normalized cofactors). 

This association can be carried over to the non-symmetric case directly. So 
it is natural to try to extend the theory of gravitation to non-symmetric 
gik-ûelds. 

The main difficulty in this attempt lies in the fact that we can build many 
more covariant equations from a non-symmetric tensor than from a symmetric 
one. This is due to the fact that the symmetric part, g^ and the antisym­
metric part, gik, are tensors independently. Is there a formal point of view 

y 

which makes one of the many possibilities seem most natural? It seems to me 
that there is. In the case of the gravitational theory it is essential that be­
sides the gik tensor we also have the symmetric infinitesimal displacement I\fcZ. 
This is connected with gik by the equation 
(1) gik,i - gskTu* ~ gisTik* = 0. 

But in the symmetric case the order of indices does not matter. How shall 
we generalize (1) to our case? We make use of the following postulate: there 
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is a tensor g&»t the "conjugate" of gik, and a Tki1 "conjugate" of Tik1. It seems 
reasonable that conjugates should play equivalent roles in the field-equations. 
So we require that if in any field-equation we replace g and r by their conju­
gates, we should get an equivalent equation. This requirement replaces 
symmetry in our system. (See sec. 2.) If we require that the set of equations 
(1) should go over into itself under this operation of "conjugation," then the 
order of indices must be as in (1). 

Our main task now is to find out whether there is a sufficiently convincing 
method of finding a unique set of field-equations for the non-symmetric fields 
with the above structure. In both previous publications1 this was solved by 
forming a variational principle in close analogy to the symmetric case. This 
way we make sure that the resulting equations will be compatible. The only 
reason why this derivation may seem not completely satisfactory is that we 
subject the field a priori to two conditions, for reasons of logical simplicity: 

(2) Ti8* = £(I \V - Tsi
s) = 0, 

V 

(3) fit5,* = W8 - 6*0,3 = 0; (fl« = gi8( - detgab)*). 
These side-conditions make the derivation more complex than in the 

gravitational theory, and their formal justification has not been accomplished 
in a fully satisfactory manner so far.2 

In the theory of symmetric fields there is a second method of ensuring the 
compatibility of the field-equations (Rik = 0). We must have four identities 
connecting the equations. These can be derived by contracting the Bianchi-
identities which hold for the curvature tensor: 

•K-iklm\n = J^iklm;n \ -*Mfcmn;Z \ &iknl\m = = U. 

In this article we shall show that an analogous argument can be used for 
the justification of the field-equations also in our case. This will give a deeper 
insight into the structure of non-symmetric fields, and it will demonstrate in 
a new way that the field-equations chosen for the non-symmetric fields are 
really the natural ones. 

2. Non-symmetric tensors. For the sake of convenient reference we shall 
sum up the main facts of the calculus of non-symmetric tensors. 

Given any tensor Aik, it can be written as the sum of a symmetric tensor 
A ifc and an antisymmetric A »•*. These are uniquely determined by the relations : 

(4) V i i « = i ( i l t t + ilw), 

(5) Aik = ^(Aik - A M). 
V 

A complication is introduced into this theory by the fact that besides the 
fundamental tensor g;& we also have its conjugate 
(6) gik = gki-

*Ann. of Math., vol. 46 (1945), no. 4; vol. 47(1946), no. 4. 
2It is a consequence of (1) that (2) and (3) are equivalent. This will be proven in sec. 5. 

https://doi.org/10.4153/CJM-1950-011-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1950-011-4


122 A. EINSTEIN 

The other tensors of our theory are defined in terms of gik. Given a tensor 
Aiky by its conjugate Aik we mean3 the tensor we get by replacing gik in the 
definition of Aik by gu- (This definition agrees with (6) in particular.) We 
shall be particularly interested in tensors in whose definition g and g play ana­
logous roles; more precisely those tensors for which replacing gik by gki merely 
changes Aik into AM, or for which 

(7) Aik = Aki. 

A tensor having the property (7) is called Hermitian? More generally any 
function A . . . ik . . . of the gik is Hermitian in (ik) if 

(7a) A . . . ik . . . = A . . . ki • . . 

If Tik1 is defined by (1), then T is Hermitian in (ik). This is another way 
of stating the principle by which we chose the order of indices in (l).4 

We say that A . . . ik . . . is anti-Hermitian if 

(8) A . . . ik . . . = - A . . . ki • • . 
In analogy to (4), (5), we can decompose any tensor uniquely into 

(9) Aik = ^(Aik + AM) + \(Aik - Âki). 
The first term is the Hermitian, the second the anti-Hermitian part of Aik. 

Covariant derivatives still have to be generalized. In the symmetric theory, 
if A . . . xk . . . is any tensor, then 

A . . . \ . . . ;i = A . . .*"* . . . j dt • • • + A . . . \ . . . I V 
- A . . . % . . . vki

s =t • . . 

is also a tensor. This is true in our theory also, but we can order the two lower 
indices of V in two ways, in each term (after the first one). If the differen­
tiation index / is to be on the right in a certain term, we put + under the cor­
responding tensor-index; if on the left, put — under the index. As an illus­
tration we give a new form of (1) : 

(la) gi^;i = gik.i - gsk?iis - gisTik* = 0. 

The theorems about covariant differentiation can be taken over from the 
symmetric theory, if we are careful to distinguish the two kinds of derivatives. 
By raising the indices i and k in (la) we have: 

(lb) gi*,i = g{\i + g^Tsf + gisTls
k = 0. 

Sometimes it is even convenient to write things like 

**.% k lm\n = *±iklm,n **. skim'- ni ^-islm*- kn 
-+ 

3The names "conjugate" and "Hermitian" can be justified as follows: an interesting possibi­
lity is to choose gik imaginary. Then g is really the conjugate of g. Hence A is the conjugate Y. . of Ay and the definition of "Hermitian" agrees with the usual one. 

4Thus in our theory the condition of symmetry is generalized to that of being Hermitian. 
gik, Tik1, Rik are all Hermitian in (ik). 
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but it must be remembered that such expressions are not always tensors, un­
less + or — occurs under each tensor subscript. 

If we let $ stand for the square-root of the negative determinant of gik, 
then g is a scalar density. We can describe a tensor density as a product of g 
and a tensor. Let us study these densities. Multiply (1) by gik and sum: 

(detgik),i 

(det gik) 
- I V - Tl8

8 = 0, 

(92). 

82 

l- - 2Yi* = 0 , 

(10) B . i - f l I V = 0 . 

It is, therefore, natural to define5 §.j as §ti — &Tis*. 

If (la) is satisfied, then §;i = 0. If we do not assume (1), then gi k;i and 

g-+;i do not vanish but they have tensorial character. Also %;i has then the 
character of a vector density. 

We can now calculate the covariant derivative of a tensor density from the 
rule for differentiating a product. For example : 

This vanishes, if (1) is satisfied. More explicitly: 

B*'*;i = ($,i ~ $T±sa) gik + $(gik,i + g'Tsi* + gi8Vis
k) 

= Zik,i + Ô**IV + 8*Ti.* - $ikTLs\ 

Therefore we have: 

9+-;* = «4.±;i = 0 . 
For completeness we include the following abbreviation : 

Aiki = Aihi + Aku + Auk> 

3. Properties of the generalized curvature. We start with a non-symmetric 
r and build the curvature tensor as usual by parallel translation of a vector 
around an infinitesimal area element: 

(11) R%klm = Tkl%,m — Tkm%A — Tsl
%TkmS + Tstn'Tkl** 

A direct computation shows that the tensor satisfies the identities: 

(12) R+klm;n = Rlklm,n + ^klm^sn1 — R%slmTkn
S = 0 . 

From (11) we can form the covariant curvature tensor in analogy to the 
symmetric case, 

(13) Riklm = gsiR*klm-
The choice of gSi instead of giS may seem arbitrary, but this is not really 

so. We have to lower the index i in the identities (12). The contra variant 
index i has the + differentiation character, so it must be summed with a similar 

5Since Tu8 = T8i
8, the two kinds of differentiation coincide when applied to $. This must 

be so since there is no index which could have a + or — character. 
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index, i.e. the first index of g. Only this way can we lower the index i in (12) 
without introducing additional terms. Thus we get the covariant identities 

(14) gsiR+klm\n = (gsiR8klm);n = R% k lm;n = 0. 

For what follows we must also find the symmetry properties of Rikim-
From (11) it is clear that Rlkim is antisymmetric in (/m). From (13) we see 
that Rikim has the same property: 

(15) Rikim — — Rikmh 

If we differentiate (1) with respect to m and antisymmetrize with respect 
to / and m, we have 

(gik,l — gskTu8 — gis^lk8),m ~ (gik.m ~ gskTim* ~ gis^mk8),l = 0 

or 
— gsk,mTilS — gis,mTlkS + gskjTim8 + gis,l^mk8 

~ gsk(Til\m ~ Tim
8,l) - gisiTlk'.m - Tmk

Sj) = 0. 

Using (1) again on the first four terms and then collecting terms, 

~gsk\^ilS,m ~~ Tim
S
ti — TtlSTim + Ttm8^il ) 

- gis(Tik
s,m - Tmk

8,i - Tit'Tmk1 + TmSTtk') = 0 

or, using (11), (13), we have 

(16) Rkilm = — Rikim-

This expresses that Rikim is anti-Hermitian in (ik); this is the manner in 
which the antisymmetry of Rikim (in the gravitational theory) generalizes to 
our case. 

In (14) it is not immediately clear that R{ kim-,n is a tensor. We are now in 
_+• • • 

a position to give a more useful form for (14) in which this is obvious. 
-*M A; I m\n ~T **• i km n;l I -K- i k n I ;m = : -^ i k lm;n J^iksm^ nl J^ikls^ mn 

- + - + -+++ - + - + " ' 
-K-iksn* ml -K-ikmsl ni -Kiksl*- mn J^ikns^ ml • 

The first term on the right side of the equation vanishes by (14), the last 
six cancel out due to (15). Therefore, 

(14a) Ri k lm\n + Ri kmn;l + R% k n I ;m = 0. 

_ + _ + -+++ - + _ . -
4. The field-equations. We are now in a position to carry out the deriva­

tion of the identities for the field equations. In analogy to the gravitational 
theory, we contract (14a) by gmigkl. (Note that the order of the indices is 
determined by the differentiation character of the corresponding indices in 
(14a).) Making use of (15), we get 

gmigkl[Ri k l m;n — RiknmM ~ Ri k I n ;m] = 0 

- + - + -+++ _ + _ _ 
or using (la), 
(17) gkl[gmiRik lm];n- g^g^Rik nm];l ~ gmi[gklR ikln);m = 0. 

+ - ++ - -
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Let us define 

(18) Rkl = gmiRikim 

(19) Smi = gklRiklm 
where 

(18a) Rkl = rts^^zm = tsmRkimê = iv , . - iv f ï - r«T*.'+ i \ / iv . 
Then we have 

(17a) gkl[Rk i .» - Rkn;i- Sni ;k] = 0. 
+ - ++ 

We need some connection between R and S. From (15), (16) we see that 

•t^kiml = = -K-iklm-

Multiply by gim( — gmi) and sum (i.e. contract): 

(20) Slk = Rki-
If JR were Hermitian, R and 5 would be identical. Hence we have a new 

reason for requiring that Rki should be Hermitian. But from (18a) we see 
that Rki has an anti-Hermitian part (compare with (9) ) : 

(21) \{Ru - Rik) = i [ ( IV ,* - r* s
s , z ) - TkiKTst* - Tta*)]. 

From (10) we see that 

g,i 
Vis9 = 

Therefore, 

(22) I V = — = (ilog|detgiib|).i. 

J- si ,k Afcs ,1 — *• si ,k *-ks ,1 

(21a) $(Rn - ktk) = - \ (Tu*.* + Tka\i - r*, ' I \ ,*) . 
v v v 

From this we see that Rki is Hermitian if we subject the field to the four 
conditions 
(2) I V = 0. 

It then follows from (20) that 

(20a) Sik = Rik, 
and (17a) becomes 

(17b) gkl[R^ ;„ - Rkn;l ~ Rn^k] = 0. 

These identities hold for all fields where T is defined by (1) and is subject 
to (2). We might jump to the conclusion that the field equations should 
stipulate the vanishing of all Rki. This set, together with (1) and (2) would, 
however, be overdetermined. We can get a weaker set of equations by ob­
serving how Rki enters (17b). The contribution of Rki to the equations is: 

V V 

nkl\ gkl[Rk l ;n — Rkn ;l ~ Rn I ;k] 

which can be written as 
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gkl[Rkl,n — RslTkn8 — RksTnl8 — Rkn,l 
y y y y 

+ RsnTkl
s + RksTnl

S - Rnl,k + RslTkn' + Rn>Tkl>] 
y y y y y 

= gM[Rkl,7i — Rkn.l — Rnl,k] 

= gkl[Rkl,n + Rnk.l +Rln,k] 
y y y 

= gMRu.n. 
V 

Since we see that Ru enters the equations only in the combination Rki,n> 
it is natural to choose the field equations for Rki as y 

(23) Rki,n = 0 
V 

instead of Rki = 0. So we get the field equations 

(2) i y = 0 
(24) RH = 0 

(23) Rki,n = 0, 

where the I \ v are defined by: 
(la) gi k;l = 0. 

+ -
The foregoing derivation shows how naturally we can extend general rela­

tivity theory to a non-symmetric field, and that the field-equations previously 
published are really the natural generalizations of the gravitational equations. 
If we were sure that a non-symmetric tensor gik is the right means for des­
cribing the structure of the generalized field, then we could hardly doubt 
that the above equations are the correct ones. 

5. The variational principle. For comparison we include a derivation of 
the equations based on a variational principle. This is formally simpler than 
the previous derivation, but it has the disadvantage of making use of two 
apparently arbitrary restrictions of the g — Y field : 

(2) Vis8 = 0, 

(3) B£ . = 0. 
On the other hand the equations (1) are deduced from the variation; we 

need not postulate them. It is advantageous to make use of Palatines method 
in this derivation. As in sec. 3, we form the curvature tensor: 

(11) Rlklm — Tu*,m — r/bm\î — Tsl
%TkmS + T s w T f c î 8 . 

By generalizing Palatini's method to the non-symmetric case, it is easy to 
verify that 

(25) b&ki» = («rfci i);m - («rfcm4-).,i. 
+ - + + 

We choose the Hamiltonian function 
(26) § = flw2î*, 

(26a) § = W - R W 
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We vary (26a) relative to the T's: 

(27) 8$ = 8,-»9*'(8#*i») 
= 8<m8* ,[(«r*i4-) ;»- («r*m4-);i]. 

+ + + 
For brevity we set 

(28) 21"» = 8 f V ( 5 I V ) = BH(8rH") 

(29) 33' = « ^ " ( « r t e O = «"(«r*»"). 

Then we can write (27) as 

s£= §lT;m - (5|î,8++);m(srjt!0 

-93i : !+(5^¥s+-);K5r^)-
We have to form the integral of S§. Let us see what 21+;m contributes to 

the integral. (See sec. 2.) 

(30) m,m = nm.m + n°rsm
m - 3U/ 

= 3T,m + »"Tm/. 
V 

The first term is an ordinary divergence, and hence contributes nothing to 
the integral. We see that we need (2) to make the* second term vanish. By 
subjecting the field to (2) we make sure that 2l+;m (and similarly 93-;j) contri­
butes nothing to the integral. So we may omit these from (27a) and write: 

(27b) 5$ = [ - ( ô ^ g | i ) ; m + ( « ^ ^ « K H V ) . 

Or since ô i + ;m vanishes: 
+ 

(27c) ô<p = [ - $L.m + ^ . ^ 4 - ] ( S I V ) . 

We cannot conclude yet that the quantity in brackets vanishes, because the 
Tki{ are not independent but satisfy (2). But we could conclude the vanishing 
of these quantities if they depended on only 60 parameters instead of the 64 
g-fi. {. This is actually so, for the following reason : we have 

(31) i(9+^ : i - 9+ i : 0 = Bv.i - 9 ^ / . 
v 

By subjecting the field to (2) and (3), we make sure that these four quantities 
vanish. Hence only 60 of the Q+-;i are independent. The same must be true 
of the square bracketed quantities in (27c). Thus we can conclude from (27c) 
that all these vanish. Contracting with respect to / and i we have $•$--; m = 0. 
Hence all the Q+-;; vanish. Therefore also the g k i ;i. (See (lb), (lc).) Thus 
we have derived that 
(la) gik_M = 0 . 

(It follows from these and (31) that either of the conditions (2) and (3) 
implies the other one.) We still have to vary (21) relative to gî&. But we 
must remember that the QÎ& satisfy (3). This can be done most easily by setting 
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(32) B* = §iks,s 

B« = g- +8**'.. 
and varying with respect to Q- and $*fcs, which are independent. (^lks is a tensor 
density antisymmetric in each pair of indices.) We get the equations 

(23) Rkl-,n = 0, 

(24) Rn = 0. 

This completes the derivation of the field-equations. 
We can further justify the a priori assumption of (2) by the fact that this 

equation is necessary and sufficient to make Rki a Hermitian tensor. (See 
(21a).) 
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