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BOUNDING BASIC CHARACTERISTICS
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Abstract

We introduce a new 1-dependent percolation model to describe and analyze the spread of
an epidemic on a general directed and locally finite graph. We assign a two-dimensional
random weight vector to each vertex of the graph in such a way that the weights of
different vertices are independent and identically distributed, but the two entries of the
vector assigned to a vertex need not be independent. The probability for an edge to be
open depends on the weights of its end vertices, but, conditionally on the weights, the
states of the edges are independent of each other. In an epidemiological setting, the
vertices of a graph represent the individuals in a (social) network and the edges represent
the connections in the network. The weights assigned to an individual denote its (random)
infectivity and susceptibility, respectively. We show that one can bound the percolation
probability and the expected size of the cluster of vertices that can be reached by an open
path starting at a given vertex from above by the corresponding quantities for independent
bond percolation with a certain density; this generalizes a result of Kuulasmaa (1982).
Many models in the literature are special cases of our general model.
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1. Introduction, background, and main results

We consider an extension of the standard SIR (susceptible → infectious → removed)
epidemic [1], [2], [11] on a directed graph G = (V , E). Here V is the (countable) vertex
set of the graph, and E consists of directed edges between vertices in V . An edge from u to
v is denoted by uv, and we say that v is a (directed) neighbor of u. We assume that the graph
G = (V , E) is simple, that is, for any u, v ∈ V , there is at most one edge from u to v. This
simplicity assumption can easily be dropped. Furthermore, we assume that the graph is locally
finite, in the sense that both the in-degree and out-degree of every vertex are finite.

In a standard SIR epidemic, a vertex is identified with an individual which makes (asym-
metric) contacts with each of its neighbors at rate τ . If an infectious individual u contacts a
susceptible individual v, then v becomes infectious itself. If an individual becomes infectious,
it will stay infectious for a random time; the infectious periods of different individuals are
independent and identically distributed (i.i.d.). After the infectious period an individual is
removed, which can either mean that it is recovered or that the individual has died. A removed
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individual never becomes susceptible or infectious again. Usually, we assume that there is
one initially infectious individual v0, and that all other individuals in the network are initially
susceptible. Furthermore, we assume that demography plays no role, in the sense that we
ignore births, deaths not caused by the infectious disease, and migration. This is a reasonable
assumption if we consider emerging infectious diseases for which the timescale of the spread
is much smaller than the timescale of demography.

In the model just described, we implicitly assume that all individuals in the network are the
same (at least with respect to the epidemic) apart from their position in the network. In particular,
all individuals will have the same joint distribution of the total infectivity and susceptibility.
In real life, however, infectivity and susceptibility show individual variation, notably because
of immunological polymorphism, or due to polymorphic reactions to vaccination [4], [5]. The
infectivity and susceptibility of one individual are in general not independent. Dependencies
may arise because of confounding factors, such as age, general health status, or in the case
of sexually transmitted diseases, promiscuity and levels of condom use, which affect the
susceptibility and infectivity in the same direction.

In this paper we model heterogeneity of the population by assigning a random infectivity Wv

and susceptibility W̄v to each vertex v in V , where the vectors (Wv, W̄v) are assumed to be i.i.d.
and distributed as (W, W̄ ), taking values in a convex subset S of R

2+ := [0, ∞)2. We do not
assume that Wv and W̄v are independent. Conditionally on the weights, if u becomes infected
and uv ∈ E, then v becomes infected (if it was not already) with probability κ(Wu, W̄v), where
κ is some connection function, specified in the model. In percolation terms, this means that
the directed edge uv is open with (conditional) probability κ(Wu, W̄v). Conditioned on the
weights, the states of the edges are independent. However, without this conditioning, states of
edges sharing an end vertex are dependent through the weights assigned to this common end
vertex.

We are mainly interested in (i) the probability of a large outbreak, (ii) the probability that
a disease spreads from one given individual to another, and (iii) the expected final size of an
epidemic. Percolation models have served before as useful tools to analyze these quantities;
see, for instance, [10], [14], [15], [16], [17], and [19] for related material.

We denote by P the probability measure governing the full process of assigning weights,
and making the edges open or closed. (We do not really need to formally define the full sample
space of the process.) One necessary property is that

P(κ(Wu, W̄v) ∈ [0, 1]) = 1, (1.1)

since κ(·, ·) represents a probability. Sometimes it is useful to discuss the induced measure of
P on the space � := {open, closed}E , that is, the induced measure on configurations of open
and closed edges.

We consider connection functions κ(x, y), which can be written as κ(xy), where κ(z) is
nondecreasing and concave. Examples of functions satisfying these conditions are

κa(x, y) = xy with S = [0, 1]2,

κb(x, y) = 1 − e−αxy with α > 0 and S = R
2+, (1.2)

κc(x, y) = xy(β + xy)−1 with β > 0 and S = R
2+. (1.3)

We note that if κ(x, y) is factorizable, i.e. if there exist functions κ1(x) and κ2(y) such that
κ(x, y) = κ1(x)κ2(y), then we can without loss of generality assume that κ(x, y) = xy and
S = [0, 1]2. This can easily be seen by first replacing W by κ1(W) and W̄ by κ2(W̄ ), and then
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scaling W and W̄ such that they both take values in [0, 1] with probability 1. This is possible
since, by (1.1) and the independence of Wu and W̄v for u �= v, there exists a constant c > 0
such that P(κ1(W) ≤ c) = P(κ2(W̄ ) ≤ 1/c) = 1.

The connection functions κa , κb, and κc have important epidemiological interpretations.
A factorizable connection function is appropriate in situations in which there is at most one
contact from an infectious individual to a given neighbor during its infectious period, or when
only at the first contact of an infectious individual with a given neighbor the infection may
be transmitted. This last assumption is proposed in some models for the spread of HIV [20],
where the number of sexual contacts per couple can be ignored and only the number of partners
is of importance. In those models the probability of an infectious contact from u to v is
given by κ(Wu, W̄v) = WuW̄v , with Wu = 1 − exp[− ∫ �u

0 τu(x) dx], where �u is the length
of the infectious period of individual u and τu(x) is the (possibly inhomogeneous) rate at
which individual u makes infectious contacts at time x after its infection, and where W̄v is the
probability that individual v (if still susceptible) becomes infected at an infectious contact.

The choice in (1.2) can be found in [18], and (1.3) is discussed in [7], both in the context
of complete graphs. In neither of these two papers are epidemiological interpretations of the
connection functions given. To shed some light on a possible epidemiological interpretation of
κb and κc, we write

κb(x, y) = 1 − e−αxy = 1 −
∞∑

k=0

(αx)k

k! e−αx(1 − y)k

and

κc(x, y) = xy

β + xy
= 1 −

∞∑
k=0

β

x + β

(
x

x + β

)k

(1 − y)k.

When 0 < y < 1, we see that we can interpret these connection functions as follows. For
κc, an infectious individual has a geometric-β/(x + β) number of contacts with a neighbor,
and each time, the probability that the infection is accepted is equal to y. For κb, a similar
interpretation is possible, replacing the geometric number of attempts by a Poisson-αx number.
In both cases, the number of attempts stochastically increases when x grows, in accordance to
our interpretation of W as the infectivity.

It should be noted that (1.3) arises when the infectious period of every individual is expo-
nentially distributed with parameter β and the per neighbor infection rate of individual u is Wu,
while the probability that an infectious contact with susceptible individual v leads to an infection
is given by W̄v . If the infectious period of individual u is �u, and during its infectious period
it makes infectious contacts with every neighbor at rate ατu, then the number of attempts will
have a Poisson-ατu�u distribution; hence, both κb and κc arise naturally. Note that replacing
the combination κc and (W, W̄ ) by κb and (�W/α, W̄ ), where � is exponentially distributed
with parameter β and independent of W , does not change the induced measure on �.

We define the usual independent bond percolation measure Pbond
p as the product measure

on � in which edges are independently open with probability p [12]. If κ(x, y) = xy,
P(W = w∗, W̄ = w̄∗) = 1, and w∗w̄∗ = p, then the induced measure of P on � is just
Pbond

p . If κ(x, y) = xy and P(W = W̄ = 1) = 1 − P(W = W̄ = 0) = p, we denote the
corresponding measure by Psite

p . Indeed, this measure corresponds to the edge representation
of an independent site percolation model with parameter p [12], in which an edge is open if
and only if both its starting and ending vertices are open. Note that although Pbond

p is defined
on �, Psite

p is defined on the full space. This is perhaps slightly confusing, but it works best this
way.
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In order to state our results, we need a few definitions. An ordered set of edges in E,
ξ = (v0v1, v1v2, . . . , vn−1vn), is a (directed) path of length n from v0 to vn. If vi �= vj for
all 0 ≤ i < j ≤ n then the path is self-avoiding. It is straightforward to extend this definition
to self-avoiding paths of infinite length. If we assume that a path is self-avoiding, we will
explicitly mention this. With some abuse of terminology we define a trivial path as a path
without edges, but with a starting vertex and the same end vertex (i.e. a trivial path may be seen
as a single vertex).

We say that a path is open if all edges in the path are open; a trivial path is always open. We
use the notation vi � vj if there is at least one open path from vi to vj . If the final vertex of a
path ξ1 is the first vertex of a path ξ2, we write (ξ1, ξ2) for the conjunction of ξ1 and ξ2, that is,
if ξ1 = (v0v1, v1v2, . . . , vn−1vn) and ξ2 = (vnvn+1, vn+1vn+2, . . . , vn+m−1vn+m), then

(ξ1, ξ2) = (v0v1, v1v2, . . . , vn−1vn, vnvn+1, . . . , vn+m−1vn+m).

For a finite or infinite path ξ = (v0v1, v1v2, . . . , vn−1vn, vnvn+1, . . .), we define the trun-
cation of ξ after n edges as ξ s(n) := (v0v1, v1v2, . . . , vn−1vn). The tail of ξ starting after
n edges is defined as ξ t (n) := (vnvn+1, . . . ). Both the truncation after n edges and the tail
starting after n edges may be trivial paths. We are now ready to specify the collections of paths
we consider in this paper.

Definition 1.1. We say that a collection of paths � is weakly hoppable if, for any v ∈ V , any
i, j ∈ N, and any two paths ξ, φ ∈ � going through v, where v is the end vertex of the ith edge
of ξ and the start vertex of the j th edge of φ, the conjunction (ξ s(i), φt (j)) is in � as well.

In words, we need to be able to ‘hop’ from one path to another if they cross. We allow for
ξ = φ, which implies that if a path in a weakly hoppable collection of paths � has a loop then
this loop can be erased and the resulting path is still in �.

Furthermore, let E(n) be the collection of the first n edges in E, according to some given
enumeration of the edges for which

⋃
n∈N

E(n) = E. We ‘approximate’ � by sets �n defined
as follows: �n is the collection of all infinite paths which start in E(n) truncated at the first
instance they leave E(n) together with all finite paths of which all edges are in E(n). If the first
edge of an infinite path ξ is not in E(n) then the trivial path at the starting vertex of ξ is in �n.

Finally, for a collection of paths � we denote by C� the event that at least one path in � is
open. We note that, for a weakly hoppable collection of paths �, C� is equivalent to the event
that at least one self-avoiding path in � is open, because loop-erased paths from � are also
in �.

Definition 1.2. We say that a collection of paths � is hoppable if it is weakly hoppable and if
in addition, for some enumeration of the edges,

C� = lim
n→∞ C�n.

Remark 1.1. 1. Most natural and useful collections of paths are hoppable. For instance, the
collection of infinite paths starting at a given vertex (or, more generally, in a finite set) is
hoppable, as is the collection of all paths from a given vertex u to a given vertex v (or, more
generally, from a finite set to another finite set). To see the first claim, we note that if �

is the collection of all infinite paths starting at a finite set then C�n+1 ⊂ C�n for all n and
C� = ⋂∞

n=1 C�n . If � is the collection of all paths from a finite set to another finite set
then C�n ⊂ C�n+1 for all n and C� = ⋃∞

n=1 C�n .
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2. If �n had been defined as ‘the collection of all paths which start in E(n), truncated at the
first instance they leave E(n)’, then the collection of all paths from vertex u to vertex v would
not have been hoppable. Indeed, on an infinite graph we have C�n+1 ⊂ C�n for all n, but
C� �= ⋂∞

n=1 C�n , since
⋂∞

n=1 C�n occurs if there is an open path from u to v or if there is an
infinite open path starting at u.

The main results of this paper are the following, generalizing results in [15] (see also [16]
for related results for the case in which W and W̄ are independent).

Theorem 1.1. Let (W, W̄ ) be a random vector taking values in S, and let κ(x, y) = κ(xy) be
such that κ(z) is increasing and concave. Then, for

p = κ(max[E(WW̄), E(W) E(W̄ )])
and any hoppable collection of paths �, we have

P(C�) ≤ Pbond
p (C�).

Theorem 1.2. Let κ(x, y) = xy and S = [0, 1]2. Then, for p = E(WW̄) and any hoppable
collection � of paths in E, we have

P(C�) ≥ Psite
p (C�).

Theorems 1.1 and 1.2 are corollaries of Theorem 3.1 below.
We note that if E is symmetric, i.e. uv ∈ E is equivalent to vu ∈ E, and if P(W = W̄ ) = 1

and κ(x, y) = κ(y, x), then the law of the cluster of vertices that can be reached by open paths
from v ∈ V on G is the same as the law of the open cluster containing v on the undirected
counterpart of G (the graph obtained by replacing the two edges connecting the same vertices
by one undirected edge) [10]. Hence, many questions on undirected graphs can be addressed
as questions on directed graphs, and Theorems 1.1 and 1.2 may be applied to percolation on
undirected graphs as well.

We will illustrate the results by a numerical example, and then by discussing the situation
on a tree. In this latter example, we also shed some light on the reason why E(WW̄) and
E(W) E(W̄ ) play an important role in our analysis.

Example 1.1. Suppose that W = W̄ is uniformly distributed on (a, 1) for some a ∈ (0, 1),
G = L

2 is the square lattice with nearest neighbor (directed) edges and κ(x, y) = xy. If

a ≤
√

3
4 − 1

2 ≈ 0.37 then E(WW̄) = E(W 2) ≤ 1
2 . Because the critical value for independent

bond percolation is 1
2 [12], in view of the remark above on the relation between percolation

on directed and undirected graphs, the probability that the cluster of individuals that can be
reached by an open path from the origin is infinite is 0 for this model. Let psite

c (L2) ≈ 0.59 be
the critical value for site percolation on L

2. If a > 1
2 (

√
12psite

c (L2) − 3 − 1) ≈ 0.51 then the
probability that the cluster of individuals that can be reached by an open path from the origin
is infinite is positive for this model.

Example 1.2. Let G = (V , E) be the rooted tree in which all vertices have out-degree d and
in-degree 1, apart from the root v0 which has in-degree 0. We say that the root is the generation-0
vertex; if there is a path of length n from the root to vertex v, then v is a said to be a generation-n
vertex.

Let κ(x, y) = xy, and let �k be the set of all paths of length k starting at the root.
Furthermore, let Zk be the number of open paths in �k , i.e. Zk is the number of generation-k
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vertices that can be reached by an open path from the root. For k ≥ 1 and generation-1 vertex
v1, we define Yk(v1) as the number of generation-k vertices vk , for which there is an open path
from v0 to vk through v1, conditioned on Wv0 = 1 and W̄u = 1 for all generation-k vertices u.

We claim that Yk(v1) is distributed as the size of the (k−1)th generation of a Galton–Watson
process [13] starting with one individual, in which individuals have no offspring with probability
E(1 − W̄ ) + E(W̄ (1 − W)d) and offspring of size j with probability E(W̄

(
d
j

)
Wj(1 − W)d−j )

for 0 < j ≤ d . Indeed, we can adopt the point of view that, for a vertex to have any offspring,
it first has to accept the disease from its predecessor in the tree, and, if it does, in addition it
needs to send the disease to the next generation. This leads to an offspring mean of d E(W̄W).

It now seems quite natural, given the computation above, to consider a class of probability
measures for which E(WW̄) is constant (compare [4] and [5]). However, in order to prove
the inequality P(C�) ≤ Pbond

p (C�) for all hoppable collections of paths in E, we need the
additional assumption that p ≥ E(W) E(W̄ ). This can be seen by assuming that � consists of
a single edge. The marginal probability that this edge is open is given by E(W) E(W̄ ). This
explains, to some extent, the importance of the quantities E(WW̄) and E(W) E(W̄ ).

2. Discussion

Before we start proving the results, we collect in this section a number of remarks.

• Contrary to Kuulasmaa [15] and Miller [16], we deal with infectious diseases for which
the susceptibility and infectivity of individuals might be dependent. This dependence
complicates the proofs and means that we cannot apply the results from [15] and [16]
immediately. If κ(x, y) is not factorizable then Miller’s result for independent W and W̄

is slightly stronger than our result. This is because he provided a bond percolation upper
bound with parameter p = E(κ(WW̄)), which, for concave κ , is bounded above by our
bond percolation parameter κ(E(WW̄)).

• The class of possible collections � for which the result is true is larger than the class
of hoppable collections. We have chosen this formulation because it contains most
collections of interest, and also because of its elegance. One class of paths that can
be seen to satisfy the results is the class of infinite backwards paths ending at a given
vertex v. Indeed, by simply interchanging the role of W and W̄ (see also [16] for this
trick), it is easy to see that our results are valid for this class as well.

• Suppose that κ(x, y) = xy. By choosing � as the collection of paths from u to v, we find
that among all measures with E(WW̄) ≥ E(W) E(W̄ ), it is the case that E[1(u� v)] =
P(u� v) is at most Pbond

E(WW̄)
(u� v) and at least Psite

E(WW̄)
(u� v). Let Cu be the set of

vertices that can be reached by an open path from vertex u. The observations above give

E(|Cu|) =
∑
v∈V

P(u� v) ≤
∑
v∈V

Pbond
E(WW̄)

(u� v) = Ebond
E(WW̄)

(|Cu|).

• It is not possible to use straightforward stochastic domination arguments to prove the
theorems in their full generality. This can be seen by considering κ(x, y) = xy, and
uncorrelated W and W̄ . In that case the marginal probability that any edge uv ∈ E is
open is the same for all measures for which E(WW̄) is constant. However, the edge
density in Pbond

E(WW̄)
is also E(WW̄) and, hence, stochastic domination cannot be used to

prove Theorem 1.1.
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• We can compare some of our results with bounds given in [3]: any undirected 1-dependent
edge percolation model on the two-dimensional square lattice, with marginal probability
for an edge to be open at least 0.8639, is supercritical. Since this bound holds for
all 1-dependent measures, it is to be expected that our bounds improve on this in our
specific model. Since we can only compare undirected models, we can only compare
in the symmetric case (which is perhaps not the most interesting case). Still, since Psite

p

percolates above p = 0.68 [21] (this is a rigorous bound, the correct value of the critical
probability is around 0.59), we see that our model percolates when P(W = W̄ ) = 1,
κ(x, y) = xy, and E(WW̄) = E(W 2) ≥ 0.68. Hence, we improve on the general bound
when E(W 2) ≥ 0.68 and (E(W))2 < 0.8639.

• Our model is a generalization of many other percolation processes, such as the locally
dependent random graph model [15], mixed percolation [8], generalized random graphs
[7], and Poissonian random graphs [18], where the two latter ones were previously defined
for only finite complete graphs G. The inhomogeneous random graphs of [6] are defined
only on complete graphs, but they are more general than our model on the complete
graph.

3. Proofs

Let S1 be the projection of S in the first coordinate direction, and let S2 be the projection of
S in the second coordinate direction. Let E′

v be the set of all edges starting at v, and let E∗
v be

the set of all edges ending at v. For any pair of (possibly empty) sets A ⊂ E′
u and B ⊂ E∗

u , any
|A|-dimensional vector x = (x1, x2, . . . , x|A|) ∈ (S2)

|A|, and any |B|-dimensional vector y =
(y1, y2, . . . , y|B|) ∈ (S1)

|B|, we define the zero function zu(P; A, B; x, y) as the probability
that either none of the edges in A are open or none of the edges in B are open if the weights
assigned to the endpoints of the edges in A and B are the elements of the vectors x and y,
respectively. This can be expressed as

zu(P; A, B; x, y) := E

(
1 −

[
1 −

|A|∏
i=1

(1 − κ(W, xi))

][
1 −

|B|∏
j=1

(1 − κ(yj , W̄ ))

])
,

if |A||B| > 0. For the remaining cases, we define

zu(P; A, ∅; x, ∅) := E

( |A|∏
i=1

(1 − κ(W, xi))

)
if |A| > 0,

zu(P; ∅, B; ∅, y) := E

( |B|∏
j=1

(1 − κ(yj , W̄ ))

)
if |B| > 0,

zu(P; ∅, ∅; ∅, ∅) := 1.

If the graph is transitive, we do not need the reference to the vertex u in the zero function.
In the epidemiological setting, the zero function zu(P; A, B; x, y) is the (conditional) prob-

ability that if all endpoints of edges in B become infected and have ‘W -weights’ y1, . . . , y|B|,
either u will not get infected via an edge in B, or u will not transmit the disease to any of the
endpoints of edges in A, if those endpoints have ‘W̄ -weights’ x1, . . . , x|A|.
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We write zv(P(a)) ≥ zv(P(b)) if zv(P(a); A, B; x, y) ≥ zv(P(b); A, B; x, y) for all A ⊂ E′
v ,

all B ⊂ E∗
v , all x ∈ (S2)

|A|, and all y ∈ (S1)
|B|. The following result is interesting in its own

right, and will be the main tool to prove Theorem 1.1.

Theorem 3.1. If the distributions of the weights with respect to the measures P(a) and P(b) are
such that zv(P(a)) ≤ zv(P(b)) for all v ∈ V then, for any hoppable collection � of paths,

P(b)(C�) ≤ P(a)(C�).

Remark 3.1. Theorem 3.1 does not hold if we would allow for all collections of paths �. Here
is a counterexample. Let G be the subgraph of the two-dimensional square lattice, consisting
of the origin and its nearest neighbors (with nearest neighbor edges). Let κ(x, y) = xy, and
suppose that the weights assigned to the neighbors of the origin are all equal to 1. We consider
two measures P(a) and P(b) on the weights assigned to the origin: P(a)(W = W̄ ) = 1, and W is
uniformly(0, 1) distributed under P(a), while P(b)(W = W̄ = 0) = 17

48 , P(b)(W = W̄ = 2
3 ) =

9
16 , and P(b)(W = W̄ = 1) = 1

12 .
Now let ξ be the path from (0, −1) to (0, 1), let φ be the path from (−1, 0) to (1, 0) in G,

and let � = {ξ, φ}; this is not a hoppable collection. A quick computation gives

P(a)(C�) = 7
15 < 17

36 = P(b)(C�).

All weights of neighbors of the origin are 1, so we only have to consider z0(P(a); A, B) :=
z0(P(a); A, B; 1, 1) and z0(P(b); A, B) := z0(P(b); A, B; 1, 1), where 1 is the vector with
all entries equal to 1. It follows from some tedious but straightforward computations that
z0(P(a)) ≤ z0(P(b)); we do not present the computation here.

In the proof of Theorem 3.1 we need the following lemma.

Lemma 3.1. If � is hoppable then �n is hoppable for all n ∈ N.

Proof. Since �n consists of finitely many edges only, it is enough to prove that �n is weakly
hoppable, that is, for any v and any two paths ξn, φn ∈ �n going through v (say that v is the
end vertex of the ith edge of ξ and the start vertex of the j th edge of φ), the conjunction
(ξ s

n(i), φt
n(j)) is in �n as well. We distinguish various cases.

1. If the φn are the truncations of the infinite path φ ∈ � then (ξ s
n(i), φt

n(j)) is the truncation
of (ξ s

n(i), φt (j)) at the first time this paths leaves En. All of its edges are in En. By the
weak hoppability of �, this conjunction is in �n as well.

2. If the ξn are the truncations of the infinite path ξ ∈ � and φn ∈ �, then (ξ s
n(i), φt

n(j))

contains only edges in En and is in � by the weak hoppability of � and in �n by the
definition of �n.

3. If ξn and φn are both finite paths in �, then (ξ s
n(i), φt

n(j)) contains only edges in En and
is in � by the weak hoppability of �, and in �n by definition.

Proof of Theorem 3.1. (i) First we assume that there is a u ∈ V such that zu(P(a)) ≤ zu(P(b)),
and that the distribution of (Wv, W̄v) is the same under P(a) and P(b) (and, therefore, zv(P(a)) =
zv(P(b))) for all v ∈ V \ {u}. Under these assumptions, we will now prove that, for all n ≥ 1,
P(a)(C�n) ≥ P(b)(C�n).

Let E(n)
u be the set of edges in E(n) with u as the start or end vertex. Let σ (n)

u denote a typical
realization of the weights outside u, together with the states (open or closed) of the edges in
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E(n)\E(n)
u . Informally, σ

(n)
u contains all information which does not depend on (Wu, W̄u), and

we will proceed by conditioning on σ
(n)
u . By assumption, the distribution (Wv, W̄v) is the same

with respect to P(a) and P(b) for all v ∈ V \ {u}. This implies that

P(a)(C�n) − P(b)(C�n) =
∫

(P(a)(C�n | σ (n)
u ) − P(b)(C�n | σ (n)

u )) dP(a)(σ (n)
u ).

We now split the σ
(n)
u into three cases.

1. σ
(n)
u is such that P(a)(C�n | σ

(n)
u ) = P(b)(C�n | σ

(n)
u ) = 0, in which case

P(a)(C�n | σ (n)
u ) − P(b)(C�n | σ (n)

u ) = 0.

This case occurs if σ
(n)
u is such that no matter the weights assigned to u, the probability

of an open path in �n is 0.

2. σ
(n)
u is such that P(a)(C�n | σ

(n)
u ) = P(b)(C�n | σ

(n)
u ) = 1, in which case

P(a)(C�n | σ (n)
u ) − P(b)(C�n | σ (n)

u ) = 0.

This case occurs if σ
(n)
u is such that no matter the weights assigned to u, the probability

of an open path in �n is 1.

3. The only case remaining is that σ
(n)
u is such that neither

P(a)(C�n | σ (n)
u ) = P(b)(C�n | σ (n)

u ) = 1

nor
P(a)(C�n | σ (n)

u ) = P(b)(C�n | σ (n)
u ) = 0.

In this last case there are three possibilities.

(i) If u is the starting vertex of some path in �n then—since �n is weakly hoppable—the
tail starting at u of a self-avoiding path through u is also in �n. Therefore, with the
assumptions on σ

(n)
u , �n contains an open path if and only if it contains a self-avoiding

open path starting at u. Let A ⊂ E
(n)
u be the set of starting edges of open paths in �n

starting at u, if all edges in E
(n)
u would have been open. We note that, because we need to

only consider self-avoiding paths in �n, at least one of the paths in �n is open if and only
if at least one edge in A is open. This probability is given by 1 minus the zero function.
Since, zu(P(a); A, ∅; x, ∅) ≤ zu(P(b); A, ∅; x, ∅) for all A and x, it follows that

P(a)(C�n | σ (n)
u ) − P(b)(C�n | σ (n)

u ) ≥ 0.

(ii) If u is the end vertex of some path in �n then—since �n is weakly hoppable—the
truncation at vertex u of a self-avoiding path through u is also in �n. Therefore, with
the assumptions on σ

(n)
u , �n contains a self-avoiding open path if and only if it contains

an open path ending at u. Let B ⊂ E
(n)
u be the set of end edges of open paths in �n

ending at u, if all edges in E
(n)
u would have been open. Since zu(P(a); ∅, B; ∅, y) ≤

zu(P(b); ∅, B; ∅, y) for all B and y, it follows in the same way as for the previous case
that

P(a)(C�n | σ (n)
u ) − P(b)(C�n | σ (n)

u ) ≥ 0.
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(iii) If u is neither a starting vertex nor an end vertex of any path in �n, then let A be the set
of starting edges of tails of self-avoiding paths in �n, cut off at u, for which all edges in
the tail are open, if all edges in E

(n)
u would have been open. Similarly, let B be the set of

end edges of truncations of self-avoiding paths in �n, cut off at u, for which all edges in
the truncation are open, if all edges in E

(n)
u would have been open. Since �n is weakly

hoppable, it follows that there is no open path in �n if either all edges in A are closed or
all edges in B are closed. By zu(P(a); A, B; x, y) ≤ zu(P(b); A, B; x, y) for all A, B,
x, and y, it follows that

P(a)(C�n | σ (n)
u ) − P(b)(C�n | σ (n)

u ) ≥ 0.

This concludes the first step of the proof.
(ii) In this second step, we relax the condition that the zero functions differ in one place only.

Since the event C�n depends on the weights of at most 2n vertices in V , it is straightforward
to construct a sequence of probability measures, (P(i); 1 ≤ i ≤ 2n), such that P(1)(C�n) =
P(a)(C�n) and P(2n)(C�n) = P(b)(C�n), and such that, for 1 ≤ i ≤ 2n − 1, the distribution
of (Wv, W̄v) with respect to P(i) and P(i+1) differ in at most one vertex, say vi , for which
zvi

(P(i)) ≤ zvi
(P(i+1)). Repeatedly applying part (i) completes this part of the proof.

(iii) To complete the proof, we simply note that from the definition of hoppable we have, for
i = a, b,

P(i)(C�) = lim
n→∞ P(i)(C�n),

and the result follows.

For the proof of Theorem 1.1, we need the following elementary fact.

Lemma 3.2. Let fi(x), i = 1, . . . , n, be convex nonincreasing, nonnegative functions on some
domain D ⊂ R. Then

∏n
i=1 fi(x) is also a convex nonincreasing, nonnegative function on D.

Proof. For n = 2, observe that, for 0 < c < 1 and y > x,

cf1(x)f2(x) + (1 − c)f1(y)f2(y) = [cf1(x) + (1 − c)f1(y)][cf2(x) + (1 − c)f2(y)]
+ c(1 − c)[f1(y) − f1(x)][f2(y) − f2(x)]

≥ f1(cx + (1 − c)y)f2(cx + (1 − c)y),

where in the inequality we have used the fact that both f1 and f2 are nonincreasing and convex.
The proof of the lemma can be completed with induction on n—we leave the details to the
reader.

Proof of Theorem 1.1. Let (w∗, w̄∗) ∈ S be such that

• E(W) = w∗, E(W̄ ) = w̄∗, and E(WW̄) ≤ w∗w̄∗, or

• E(W) ≤ w∗, E(W̄ ) ≤ w̄∗, and E(WW̄) = w∗w̄∗.

Let P̂
bond

be a measure that satisfies P̂
bond

(W = w∗, W̄ = w̄∗) = 1.
We proceed by proving that, for all A, B, x, and y,

zv(P; A, B; x, y) ≥ zv(P̂
bond; A, B; x, y).

From Theorem 3.1 and the observation that the induced measure of P̂
bond

on � is just Pbond
p ,

where p = κ(w∗w̄∗), Theorem 1.1 then follows.
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If |B| > 0 then zv(P; ∅, B; ∅, y) = E(
∏|B|

i=1[1 − κ(yiW̄ )]). The functions 1 − κ(yiW̄ ) are
by assumption nonnegative, convex, and decreasing. Therefore, by Lemma 3.2 and Jensen’s
inequality,

E

( |B|∏
i=1

[1 − κ(yiW̄ )]
)

≥
|B|∏
i=1

[1 − κ(yi E(W̄ ))] ≥
|B|∏
i=1

[1 − κ(yiw̄
∗)],

which is equal to zv(P̂
bond; ∅, B; ∅, y). For |A| > 0, we can use similar arguments to show

that
zv(P; A, ∅; x, ∅) ≥ zv(P̂

bond; A, ∅; x, ∅).

If |A||B| ≥ 1 then we need to show that

E

((
1 −

|A|∏
i=1

[1 − κ(Wxi)]
)(

1 −
|B|∏
j=1

[1 − κ(W̄yj )]
))

≤
(

1 −
|A|∏
i=1

[1 − κ(w∗xi)]
)(

1 −
|B|∏
j=1

[1 − κ(w̄∗yj )]
)

.

By the assumption that κ(z) is increasing concave and taking values in [0, 1], and by Lemma 3.2,
it follows that 1 − ∏|A|

i=1[1 − κ(xiu)] is concave and increasing in u. By this concavity and
κ(0) ≥ 0, it is possible to choose a := a(x) ≥ 0 and b := b(x) ≥ 0 such that

a + bu ≥ 1 −
|A|∏
i=1

[1 − κ(xiu)]

for all u ∈ S1 and a + bw∗ = 1 − ∏|A|
i=1[1 − κ(xiw

∗)]. Similarly, 1 − ∏|B|
j=1[1 − κ(yju)] is

concave and increasing in u, and it is possible to choose ā := ā(y) ≥ 0 and b̄ := b̄(y) ≥ 0
such that

ā + b̄u ≥ 1 −
|B|∏
j=1

[1 − κ(yju)]

for all u ∈ S1 and ā + b̄w̄∗ = 1 − ∏|B|
j=1[1 − κ(yj w̄

∗)].
It follows that

E

((
1 −

|A|∏
i=1

[1 − κ(Wxi)]
)(

1 −
|B|∏
j=1

[1 − κ(W̄yj )]
))

≤ E((a + bW)(ā + b̄W̄ ))

= aā + ab̄ E(W̄ ) + āb E(W) + bb̄ E(WW̄)

≤ aā + ab̄w̄∗ + ābw∗ + bb̄w∗w̄∗

= (a + bw∗)(ā + b̄w̄∗)

=
(

1 −
∞∏
i=1

[1 − κ(w∗xi)]
)(

1 −
|B|∏
j=1

[1 − κ(w̄∗yj )]
)

,

where the second inequality follows from the definitions of w∗ and w̄∗. This completes the
proof of Theorem 1.1.
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Proof of Theorem 1.2. In order to use Theorem 3.1, we have to show that, for all P, A, B ⊂
E

(n)
v , all x ∈ (S1)

|A|, and all y ∈ (S2)
|B|, we have

zv(P; A, B; x, y) ≤ zv(P
site
p ; A, B; x, y),

where p = E(WW̄).
For κ(x, y) = xy, this means that we have to prove that, for |A| ≥ 1 and |B| ≥ 1, it holds

that

E

(
1 −

[
1 −

|A|∏
i=1

(1 − Wxi)

][
1 −

|B|∏
j=1

(1 − yj W̄ )

])

≤ 1 − E(WW̄)

[
1 −

|A|∏
i=1

(1 − xi)

][
1 −

|B|∏
j=1

(1 − yj )

]
,

E

( |A|∏
i=1

(1 − Wxi)

)
≤ 1 − E(WW̄)

[
1 −

|A|∏
i=1

(1 − xi)

]
,

E

( |B|∏
j=1

(1 − yj W̄ )

)
≤ 1 − E(WW̄)

[
1 −

|B|∏
j=1

(1 − yj )

]
,

where respectively the cases |A||B| > 0, B = ∅, and A = ∅ are considered.
Observe that, for u ∈ [0, 1] and x ∈ [0, 1]|A|, f (u) = 1 − ∏|A|

i=1(1 − uxi) is concave and
increasing by Lemma 3.2, so

1 −
|A|∏
i=1

(1 − uxi) ≥ uf (1) + (1 − u)f (0) = u

(
1 −

|A|∏
i=1

(1 − xi)

)
.

Similarly, for ū ∈ [0, 1] and y ∈ [0, 1]|B|, we have

1 −
|B|∏
j=1

(1 − ūyj ) ≥ ū

[
1 −

|B|∏
j=1

(1 − yj )

]
.

Replacing u by W and ū by W̄ in the above two equations completes the proof of Theorem 1.2.
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