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ABSTRACT 

In this paper a fundamental model is proposed to 
describe the time-dependent behaviour of uniform snow 
glide on an infinite slope. This model is composed both of 
a mechanical balance equation relating a driving force and a 
resistant force, and of a rate equation for a real contact 
area at the boundary. In the model, a steady motion of 
glide is described as a stable equilibrium of glide motion , 
and a non-steady motion is considered as a transient one 
not in equilibrium. Finally, the model is applied to a 
full-depth avalanche release caused by acceleration of snow 
glide. By comparing the model predictions with glide
velocity field data, a proper model of acceleration prior to 
full-depth avalanche release is determined. As a resu lt, we 
can obtain the safety standards to be applied in the event 
of full-depth avalanches in terms of a glide velocity. 

INTRODUCTION 

Snow glide is a quasi-static movement of a snow cover 
on a slope; therefore, it is mechanically in balance even 
though the glide velocity is not necessarily steady. The 
acceleration of the snow-glide velocity before a full-depth 
avalanche release is a typical example of non - steady gliding 
motion in Nature (Nohguchi and others, 1986). This suggests 
that the steady motion of snow glide is a particular state in 
a time-dependent frame (Fig. I) and does not pre-exist. In 
this view, both the state of rest and that of a full-depth 
avalanche release are also particular states in non-steady 
glide motion. 

Physical studies of snow-glide motion have been carried 
out by In der Gand and Zupan~i~ (1966), Salm (1977), 
McClung (1981), and Lackinger (1987), and these have been 
reviewed by McClung (1987). Their work deals mainly with 
a steady motion of snow glide. In contrast, on the other 
hand, Endo (1983 , 1985) has introduced a physical process 
including time to explain the mechanism of the accele ration 
to avalanche release on a slope covered by bamboo bush . 

In this paper, we consider steady glide motion, rest, 
and full-depth avalanche release as particular states in 
time - dependent glide motion, as shown in Figure I. From 
this standpoint, a fundamental model is proposed which will 
describe time-dependent behaviour of snow glide. The model 
has the flexibility to represent different physical processes 
at the interface between snow and the ground, because the 
physical process is not uniquely defined by details of 
difference in these boundary conditions, such as the 
presence and nature of vegetation on the ground . 

* Present address: Nagaoka Institute of Snow and Ice 
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A TIME-DEPENDENT MODEL OF BASAL RESISTANCE 
FORCE 

The time vanatlOn in glide velocity during a process of 
acceleration is considered as continuous so long as we see 
only a particular time-scale. Such a time-scale may range 
from minutes on a grass slope (Nakam ura and others, 1972) 
to days on a slope of low trees (Nohguchi and others, 
1986), according to the physical processes at the interface 
arising f rom the differences in vegetation. This indicates 
that the process of non-steady motion should be described 
by th e continuous variation of a specific internal variable, 
eve n though the initiation of non-steady motion arises from 
changes in external conditions such as air temperature, 
snowfall , or rainfall. Nohguchi (1983) has introduced the 
concept of real contact area as an internal variable to 
describe directly the state of contact between snow and 
ground, making the analogy with the adhesion theory on 
friction of ice proposed by Tsushima (1977) . Using this 
real contact area, A, the resistance force , R, against a snow 
cover with real contact area A and velocity v relative to the 
grou nd , can be generall y described as 

R = R(A,v) (I) 

where A is not necessarily constant, except at equilibrium . 
With R so defined , we take the rate of the change of A to 
be given by 

dA l dl = - p(A,v) + q(A,v) (2) 

where p is the rate of the decrease in size of the real 
contact area due to shear, and q is the rate of the increase 
in contact-area size due to creation of new real contact 
area. 

dy I Rest 1 Nonstea 
.~ glide 

, 
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~ , 
l Ava lanche I 
Ti me -dependent frame 

Fig. 1. Structure of the time-dependent model. 
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Fig. 2. Steady-state stability; (a) stable equilibrium, (b) 
unstable equilibrium. 

If P is equal to q, then the snow-glide motion is in an 
equilibrium condition. On the other hand, if p is not equal 
to q, the real contact area and glide-velocity change with 
time; therefore, the snow-glide motion is not in equilibrium. 
In this model, the physical process is expressed in terms of 
the functions p, q, and R. 

GOVERNING EQUATIONS FOR SNOW GLIDE 

In a general glide problem, the resistance-force model 
represents the boundary condition at the bed surface for the 
mechanical balance equation of snow cover. For simplicity, 
we consider a rigid-body motion for snow cover without 
deformation on an infinite slope. The governing equations 
then are 

f = R(A,v) (3) 

dA / dt = - p(A,v) + q(A,v) (4) 

where f is a driving force due to gravity which is generally 
a function of time. 

When f remains constant and the following equations 

can be solved, their solutions are the equilibrium values. 

(5) 

(6) 

For v = ve and A = A e, the glide velocity and the 
state of contact are steady because in such conditions 
dA / dl = 0. 

p and q can be represented only by A because v can 
be described by A from Equation (3). When p and q, the 
functions of A, have the relationship shown in Figure 2a, 
the equilibrium state is stable, that is, steady snow glide is 
stable. On the other hand, in the case shown in Figure 2b, 
when the equilbrium state is unstable, steady snow glide 
cannot exist stably. 

EXAMPLE OF SNOW-GLIDE BEHAVIOUR 

We consider the following process as a simple example: 

p = avA (7) 

q b(A", - A) I(A", - A) (8) 

(9) 

where I(x) is a step function defined by 

I(x) • {: 
x ~ ° 

(10) 
x < 0, 

and a, b, A"" EO' and El are external parameters 
independent of A and v. Through these relationships, we 
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assume that the rate of decrease of A, p, is proportional to 
the glide velocity, v, and real contact area, A, such that p 
is equal to zero for v = 0 or A = O. The rate of increase 
of A, q, is assumed to be proportional to A", - A for 
A ~ A",. Therefore, A", is the value of A in equilibrium for 
v = O. The value of q is then proportional to deviation of 
A from its equilibrium value, A",. This process represents 
the increase of real contact area due to viscous deformation 
of the snow. The resistance force, R, is assumed to be 
proportional to the real contact area such that R is an 
increasing function of A. Then (EO + El v) can be regarded 
as a shear strength which depends on velocity. 

By substituting Equations (7), (8), and (9) into 
Equations (3) and (4), we can obtain non-dimensional 
equations for snow glide as follows 

dA* / dt* = -a*v*A*I(f* - A*) + (I - A*)I(1 - A*) 
(I I) 

[* = (I + v*)A* (12) 

where a* = aEa/ bEl; [* = //(EoA",); t* = bl; v* = E/EaV; 
A* = A/ A",. From the mechanical balance Equation (12), the 
velocity can be represented in terms of the real contact area 
as 

v* = ([* - A*)l([* - A*)/ A*. (13) 

By substituting Equation (13) into the rate Equation 
(I J), the equation for A can be obtained as 

dA* / dl* = - a*(f* - A*)l(f* - A*) + (I - A*)l( I - A*). 
(14) 

Thus, the behaviour of snow glide is described through the 
time variation of the real contact area. For A* = 0, v* has 
an infinite velocity in a quasi-static sense; therefore, when 
A* = 0 this indicates the release of a full-depth avalanche. 
On the other hand, for A* > f*, the velocity v* = 0, and 
so the material is in a resting state. Equation (14) is 
governed by two non-dimensional parameters, a* and [*. 
These are external factors which are dependent on slope 
angle, temperature, water content, weight of snow cover, 
and other characteristics, all of which change with time. 

When external conditions remain constant, that is when 
a* and f* are constant, the behaviour of the solutions for 
Equation (14) can be classified into the following four 
types, according to the values of a* and f* (Figs 3 and 
4): 

Type I ([* < I and f*a* < I) 
Any gliding motion decelerates to rest. Therefore, the 

state of rest is the stable state and a full-depth avalanche 
cannot occu~ for any perturbation. 

Type 2 (f* > I and [*a* < I) 
A stable steady glide motion exists for any perturbation 

and a full-depth avalanche cannot occur. 

Type 3 (f* < I and f*a* > I) 
A single non-stable equilibrium state exists. If the snow 

cover has a glide velocity greater than v~ = (f* - 1)/ 
(I - [*a*), it accelerates to form an avalanche. On the 
other hand, if the glide velocity is lower than this value, it 
decelerates to rest. 

Type 4 ([* > I and [*a* > I) 
Any gliding motion with these conditions accelerates to 

produce an avalanche. Therefore, only 'a full-depth 
avalanche release will enable the snow cover on such a 
slope to become stable. 

In type I and 2 categories it is impossible to release a 
full-depth avalanche whatever the perturbation. However, in 
type 3 conditions, such a release is possible because a state 
of rest and a state of acceleration to produce an avalanche 
are both possible under the specified condition. In type 3 
snow cover, once the snow cover has gained a glide 
velocity greater than Ye' as the result of some perturbation 
such as an artificial explosion or water supply, it will 
accelerate until a full-depth avalanche is released. As a 
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Fig. 3. Four types of behaviour derived by solving Equation 

(14). 

result of changes in external conditions, snow cover 
classified as one type may sometimes change into another 
category. For example, if the external conditions change 
from those specified for type I to those specified for type 
2, the snow cover at rest will begin to move at a steady 
velocity. Moreover, changes in f* and a* values from those 
of type 2 to those of type 4 will result in snow cover with 
a steady velocity accelerating to form a full-depth 
avalanche. 

In general, the characteristics of snow-glide behaviour 
which are due to changes in external conditions depend on 
the careful selection of the functions p, q, and R 
(Nohguchi, 1983). Therefore, for the most appropriate 
selection of p, q, and R according to each physical process 
at the snow-cover boundary, qualitative comparisons with 
field data are essential. 

ACCELERA TION OF SNOW GLIDE AND A V ALANCHE 
RELEASE 

Here, we apply the model only to the acceleration of 
snow glide before a full-depth avalanche release . In such a 
case, we may assume that the rate of decrease in A is 
much greater than the rate of increase. By neglecting q in 
Equation (4), we then obtain 

dA / dl = -p(A,v) ( 15) 

f = R(A,v). (\6) 

If the physical processes represented by Equations (7) and 
(9) are introduced into Equations (15) and (16), the glide 
velocity, v, is governed by the following equation 

(I7) 

and this equation indicates that the accleration of the snow 
glide is an increasing function of the snow-glide velocity 
itself. From Equation (17), the time to avalanche release is 
given by 

El EO/El + Vo 
-Iog----- (18) 
aEo Vo 

Nohguchi: Jn slabilily in SI/OW gliding mOlion 
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Fig. 4. Representation of behaviour types in parameter 

space. 

where Tc is time to an avalanche release for a snow cover 
with the glide velocity v = vo. When the velocity is 
sufficiently large, Equations (17) and (18) can be 
approximated as 

dv/ dl = av2 (19) 

(20) 

We now compare the concrete model, described by 
Equations (15) and (16) together with the physical process 
in Equations (7) and (9), with field data on glide velocity. 
If the field data can be matched with the theoretical 
results, we can use them to obtain unknown parameters as 
required. On the other hand, if the field data cannot be 
explained by reference to the theoretical results, other 
physical processes must be considered. 

We have four sets of field data for snow glide 
involving continuous acceleration to an avalanche release or 
to a small break-down of snow cover (Nohguchi and others, 
1986). Three sets of data were obtained on natural slopes 
with low trees (S-l, S-2, S-3) at Hosono, Japan, by use of 
a gear-type glide meter; the fourth set of data was obtained 
on an experimental slope with short-cut grass (T -I) at 
Tokamachi, Japan, by using a glide shoe. Figure 5 shows 
that the field data obtained give a reasonable fit with the 
theoretical curves derived from Equations (I7) and (18). By 
this fit, the two parameters a and E /EO can be found 
(Table I). 

Full-depth avalanches frequently occur in Niigata 
Prefecture, Japan, on the low tree slopes. Therefore, using 
the above results and Equation (20), we propose the 
following safety measures against full-depth avalanches on 
slopes covered by low trees. In order to achieve safety, we 
estimate the parameter a at 10 m-I for a low tree-covered 
slope, because Tc is small for large values of a. Then, if 
the glide velocity is 10 mm/h, which is of the same order 
of magnitude as the characteristic velocity, Tc becomes 10 h; 
we call this value the caution velocity, because 10 h is long 
enough to escape. However, if the glide velocity is of the 
order of 10 mm/ min, T c becomes 10 min; we call this the 
danger velocity, because 10 min is a short time in which to 
escape. In general, for a steady glide motion, a typical 
value for the glide velocity is the order of 10 mm/ d (de 
Quervain, 1966). We summarize the approximate safety 
standards for use in full-depth avalanches on a slope 
covered by low trees in Table 11. 
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Fig. 5. Theoretical curves matched with field data. (a) Glide 
velocity (v6 = (EI / EO)VO) against reciprocal of time 
(~ = (aEo/EI)Tc)' (b) Glide velocity against acceleration 
(dv·/dl = (aEo/El)dvldl). 

TABLE I. SUMMARY OF PARAMETERS. (T = EI/(aE o)' 
V = EO/ El' AND L = TV = a - I ARE CHARACTERISTIC 

TIME, VELOCITY, AND LENGTH, RESPECTIVELY.) 

Site a E l / Eo T V L 

(m-I) (h/ m) (h) (mm/s) (m) 

S-I 
S-2 
S-3 
T-I 

0.92 
2.2 
5.6 
3.3 

TABLE 11. 
STANDARDS 
AVALANCHE 

Velocity 

10 mm/ m 
10 mm/ h 
10 mml d 

8.3 9.1 
34.0 16.0 
23.0 4.2 

210.0 64.0 

GLIDE VELOCITY 
APPROPRIA TE IN A 

RELEASE ON A SLOPE 
LOW TREES 

10min 
10 h 

CONCLUDING REMARKS 

0.033 l.l 
0.0081 0.46 
0.012 0.18 
0.0013 0.31 

AND SAFETY 
FULL-DEPTH 

COVERED BY 

Safety 

danger 
caution 

safe 

In order qualitatively to understand the whole 
behaviour of snow glide, including non-steady motion, it is 
necessary to make use of the systematic framework of a 
mathematical model, which is required to be capable of 
analysing the results of observations andl or experiments. In 
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this paper we have considered steady glide motion, rest, and 
full-depth avalanche release as particular states in 
time-dependent glide motion. Using this view, a 
fundamental model has been proposed to describe the 
time-dependent behaviour of snow glide. From this model, 
the inter-relation between the states of steady glide, rest, 
and acceleration to production of an avalanche has been 
made clear for a simple example of these physical processes. 
Finally, the model was applied to the acceleration before a 
full-depth avalanche release, and by comparison with field 
data the safety standards appropriate for a full-depth 
avalanche on a slope covered by low trees were estimated 
in terms of glide velocity. 
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