Canad. Math. Bull. Vol. 16 (4), 1973

PROPERTY (G), REGULARITY, AND SEMI-EQUICONTINUITY

BY J. S. YANG (¹)

1. This note, motivated by [2], [3], and [4], is devoted to an investigation of properties related to equicontinuity in function spaces of topological spaces. In §2, we study the property (G) defined in [3], and the regularity defined in [4]. A sufficient condition for the simultaneous continuity of a function of two variables, which is analogous to a well known result in equicontinuity, is given at the end of the section. In §3, we relate the regularity with the semi-equicontinuity defined in [2], by localizing the semi-equicontinuity in an obvious way which leads us to weaken some of the hypotheses used in [2]. By the way of constructing an example, we also obtained a sufficient condition for a regular semitopological group to be a topological group.

Throughout this note, X and Y are general topological spaces unless otherwise specified. Y^X will denote the set of all functions on X to Y while (X, Y) will be the set of all continuous functions on X to Y. The reader is referred to [5] for definitions and notations not defined here.

2. Property (G), and Regularity.

DEFINITION 1 [3]. $F \subset Y^X$ is said to have the property (G) if for each open set U in Y and each pointwise closed subset G of F, $\bigcap_{f \in G} f^{-1}(U)$ is open in X.

DEFINITION 2 [4]. FCY^X is said to be regular at x in X if for each open set U in Y, and $G \subseteq F$ such that $\overline{G(x)} \subseteq U$, there exists an open neighborhood V of x such that $f(V) \subseteq U$ for each f in G. F is said to be regular if it is regular at each point of X.

REMARK. Members of a regular family $F \subset Y^X$ or members of a family $F \subset Y^X$ having property (G) are not necessary continuous as Example 1 shows. If Y is T_1 , or regular, and if $F \subset Y^X$ is regular or has property (G), then each member of F is continuous.

EXAMPLE 1. Let X be the set of all reals with the usual topology, and Y be the set $\{0, 1\}$ endowed with the topology generated by $\{0\}$.

(1) I wish to thank R. V. Fuller for helpful conversations during the preparation of this paper.

Received by the editors October 15, 1971 and, in revised form, January 12, 1972.

[December

(a) If $F = Y^X$, it is easy to see that F is regular at each point of X. But F is the pointwise closure of the set $\{f\}$, where f(x)=0 for $x \in X$, in Y^X , and F contains the noncontinuous function g, where g(x)=0 if $x \le 0$ and g(x)=1 otherwise.

(b) If H is the family $\{g, h\}$, where h(x)=0 if x<0 and h(x)=1 otherwise, then the nonempty pointwise closed subsets of H are $\{h\}$ and H, H has property (G), but g is not continuous.

THEOREM 1. If $F \subset (X, Y)$ has the property (G), then F is regular.

Proof. Suppose $F \subset (X, Y)$ has property (G), and x in X. Let U be open in Y, and $G \subset F$ such that $\overline{(Gx)} \subset U$. If \overline{G} is the pointwise closure of G in F, then $\overline{G}(x) \subset \overline{G(x)} \subset U$. Thus $N = \bigcap_{f \in G} f^{-1}(U)$ is open in X and contains x, so $f(N) \subset U$ for each $f \in G$, and F is regular at x.

EXAMPLE 2. Let X be the set of all reals with the usual topology. For each integer n, let $f_n: X \to X$ be defined by $f_n(x) = n + x$, and let $F = \{f_n: n \text{ integers}\}$. It is easy to see that F is equicontinuous at every point of X, but F is not regular at every point of X. To see it is not regular at $p \in X$, let $U = \bigcup_n U_n$, where $U_n = (n+p-(1/n), n+p+(1/n))$ for each n. Then $\overline{F(p)} \subset U$ but no neighborhood N of p exist such that $f_n(N) \subset U$ for each n.

We recall that a family $F \subseteq Y^X$ is said to be evenly continuous at $x \in X$ if for each y in Y and each neighborhood V of y, there is a neighborhood U of x and a neighborhood W of y such that $f(U) \subseteq V$ whenever f(x) is in W. A family $F \subseteq Y^X$ is said to be evenly continuous (on X) if F is evenly continuous at each point of X.

THEOREM 2. If Y is a regular space, and if $F \subset Y^X$ is regular at x, then F is evenly continuous at x. There is an example of $F \subset (X, Y)$ which is evenly continuous at each point, but F is regular at no point of X.

Proof. The first half is Lemma (2.5) of [4].

EXAMPLE 3. Let X be the set of all reals with the topology having all intervals of the form [a, b), a < b, as a base. For each a in X, let $f_a(x) = x + a$, for x in X. Then it is not hard to see that the family $\{f_a:a \text{ in } X\}$ is evenly continuous, but is regular at no point of X. To see this, for each positive integer n, let $f_n: X \to X$ be defined by $f_n(x) = x + n$. If p is in X, and $U = \bigcup_n [n+p, n+p+(1/n))$, then U is open in X, and $\overline{F(p)} \subset U$ since the family $\{[n+p, n+p+(1/n)): n \text{ positive integers}\}$ is locally finite, where $F = \{f_n: n \text{ positive integers}\}$. In order that the family $\{f_a: a \text{ in } X\}$ be regular at p, we would have to have a neighborhood V = [p, p+b), b > 0, of p such that $f_n([p, p+b)) = [n+p, n+p+b) \subset [n+p, n+p+(1/n))$ for each positive integer n, but it is impossible. Thus the family $\{f_a: a \text{ in } X\}$ is not regular at p. Note that $\overline{F(p)}$ is not compact for each p in X.

REMARK. If Y is not regular, $F \subseteq Y^X$ may be regular at a point p in X without being evenly continuous at p, as Example 1 has shown. If Y is a regular space, and $F \subseteq Y^X$ is regular, then the pointwise closure \overline{F} of F in Y^X is contained in (X, Y). As pointed out in [5, p. 237], even if $F \subseteq (X, Y)$ is evenly continuous and F(x) is a totally bounded subset of a uniform space Y, F need not be equicontinuous at x. The following theorem reflects the fact that the regularity is much stronger than the even continuity in some sense.

THEOREM 3. If Y is a uniform space, $F \subset (X, Y)$ is regular at x, and F(x) is a totally bounded subset of Y, then F is equicontinuous at x. Conversely, if F is equicontinuous at x and every two-element open cover for $\overline{F(x)}$ is uniform, then F is regular at x.

Proof. Let U be an entourage of Y, V an open symmetric entourage of Y, and W a closed entourage of Y such that $V^2 \subset U$ and $W \subset V$. For y in F(x), if $G_y = \{f \in F: (y, f(x)) \in W\}$, then G_y is a nonempty subset of F and $\overline{G_y(x)} \subset W[y] \subset V[y]$. Thus there is a neighborhood N_y of x such that $f(N) \subset V[y]$ for each f in G_y . By totally boundedness of F(x) there is a finite subset $\{y_1, y_2, \ldots, y_n\}$ of F(x) such that $F(x) \subset \bigcap_{i=1}^n W[y_i]$. For each y_i , define G_i and N_i as above, and let $N = \bigcap_{i=1}^n N_i$. Then N is a neighborhood of x. If $f \in F$, then $f(x) \in W[y_i]$ for some i, hence $f(N) \subset V[y_i]$. Thus, if z is in N, then $(f(x), f(z)) \in V^2 \subset U$. Hence F is equicontinuous at x.

For the second part, let U be an open subset of Y, and $G \subseteq F$ such that $\overline{G(x)} \subseteq U$. If $U = \{U, Y - \overline{G(x)}\}$, U is a two-element open cover for $\overline{F(x)}$, so there is an entourage \overline{V} of Y such that V[f(x)] is contained in one of the member of U whenever $f \in G$. Hence, for each f in G, $V[f(x)] \subseteq U$. By the equicontinuity of F at x, there is a neighborhood N of x such that $f(N) \subseteq V[f(x)]$ for each f in G. This shows that F is regular at X.

COROLLARY. If Y is a uniform space, and $F \subset (X, Y)$ such that $\overline{F(x)}$ is compact, then F is equicontinuous at x if and only if F is regular at x.

THEOREM 4. If a family F of functions on a topological space X to a Hausdorff or regular space Y is compact relative to a jointly continuous topology τ , then F has the property (G).

Proof. If Y is Hausdorff, the pointwise topology for F is Hausdorff and is smaller than τ , thus it coincides with τ . If Y is regular, F is regular by Theorem (2.1) of [4], thus F is evenly continuous by Theorem 2 above, the pointwise topology for F is jointly continuous Theorem 7.19 [5], and F is compact relative to the pointwise topology. Hence, if either Y is Hausdorff or regular, F is compact relative to the jointly continuous pointwise topology.

[December

Let G be any pointwise closed subset of F and let U be any open subset of Y. We need to show that $\bigcap_{f \in G} f^{-1}(U)$ is open in X. For this purpose, let $x \in \bigcap_{f \in G} f^{-1}(U)$. The compact set $G \times \{x\}$ of $F \times X$ is contained in $p^{-1}(U)$, where P is the function from $E \times X$ to Y such that P(f, x) = f(x), and $p^{-1}(U)$ is open since the pointwise topology for F is jointly continuous. Therefore, there exists an open neighborhood V of x such that $P(G \times V) \subset U$, i.e. $f(V) \subset U$ for all f in G. Hence $\bigcap_{f \in G} f^{-1}(U)$ (U) is open and the family F has property (G).

THEOREM 5. A family F of continuous functions on a k-space X to a regular space Y has a compact closure \overline{F} in (X, Y) relative to the compact-open topology if and only if (1) $\overline{F(x)}$ is compact for every x in X, and (2) \overline{F} has the property (G).

Proof. If (2) is satisfied, F is evenly continuous by Theorem 1 and Theorem 2 above, thus F has the same closure \overline{F} in Y^X relative to the compact-open and pointwise topologies by the Lemma of [6, p. 20], $\overline{F} \subset (X, Y)$ and two topologies for \overline{F} coincide. Since \overline{F} is a closed subset of the compact space $X\{\overline{F(x)}: x \in X\}$, \overline{F} is compact in the compact-open topology.

Conversely, suppose F has a compact closure \overline{F} in (X, Y) relative to the compactopen topology. By Theorem A of [1], the compact-open topology for \overline{F} is jointly continuous on compacta. But $\overline{F} \times X$ is a k-space, the compact-open topology for \overline{F} is jointly continuous, thus \overline{F} has the property (G) by Theorem 4. Thus the compact-open and the pointwise topologies for \overline{F} coincide, and that $\overline{F(x)}$ is compact follows easily.

We recall that a topological space X is called a P-space if every G_{δ} set in X is open.

THEOREM 6. Assume Y is a regular space, and $F \subset (X, Y)$ is evenly continuous at x in X. If either (a) $\overline{F(x)}$ is compact, or (b) X is a P-space and $\overline{F(x)}$ is Lindelof, then F is regular at x.

Proof. Part (a) is a part of Theorem A [4].

For the second part, assume X is a P-space, and F(x) is Lindelof. Let U be an open subset of Y, and $G \subseteq F$ such that $\overline{G(x)} \subseteq U$. For each y in $\overline{G(x)}$, there is a neighborhood V_y of x and an open neighborhood W_y of y, $W_y \subseteq U$, such that $f(V_y) \subseteq U$ whenever $f \in F$ with $f(x) \in W_y$. The family $\{W_y: y \in \overline{G(x)}\}$ forms an open cover for $\overline{G(x)}$, so there is a countable subcover $\{W_1, W_2, \ldots, W_n, \ldots\}$ corresponding to a countable subset $\{y_1, y_2, \ldots, y_n\}$ of $\overline{G(x)}$. For each i, $i=1, 2, \ldots, n, \ldots$ let V_i be the neighborhood of x associated with W_i as stated above, and let $V = \bigcap_{i=1}^{\infty} V_i$. Then V is a neighborhood of x, and $f(V) \subseteq U$ for each $f \in G$. Thus F is regular at x.

Example 3 shows that if either F(x) is not compact, or X is not a P-space, Theorem 6 is false.

COROLLARY. If Y is regular, and if F(x) is compact for each $x \in X$, then the property (G), regularity, and even continuity of $F \subset (X, Y)$ are equivalent.

Proof. The equivalence of regularity and even continuity follows from Theorem 6, and the equivalence of the property (G) and even continuity follows from Theorem B of [6] and Theorems 1 and 4 above.

If X, Y, and Z are sets, and if f is a function from $X \times Y$ to Z, we define functions f^a and f_b for each $a \in X$ and $b \in Y$ as follows: $f^a(y) = f(a, y)$, for y in Y, and $f_b(x) = f(x, b)$, for x in X. If $A \subset Y$ then f_A denotes the family $\{f_y : y \in A\}$.

THEOREM 7. Let X, Y, and Z be topological spaces, a and b be points of X and Y respectively, and suppose that f is a function from $X \times Y$ to Z satisfying the following conditions:

(1) The function f^a is continuous at b.

(2) The family of functions f_Y is evenly continuous at a. Then f is continuous at (a, b).

Proof. Let U be an open neighborhood of f(a, b). By even continuity, there is a neighborhood V of f(a, b) with $f(a, b) \in V \subset U$, and a neighborhood U_a of a in X such that $f_u(U_a) \subset U$ whenever $f(a, y) \in V$. There is a neighborhood U_b of b such that $f^a(U_b) \subset V$. Note that $y \in U_b$, $f(a, y) \in V$, thus $f(x, y) \in U$ for each $x \in U_a$. Hence if $x \in U_a$ and $y \in U_b$, then $f(x, y) \in U$, i.e. f is continuous at (a, b).

COROLLARY. If the function f^a is continuous at b, Y is regular, and f_Y is regular at a, then f is continuous at (a, b).

3. Semi-equicontinuity vs regularity.

DEFINITION 3. [2] A collection \mathscr{V} of two-element open covers for a topological space X is said to be a semi-uniformity for X is for each point x in X, and each neighborhood U of x, there is $\{V_1, V_2\}$ in \mathscr{V} such that $x \in V_1 \subset U$ and $X - V_2$ is a neighborhood of x.

It is remarked in [2] that a topological space has a semi-uniformity if and only if it is regular, and that every uniform space (X, \mathcal{U}) has a semi-uniformity consisting of all two-element uniform open covers of X, called the uniform semiuniformity for X.

The following definition is a localization of the one given in [2].

DEFINITION 4. Let F be a family of functions from a topological space X to a semi-uniform space (Y, \mathscr{V}) . F is said to be semi-equicontinuous at x in X if for each $\{V_1, V_2\}$ in \mathscr{V} there is a neighborhood U of x such that $f(U) \subset V_1$ or $f(U) \subset V_2$ for each $f \in F$. F is said to be semi-equicontinuous if F is semi-equicontinuous at each point of X.

REMARK. F is semi-equicontinuous at x in X if and only if for each $\{V_1, V_2\}$ in \mathscr{V} and each pointwise closed subset G of F, there is a neighborhood U of x such that $f(U) \subset V_1$ or $f(U) \subset V_2$ for each $f \in G$.

REMARK. If a family F of functions from a topological space to a semi-uniform space (Y, \mathscr{V}) is semi-equicontinuous at x, then each $f \in F$ is continuous at x.

REMARK. It is easy to see that if a family of functions F from a topological space X to a uniform space (Y, \mathscr{U}) is equicontinuous at $x \in X$, then F is semi-equicontinuous at x relative to the uniform semi-uniformity of Y. Therefore Example 2 is an example of a family F of functions which is semi-equicontinuous at x but is not regular at x.

THEOREM 8. If a family of functions F from a topological space X to a semi-uniform space (Y, \mathscr{V}) is semi-equicontinuous at x, then F is evenly continuous at x.

Proof. Let y be a point in Y, and U a neighborhood of y in Y. If $y \notin F(x)$, then there is a neighborhood W of y such that $W \cap F(x) = \emptyset$, and the conclusion is vacuously satisfied in this case. If $y \in \overline{F(x)}$, let $\{V_1, V_2\}$ in \mathscr{V} such that $y \in V_1 \subset U$ and $X - V_2$ is a closed neighborhood of y. If $W = X - V_2$, then $W \cap F(x) \neq \emptyset$. Let N be a neighborhood of x such that $f(N) \subset V_1 \subset U$ or $f(N) \subset V_2$. But if $f \in F$ with $f(x) \in W$, then $f(x) \notin V_2$, thus $f(N) \subset U$. Hence F is evenly continuous at x.

COROLLARY. [2] If a family F of functions from a topological space to a semiuniform space is semi-equicontinuous, then F is evenly continuous.

REMARK. If Y is a regular space, the set \mathscr{V}_N of all two-element open covers for Y is a semi-uniformity for Y, called the natural semi-uniformity for Y. It is easy to see that if a family F of functions from a topological space X to a regular space Y is semi-equicontinuous at x in X relative to the natural semi-uniformity \mathscr{V}_N for Y, then F is regular at x.

The following generalizes Theorem 2 of [2].

THEOREM 9. If a family F of continuous functions from a topological space X to a semi-uniform space (Y, \mathscr{V}) is compact relative to a jointly continuous topology, then F is semi-equicontinuous.

Proof. It follows from Theorem (2.1) of [4] that F is regular, and thus is evenly continuous and the pointwise topology for F is jointly continuous since Y is regular. Note also that F is compact relative to the pointwise toplogy.

Now let $\{V_1, V_2\} \in \mathscr{V}$, and let $x \in X$ and $y \in Y$. If $f \in F$ and if $f(x) \in V_1$, we can find open sets U_f in F with the pointwise topology and U_x in X such that $f \in U_f$ and $x \in U_x$ and $P(U_f \times U_x) \subset V_1$ where again P(f, x) = f(x); if $f \in F$ with $f(x) \notin V_1$, then $f(x) \in V_2$ and we also can find open neighborhoods U_f and U_x of f and xrespectively such that $P(U_f \times U_x) \subset V_2$. The family $\{U_f : f \in F\}$ forms an open cover for F in the pointwise topology, thus there are f_1, f_2, \ldots, f_n in F and corresponding $U_{f_i}, i=1, 2, \ldots, n$, such that $F \subset \bigcup_{i=1}^n U_{f_i}$. If N is the intersection of the open sets U_{x_i} which are associated with the open sets U_{f_i} , then N is a neighborhood of x. For each $f \in F$, $f \in U_{f_i}$ for some i, thus $f(N) \subset V_1$ or $f(N) \subset V_2$, and F is semiequicontinuous at x.

REMARK. Using Theorem 9 we may also obtain an Ascoli type theorem similar to Theorem 5.

Recall that a semitopological group is a group endowed with a topology under which the group multiplication is continuous separately.

EXAMPLE 4. Let X be a regular semitopological group in which every open cover of X by left translates of neighborhoods of the identity has a refinement by left translates of a neighborhood of the identity, and let Y be any regular space, and suppose f is a continuous function of X into Y. For each a in X, let f_a be the function on X defined by $f_a(x)=f(ax)$, and let $F=\{f_a:a \in X\}$. Then F is semi-equicontinuous relative to every semi-uniformity of Y. To see this let \mathscr{V} be a semi-uniformity of Y, let $p \in X$, and let $\{V_1, V_2\} \in \mathscr{V}$. If $f_a \in F$ such that $f_a(p) \in V_1$, then, by the continuity of f at ap, there is a neighborhood U_a of the identity e such that $f(aU_ap) \subset$ V_1 ; if $f_a \in F$ such that $f_a(p) \notin V_1$, then $f_a(p) \in V_2$, so there is a neighborhood U_a of the identity e such that $f(aU_ap) \subset V_2$. The family $\{aU_a: a \in X\}$ forms an open cover for X, thus there is a neighborhood U of e such that, for each $a \in X$, aU is contained in bU_b for some $b \in X$. Now if $a \in X$, $f_a(Up)=f(aUp) \subset f(bU_bp) \subset V_1$ or V_2 . Thus F is semi-equicontinuous at $p \in X$.

THEOREM 10. If X is a regular semitopological group in which each open cover of X by left translates of neighborhoods of the identity has a refinement by left translates of a neighborhood of the identity, then X is a topological group.

Proof. In the above Example 4 take Y to be X, and take the continuous function f to be the identity map. Then each f_a will then be a left translation of X, and the conclusion then follows from Theorem 7 of [2].

REMARK. The property stated in Theorem 10 implies paracompactness of X, but, however, Theorem 10 is false if we simply assume X to be paracompact as Example 3 shows. The group of all reals with usual addition endowed with the

topology having all intervals of the form [a, b), a < b, as a base is a semitopological group but is not a topological group since inversion is not continuous.

ACKNOWLEDGMENT. The author is indebted to the referee for Example 1(b) and pointing out some errors in the early version of this paper.

References

1. Paul Ezust, Joint continuity of function spaces, Colloq. Math. 21 (1970), 87-89.

2. R. V. Fuller, Semiuniform spaces and topological homeomorphism groups, Proc. Amer. Math. Soc. 26 (1970), 365-368.

3. D. Gale, Compact sets of functions and function rings, Proc. Amer. Math. Soc. 1 (1950), 303-308.

4. S. K. Kaul, Compact subsets in function spaces, Canad. Math. Bull. 12 (1969), 461-466.

5. J. L. Kelley, General topology, Van Nostrand, Princeton, N.J., 1955.

6. J. D. Weston, A generalization of Ascoli's theorem, Mathematika, 6 (1959), 19-24.

UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SOUTH CAROLINA