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PROPERTY (G), REGULARITY, AND 
SEMI-EQUICONTINUITY 

BY 

J. S. YANG O 

1. This note, motivated by [2], [3], and [4], is devoted to an investigation of 
properties related to equicontinuity in function spaces of topological spaces. In 
§2, we study the property (G) defined in [3], and the regularity defined in [4]. A 
sufficient condition for the simultaneous continuity of a function of two variables, 
which is analogous to a well known result in equicontinuity, is given at the end of 
the section. In §3, we relate the regularity with the semi-equicontinuity defined in 
[2], by localizing the semi-equicontinuity in an obvious way which leads us to 
weaken some of the hypotheses used in [2]. By the way of constructing an example, 
we also obtained a sufficient condition for a regular semitopological group to be a 
topological group. 

Throughout this note, X and Y are general topological spaces unless otherwise 
specified. Yx will denote the set of all functions on X to F while (X, Y) will be the 
set of all continuous functions on Zto Y. The reader is referred to [5] for definitions 
and notations not defined here. 

2. Property (G)9 and Regularity. 

DEFINITION 1 [3]. F c Yx is said to have the property (G) if for each open set 
U in 7 and each pointwise closed subset G of F, O/eof^iU) *s °Pen *n %• 

DEFINITION 2 [4]. FCYX is said to be regular at x in X if for each open set Uin Y, 
and G <= FsuchthatG(x) <= U, there exists an open neighborhood V of x such that 
f(V) cz *7for each/in G. Fis said to be regular if it is regular at each point of X. 

REMARK. Members of a regular family F <= Yx or members of a family F cz Yx 

having property (G) are not necessary continuous as Example 1 shows. If Y is Tl9 

or regular, and if F <= Yx is regular or has property (G), then each member of Fis 
continuous. 

EXAMPLE 1. Let X be the set of all reals with the usual topology, and Y be the 
set {0, 1} endowed with the topology generated by {0}. 
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(a) If F== Yx, it is easy to see that F is regular at each point of Z. But F is the 
pointwise closure of the set {/}, where f(x)==0 for x G X, in Yx, and F contains 
the noncontinuous function g, where g(x)=0 if * < 0 and g(x)=l otherwise. 

(b) If His the family {g, h}, where h(x)=0 if x<0 and A(x)=l otherwise, then 
the nonempty pointwise closed subsets of H are {h} and H, H has property (G), 
but g is not continuous. 

THEOREM 1. IfF^ (X, Y) has the property (G), then F is regular. 

Proof. Suppose F <= (Z, Y) has property (G), and x in Z. Let U be open in Y, 

and G <=• F such that (Gx) <= [/". If £ is the pointwise closure of G in F, then 

(J(JC) c G(x) ci ET". Thus N=f)feGf-1(U) is open in Zand contains *, so f(N) c 

17 for e a c h / G G, and i7 is regular at x. 

EXAMPLE 2. Let Z be the set of all reals with the usual topology. For each integer 
n, let/W :Z->Zbe defined byfn(x)=n+x, and let F={fn:n integers}. It is easy to 
see that F is equicontinuous at every point of Z, but Fis not regular at every point 
of Z. To see it is not regular at p e X, let U=\Jn Un, where Un={n+p—{\jn), 

n+p+{\jn)) for each n. Then F(p) <=• U but no neighborhood N of p exist such 
that/w(JV) c Ufor each n. 

We recall that a family F <= 7 X is said to be evenly continuous at x G X if for 
each y in Y and each neighborhood V of y, there is a neighborhood U of x and a 
neighborhood Wofy such that/(£/) c V whenever/(x) is in FF. A family F ci y ^ 
is said to be evenly continuous (on Z) if Fis evenly continuous at each point of Z. 

THEOREM 2. If Y is a regular space, and if F c: Yx is regular at x, then F is evenly 
continuous at x. There is an example of F <^ (Z, Y) which is evenly continuous at 
each point, but F is regular at no point ofX. 

Proof. The first half is Lemma (2.5) of [4]. 

EXAMPLE 3. Let Z be the set of all reals with the topology having all intervals of 
the form [a, b), a<b, as a base. For each a in X, \ttfa(x)=x+a, for x in Z. Then it 
is not hard to see that the family {fa :a in Z} is evenly continuous, but is regular at 
no point of Z. To see this, for each positive integer n, let fn:X->X be defined by 
fn(x)=x+n. Up is in X, and U=\Jn [n+p, n+p+(\jn)), then U is open in X, 
and F(p) c U since the family {[n+p, n+p+(l/n)): n positive integers} is locally 
finite, where F={fn:n positive integers}. In order that the family {fa:a in Z} be 
regular at/?, we would have to have a neighborhood V= [p,p+b), b>0, ofp such 
thatfn([p,p+b))= [n+p, n+p+b) c [n+p, n+p+(l/n)) for each positive integer 
n, but it is impossible. Thus the family {fa : a in Z} is not regular at p. Note that 
F(p) is not compact for each/? in Z. 
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REMARK. If Fis not regular, F <= Yx may be regular at a point/? in Z without 
being evenly continuous at/?, as Example 1 has shown. If Fis a regular space, and 
F <= Yx is regular, then the pointwise closure F of F in Yx is contained in (Z, F). 
As pointed out in [5, p. 237], even if F c: (Z, Y) is evenly continuous and F(x) is a 
totally bounded subset of a uniform space Y, F need not be equicontinuous at x. 
The following theorem reflects the fact that the regularity is much stronger than 
the even continuity in some sense. 

THEOREM 3. If Y is a uniform space, F <= (Z, Y) is regular at x, and F(x) is a 
totally bounded subset of Y, then F is equicontinuous at x. Conversely, if F is equi
continuous at x and every two-element open cover for F(x) is uniform, then F is 
regular at x. 

Proof. Let U be an entourage of Y, V an open symmetric entourage of Y, and 
W a, closed entourage of Y such that V2 c U and W <= V. For y in F(x), if Gy= 
{feF:(y,f(x)) e W}, then Gy is a nonempty subset of F and Gy(x) <= W[y] c 
V[y]. Thus there is a neighborhood Nv of x such thatf(N) c: V[y] for each/in Gy. 
By totally boundedness of F(x) there is a finite subset {j^, j 2 , . . . , yn} ofF(x) such 
that F(x) cz p |"= 1 W[y^\. For each j / f , define Gt and A^ as above, and let N= 
n"=i Nf T l i e n N is a neighborhood of x. I f / e F , then/(x) G W^[JJ for some i, 
hence/(AT) <= K|>J. Thus, if z is in iV, then (f(x),f(z)) e V2 c J7. Hence F is 
equicontinuous at x. 

For the second part, let £7 be an open subset of Y, and G c F such that G(x) c: 
C/. If U={U, Y—G(x)}, U is a two-element open cover for F(x), so there is an 
entourage V of Y such that F[/(x)] is contained in one of the member of U 
whenever/e G. Hence, for each/ in G, V[f(x)] c JJ. By the equicontinuity of F 
at x, there is a neighborhood N of x such that /(AO <= F[/(x)] for each / in G. 
This shows that F is regular at Z. 

COROLLARY. If Y is a uniform space, and F <= (x, Y) such that F(x) is compact, 
then F is equicontinuous at x if and only if F is regular at x. 

THEOREM 4. If a family F of functions on a topological space X to a Hausdorff or 
regular space Y is compact relative to a jointly continuous topology r, then F has the 
property (G). 

Proof. If Y is Hausdorff, the pointwise topology for F is Hausdorff and is 
smaller than r, thus it coincides with r. If Y is regular, F is regular by Theorem 
(2.1) of [4], thus Fis evenly continuous by Theorem 2 above, the pointwise topology 
for Fis jointly continuous Theorem 7.19 [5], and I is compact relative to the point-
wise topology. Hence, if either Fis Hausdorff or regular, F i s compact relative to 
the jointly continuous pointwise topology. 
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Let G be any pointwise closed subset of F and let t /be any open subset of Y. We 
need to show that Clfeof^iU) *s ° P e n *n X- F ° r this purpose, let x e f l / e t f / " 1 ^)-
The compact set G X {x} of F X Xis contained in /?-1(£/)> where P is the function 
from E x X to F such that P ( / , x )= / (x ) , and p~x{U) is open since the pointwise 
topology for P is jointly continuous. Therefore, there exists an open neighbor
hood V of x such that P(G x F ) c [ / , i.e. / ( F ) <= J7 for all f in G. Hence fl /eo/"1 

(£/) is open and the family F has property (G). 

THEOREM 5. A family F of continuous functions on a k-space X to a regular space 

Y has a compact closure F in (X, Y) relative to the compact-open topology if and 

only if (I) F(x) is compact for every x in X, and (2) F has the property (G). 

Proof. If (2) is satisfied, F is evenly continuous by Theorem 1 and Theorem 2 
above, thus Phas the same closure Pin Yx relative to the compact-open and point-
wise topologies by the Lemma of [6, p. 20], F <= (X, Y) and two topologies for P 
coincide. Since F is a closed subset of the compact space X{F(x):xe X}, F is 
compact in the compact-open topology. 

Conversely, suppose Phas a compact closure Pin (X, Y) relative to the compact-
open topology. By Theorem A of [1], the compact-open topology for P is jointly 
continuous on compacta. But FxX is a fc-space, the compact-open topology for 
Pis jointly continuous, thus Phas the property (G) by Theorem 4. Thus the com
pact-open and the pointwise topologies for P coincide, and that F(x) is compact 
follows easily. 

We recall that a topological space Zis called a P-space if every Gâ set in Zis open. 

THEOREM 6. Assume Y is a regular space, and F <= (X, Y) is evenly continuous at 

x in X. If either (a) F{x) is compact, or (b) X is a P-space and F(x) is Lindelof then 

F is regular at x. 

Proof. Part (a) is a part of Theorem A [4]. 

For the second part, assume X is a P-space, and F(x) is Lindelof. Let U be an 
open subset of Y, and G c: F such that G(x) c JJ. For each y in G(x), there is a 
neighborhood Vy of x and an open neighborhood Wy of j , Wy cz JJ, such that 
fiYv) c U wheneve r / eP wi th/ (x) e Wy. The family {Wv:y e G(x)} forms an 
open cover for G{x), so there is a countable subcover {W1,W2,...Wn...} 

corresponding to a countable subset {yx,y2,. . .y n } of G(x). For each i, i=l, 

2, . . . n, . . . let Vt be the neighborhood of x associated with Wt as stated above, 
and let K=n*Li Vi> Then Fis a neighborhood of x, and / ( F ) c t/for e a c h / e G. 
Thus P is regular at x. 

Example 3 shows that if either F(x) is not compact, or X is not a P-space, 
Theorem 6 is false. 

https://doi.org/10.4153/CMB-1973-096-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1973-096-9


1973] PROPERTY (G), REGULARITY, AND SEMI-EQUICONTINUITY 591 

COROLLARY. If Y is regular, and if F(x) is compact for each xeX, then the 
property (G), regularity, and even continuity of F c: (X, Y) are equivalent. 

Proof. The equivalence of regularity and even continuity follows from Theorem 
6, and the equivalence of the property (G) and even continuity follows from 
Theorem B of [6] and Theorems 1 and 4 above. 

If X, Y, and Z are sets, and if/is a function from Xx Y to Z, we define functions 
fa and/& for each aeX and b e Y as follows: fa(y)=f(a,y), for y in Y, and 
fb(x)=f(x, b), for x in X. If A <= Y then fA denotes the family {fy:y e A}. 

THEOREM 7. Let X, Y, andZ be topological spaces, a and b be points ofX and Y 
respectively, and suppose that fis a function from X X YtoZ satisfying the following 
conditions: 

(1) The function fa is continuous at b. 
(2) The family of functions fY is evenly continuous at a. Then fis continuous at 

{a, b). 

Proof. Let U be an open neighborhood off (a, b). By even continuity, there is a 
neighborhood V off (a, b) with/(a, b) G V ^ U, and a neighborhood Ua of a in X 
such that fy(Ua) <= U whenever f(a, y) e V. There is a neighborhood Ub of b such 
that fa(Ub) c V. Note that y e Ub, f(a, y) e V, thus f(x, y)eU for each x e Ua. 
Hence if x e Ua and y eUb, then/X*, y) e U, i.e. / i s continuous at {a, b). 

COROLLARY. If the function fa is continuous at b, Y is regular, andfY is regular at 
a, then f is continuous at {a, b). 

3. Semi-equicontinuity vs regularity. 

DEFINITION 3. [2] A collection "T of two-element open covers for a topological 
space Z is said to be a semi-uniformity for X is for each point x in X, and each 
neighborhood U of x, there is {Vx, V2} in "T such that x e V1 <= U and X — F2 is 
a neighborhood of x. 

It is remarked in [2] that a topological space has a semi-uniformity if and only 
if it is regular, and that every uniform space (X, %) has a semi-uniformity con
sisting of all two-element uniform open covers of X, called the uniform semi-
uniformity for X. 

The following definition is a localization of the one given in [2]. 

DEFINITION 4. Let F be a family of functions from a topological space X to a 
semi-uniform space (Y, ir). F is said to be semi-equicontinuous at x in X if for 
each {Vx, V2} in "T there is a neighborhood U of x such that / ( t / ) cz J^ or f(U) c: 
F2 for each/ e i7. JPis said to be semi-equicontinuous if Fis semi-equicontinuous at 
each point of X. 
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REMARK. F is semi-equicontinuous at x in X if and only if for each {Vl9 V2} in 
Y and each pointwise closed subset G of F, there is a neighborhood U of x such 
that/(CO <= ^i or/( l7) c F2 for each/G G. 

REMARK. If a family F of functions from a topological space to a semi-uniform 
space (7 , ^ ) is semi-equicontinuous at x, then each feF is continuous at x. 

REMARK. It is easy to see that if a family of functions F from a topological space 
X to a uniform space ( F, $0 is equicontinuous at x e X, then F is semi-equicon
tinuous at x relative to the uniform semi-uniformity of F. Therefore Example 2 is 
an example of a family F of functions which is semi-equicontinuous at x but is not 
regular at x. 

THEOREM 8. If a family of functions F from a topological space X to a semi-uni
form space ( Y, Y) is semi-equicontinuous at x, then F is evenly continuous at x. 

Proof. Let y be a point in F, and U a neighborhood of y in Y. If y $F(x)9 

then there is a neighborhood W of y such that W n F ( x ) = 0 , and the conclusion 
is vacuously satisfied in this case. If y e F(x), let {V±, V2} in Y* such that J / G ^ C 
£/ and X— V2 is a closed neighborhood of y. If W=X— V2, then flF n F ( j c ) ^ 0 . 
Let JVbe a neighborhood of x such that/(AT) <= Pi <= U or f(N) c F2. But if 
/ e F with/(x) e PF, then/(x) ^ F2, thus/(iV) c: {/. Hence F is evenly continuous 
at x. 

COROLLARY. [2] If a family F of functions from a topological space to a semi-
uniform space is semi-equicontinuous, then F is evenly continuous. 

REMARK. If Y is a regular space, the set YN of all two-element open covers for 
Fis a semi-uniformity for F, called the natural semi-uniformity for F. It is easy to 
see that if a family F of functions from a topological space Z t o a regular space Fis 
semi-equicontinuous at x in X relative to the natural semi-uniformity nTN for F, 
then F is regular at x. 

The following generalizes Theorem 2 of [2]. 

THEOREM 9. If a family F of continuous functions from a topological space X to a 
semi-uniform space (F , Y) is compact relative to a jointly continuous topology, then 
F is semi-equicontinuous. 

Proof. It follows from Theorem (2.1) of [4] that F i s regular, and thus is evenly 
continuous and the pointwise topology for F is jointly continuous since F is 
regular. Note also that F is compact relative to the pointwise toplogy. 
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Now let {Vl9 V2} G iT9 and let x G X and y e Y. If/ G F and if/(*) G Vl9 we can 
find open sets Uf in F with the pointwise topology and Ux in X such tha t /G Uf and 
* e C7,. and P(Uf x LQ c vx where again P ( / , x) = / (* ) ; if fe F with/(x) <£ Vl9 

then/(x) G F2 and we also can find open neighborhoods Uf and Ux o f / a n d x 
respectively such that P(Uf x Ux) c F2. The family {Uf : / G F} forms an open cover 
for F in the pointwise topology, thus there a re / 1 ? / 2 , . . .fn in F and corresponding 
Uf , i=l, 2 , . . . n9 such that F c: (J?=i ^/y If-Wis the intersection of the open sets 
Uœ which are associated with the open sets Uf 9 then N is a neighborhood of x. 
For e a c h / G i 7 , / G 17,. for some /, thus f(N) c Kx or/(JV) c F2, and F i s semi-
equicontinuous at x. 

REMARK. Using Theorem 9 we may also obtain an Ascoli type theorem similar 
to Theorem 5. 

Recall that a semitopological group is a group endowed with a topology under 
which the group multiplication is continuous separately. 

EXAMPLE 4. Let X be a regular semitopological group in which every open cover 
of X by left translates of neighborhoods of the identity has a refinement by left 
translates of a neighborhood of the identity, and let Y be any regular space, and 
suppose/is a continuous function of X into Y. For each a in X, let/a be the function 
on Zdefined byfa(x)=f(ax)9 and let F={fa :a G X}. Then Fis semi-equicontinuous 
relative to every semi-uniformity of Y. To see this let "T be a semi-uniformity of 
F, let peX, and let {Vl9 V2}ei^. If fa e F such that fa(p) e Vl9 then, by the 
continuity of/at ap9 there is a neighborhood Uaof the identity e such \haXf{aUap) <= 
Fi; if/a G F such that/a(/?) ^ Vl9 then/a(/?) G K2, SO there is a neighborhood Ua of 
the identity e such thaif(aUap) <= F2. The family {aUa : a e X} forms an open cover 
for X9 thus there is a neighborhood Uofe such that, for each a G X, aUis contained 
in ô*7& for some 6 G X . NOW if a G X , fa(Up)=f(aUp) c f(bUbp) <= Vx or F2. 
Thus F is semi-equicontinuous at /? G X 

THEOREM 10. T^X is a regular semitopological group in which each open cover ofX 
by left translates of neighborhoods of the identity has a refinement by left translates of 
a neighborhood of the identity, then X is a topological group. 

Proof. In the above Example 4 take Y to be X, and take the continuous function 
/ t o be the identity map. Then each/a will then be a left translation of X, and the 
conclusion then follows from Theorem 7 of [2]. 

REMARK. The property stated in Theorem 10 implies paracompactness of X, 
but, however, Theorem 10 is false if we simply assume X to be paracompact as 
Example 3 shows. The group of all reals with usual addition endowed with the 
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topology having all intervals of the form [a, b), a<b, as a base is a semitopological 
group but is not a topological group since inversion is not continuous. 

ACKNOWLEDGMENT. The author is indebted to the referee for Example 1(b) and pointing out 
some errors in the early version of this paper. 
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