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This article presents a mini-tutorial aimed at a wide readership not familiar with the
field of solar plasma physics. The exposition is centred around the issue of excess/free
magnetic energy stored in the solar corona. A general consideration is followed with
a particular example of coronal magnetic arcade, where free magnetic energy builds
up by photospheric convective flows. In the context of solar physics the major task
is to explain how this free energy can be released quickly enough to match what
is observed in coronal explosive events such as solar flares. Therefore, in the last
section of the paper we discuss briefly a possible role of magnetic reconnection in
these processes. This is done in quite simple qualitative physical terms, so that an
interested reader can follow it up in more detail with help of the provided references.

1. Introduction

The Sun, our nearest star, is a very interesting physical object. One of its mysteries,
not yet completely cracked, is the solar corona: very hot (Tc ∼ 106 K) plasma
several thousand kilometres above the visible solar surface (the photosphere). The
puzzle is why the corona, while being more distant than the photosphere from the
ultimate energy source (which is nuclear fusion reactions in the Sun’s interior), has a
temperature much higher than the photosphere (Tph ≈ 5800 K). The corona is visible
during total solar eclipses as a faint glow around the solar disk when it is covered by
the Moon. Although records of eclipses go back millennia, the corona as a separate
object has been reported only since the 17th century. Then, during the eclipse of
1869, an unknown green emission line was detected in the coronal spectrum. Since,
just a year earlier, another unknown optical line emitted from the Sun had been
attributed to a new chemical element named helium, it was tempting to follow suit
by introducing another new element, ‘coronium’.

Although helium was identified in a terrestrial laboratory in 1895, in the case of
‘coronium’ the story turned out to be more complicated. It was not until the 1930s
that it was realized that the line under discussion is actually produced by highly
ionized iron. This immediately implied that the corona is made of a hot plasma
with the temperature exceeding 106 K. Therefore, what is visible around the solar
disk during eclipses is mere photospheric light scattered by coronal electrons. The
emission of the corona itself falls into the ultraviolet (UV) and soft X-ray bands, and,
therefore, can be observed only by space-borne instruments. Thus, state-of-the-art
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(a) (b)

FIGURE 1. Basic elements of the coronal magnetic field. (a) A coronal hole;
(b) a coronal loop.

images of the corona, made by the Solar Dynamics Observatory launched in
2010, are available in Main Gallery-SDO/Solar Dynamics Observatory-NASA:
sdo.gsfc.nasa.gov/gallery/main. Their distinctive feature is the presence of numerous
fine structures, which are a signature of the underlying coronal magnetic field. This
field is strong enough to supress the motion of electrons and protons (hydrogen is
the main element of the coronal plasma) across magnetic field lines. Indeed, under a
typical coronal field strength Bc ∼ 100 G and plasma density nc ∼ 109 cm−3 (see, e.g.
Golub & Pasachoff 2010), the gyrofrequency of protons is ω(p)

B = eB/mpc ∼ 106 s−1,
while the collision frequency of thermal protons with energy Ep ∼ kTc ∼ 102 eV is
approximately νp ∼ 1 s−1. Thus, when νp � ω

(p)
B , protons (as well as much lighter

plasma electrons) are strongly magnetized, and their gyroradius, which is of the order
of ρ(p)

B ∼ ((
√

kT/mp)/ω
(p)
B )∼ 10 cm, is negligibly small in the coronal context.

However, guiding charged particles along magnetic field lines is by far not the
only role played by the coronal magnetic field. Under the above mentioned coronal
parameters, the magnetic energy per unit volume, WB = B2

c/8π, is much larger than
the plasma thermal energy WT ∼ nckTc. Their ratio is commonly known as a non-
dimensional parameter plasma β, β≡8πnkT/B2. In coronal active regions, which look
mostly bright in X-ray images of the Sun, β ∼ 10−2. Therefore, the interaction of the
solar magnetic field with plasma should be essential for the very existence of the solar
corona. Nowadays, it is well known that the Sun is not unique in this respect as X-ray
emission associated with coronae is detected from a large number of solar-type stars.
However, understanding the mechanism of coronae formation is not only of academic
interest. The solar corona is a source of the solar wind, which is the continuous
plasma outflow from the Sun that extends far beyond the orbits of the Earth and
other planets (see, e.g. Meyer-Vernet 2007). Therefore, what is going on in the corona
(solar flares, coronal mass ejections, etc.) determines what is presently called ‘Space
Weather’ and the resulting terrestrial effects (such as, for example, magnetospheric
substorms). Many interesting details about the history of solar coronal studies, as well
as the present-day hot topics in this research field, can be found in an excellent book
by Golub & Pasachoff (2010).

2. Coronal magnetic field and free magnetic energy
Two basic ‘building blocks’ of the coronal magnetic field are schematically drawn

in figure 1. The first one, in diagram (a), is the so-called coronal hole. In this case
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only one end (the footpoint) of a magnetic field line is anchored to the photospheric
surface, and the field line extends into the heliosphere. In UV and X-ray images of
the Sun, coronal holes look like dim areas on the solar disk because of a low plasma
density (charged particles easily escape upward along the magnetic field lines). On
the other hand, a bipolar coronal loop, as shown in diagram (b), has both magnetic
footpoints connected to the photosphere. Thus, it is a natural plasma trap, and bright
regions in the corona are made of such loops. The photospheric surface in figure 1
may be considered a sharp boundary between tenuous low-β coronal plasma and
dense sub-photospheric fluid. The energetics of the latter is dominated by the kinetic
energy of the convective flow with a velocity of Vph∼ 1 km s−1 and a granule size of
lph ∼ 103 km. Given this, the photospheric granular turnover time is τph ∼ lph/Vph ∼
103 s. This granular flow continuously shuffles footpoints of the coronal magnetic field
as shown in figure 1. In the case of coronal holes, these generate magnetohydrodynamic
(mainly Alfvén) waves that propagate upward along magnetic field lines, ultimately
providing energy input to the solar wind. A very different response comes from the
coronal loops. In a low-β plasma such as the coronal one, where the dynamics is
governed by the magnetic field, perturbations in a system propagate with the Alfvén
velocity VA = B/

√
4πnmp. With the coronal parameters, one gets V (c)

A ∼ 103 km s−1,
which, for a coronal loop of a typical length Lc ∼ 109 cm, yields the dynamical time
scale of τ (c)A = (Lc/V

(c)
A )∼ 10 s. Thus, τph� τ

(c)
A , which means that such photospheric

perturbations are quasistatic. Therefore, the coronal loop remains close to a state of
magnetostatic equilibrium at any one time. In a low-β plasma, where thermal pressure
forces are small, this equilibrium requires vanishing magnetic force, FB= (j×B)/c≈0,
which is the case if electric current j= c(∇×B)/4π flows along magnetic field lines,
i.e.

(∇×B)= α(r)B. (2.1)

This equation defines the so-called ‘force-free magnetic field’. Note that since ∇ · j=
∇ · B = 0, the function α(r) in (2.1) should be constant along a magnetic field line
but, in a general case may vary from one field line to another. These electric currents
are the source of an excess (free) magnetic energy, which is responsible for coronal
heating and all other manifestations of coronal activity.

To put the issue of the free magnetic energy on a firm quantitative footing, consider
a planar magnetic field shown in figure 2(a). This is clearly a non-potential field,
which is evident from the presence of closed magnetic field lines (hence,

∮
B · dl 6=

0⇒ ∇ × B 6= 0⇒ j 6= 0). In fact, this is a superposition of the potential X-point
magnetic configuration (see figure 2b) generated by some remote electric currents and
the azimuthal field due to an axial electric current concentrated around the X-point
(which transforms it into the magnetic O-point).

Assume now that some process of magnetic relaxation takes place inside the area
encircled in figure 2(a). For example, it could be just simple Ohmic dissipation of
the central electric current. As far as the exterior of the relaxation circle is concerned,
suppose that it is filled with a perfectly conducting and very heavy fluid. Therefore,
during the internal magnetic relaxation, this fluid remains immobile because of its
strong inertia, so the external magnetic field does not change. What is the minimum of
the magnetic energy WM inside the circle that can be achieved under such relaxation?
Since

WM =
∫

V

B2

8π
dV, (2.2)
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(a) (b)

FIGURE 2. Internal magnetic relaxation. (a) Initial magnetic configuration; (b) relaxed
state with a potential magnetic field inside the encircled area. Fine dash-dotted lines
indicate ‘separatrices’, which are boundaries between domains of different magnetic field
lines connectivity.

the integrand in (2.2) is always non-negative, and at first glance one may conclude
that the sought after minimum corresponds simply to B ≡ 0 everywhere inside the
relaxation volume. However, such a state cannot be reached by the internal magnetic
relaxation while the external magnetic field remains unchanged. Indeed, since
∇ · B = 0, the normal component of B must be continuous at the boundary surface.
Therefore, only magnetic fields with a prescribed boundary condition Bn|S = B(ext)

n |S
are allowed to compete in minimizing the magnetic energy (2.2). (Note that since
∇ · B = 0, the condition

∫
S B(ext)

n dS = 0 is always satisfied.) The right solution can
be guessed with the help of the following qualitative physical consideration. Suppose
that inside the relaxation domain there is a finite electric resistivity η, which results
in the Ohmic dissipation power per unit volume being equal to ηj2 > 0. Since the
dissipated energy is tapped from the magnetic energy, the latter will decrease with
time until j= 0 everywhere in the domain, i.e. when the magnetic field there becomes
potential. By representing this potential field as Bp = ∇φ, and adding the necessary
condition ∇ · B = 0, the magnetic potential φ should be a solution of the Laplace
equation ∇2φ = 0 with the boundary condition ∂φ/∂n|S = B(ext)

n . This is the so-called
Neumann problem, a classical problem in mathematical physics, and it always has a
unique solution (see, e.g. Kannenberg 1989 and references therein). Given this, any
magnetic field admissible in the domain under consideration can be represented as
B=Bp + b with the boundary condition bn|S = 0. Inserting this expression for B into
(2.2) yields

WM = 1
8π

∫
V
(B2

p + b2 + 2Bp · b) dV. (2.3)

Since ∇ · b= 0, the last term in the above expression for WM can be shown to vanish,
as ∫

V
(Bp · b) dV =

∫
V
(∇φ · b) dV =

∫
V
∇(φb) dV =

∫
S
φbn dS= 0. (2.4)

Thus, the potential magnetic field corresponds to the state of minimum magnetic
energy. Any deviation from this potential field, b, which is associated with a non-zero
electric current, results in excess magnetic energy 1WM given by

1WM = 1
8π

∫
V

b2 dV. (2.5)
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Returning to the example of figure 2, the respective relaxed state with a potential
magnetic field is depicted in figure 2(b). Note that such internal magnetic relaxation
is not just a simple elimination of the central electric current. A surface current
is induced instead at the boundary surface, which is evident from the discontinuity
there of the tangential magnetic field component. Furthermore, there is an apparent
change between the initial and the final magnetic configurations. Under the relaxation
process, magnetic field lines are allowed to break up and reconnect, resulting in
the simplification of the magnetic topology. Such a process, known as ‘magnetic
reconnection’, plays an essential role in laboratory and space plasmas. In the context
of the solar corona it is briefly discussed in § 4.

3. Energetics of the coronal magnetic arcade

As explained above, force-free magnetic fields, which are defined by (2.1), are at
the heart of the solar coronal magnetohydrodynamics. In a real three-dimensional
(3-D) solar corona their structure could be quite complicated (Amari et al. 1997).
Therefore, here we explore a simplified model, where the magnetic field possesses
all three spatial components but is invariant with respect to one coordinate (say, y).
Any such magnetic field can be represented as

B(x, z)= [∇Ψ (x, z)× ey] + By(x, z)ey, (3.1)

where ey is a unit vector along the y-axis. This form ensures that ∇ · B = 0. The
function Ψ (x, z) here is called ‘the poloidal flux function’, while By is a toroidal field
component. This terminology originates from the fusion-oriented research with toroidal
laboratory devices. Equation Ψ (x, z)= const. determines projections of magnetic field
lines on the (x, z)-plane. Such a projection is defined by the equation dx/Bx = dz/Bz,
and since Bx = −∂Ψ/∂z, Bz = ∂Ψ/∂x, (∂Ψ/∂x) dx + (∂Ψ/∂z) dz = dΨ = 0 along this
line. The geometrical meaning of Ψ becomes evident from calculating the amount of
poloidal magnetic flux, 1Ψp, contained in a 2-D flux tube bounded by two poloidal
field lines defined respectively by Ψ (x, z)=Ψ1 and Ψ (x, z)=Ψ2 as shown in figure 3.

1Ψp =
∫ 2

1
dlBp sin θ = ey ·

∫ 2

1
(dl×Bp)= ey ·

∫ 2

1
dl× (∇Ψ × ey)

= −
∫ 2

1
dl · ∇Ψ =Ψ1 −Ψ2. (3.2)

Consider now what condition is required to make the field in (3.1) force free. Thus,
according to (3.1),

(∇×B)= [∇By(x, z)× ey] − ∇2Ψ (x, z)ey. (3.3)

Since for a force-free field vectors (3.1) and (3.3) are parallel, ∇Ψ should be parallel
to ∇By, i.e. By(x, z) ≡ By(Ψ ). This implies that function α(r) introduced in (2.1)
is equal to α(r) = α(Ψ ) = dBy(Ψ )/dΨ . Furthermore, since the ratio of the other
components of vectors (3.1) and (3.3) should be equal to the ratio of their poloidal
components, −∇2Ψ = αBy, i.e. ∇2Ψ + By(Ψ )(dBy/dΨ ) = 0. This equation is known
in magnetohydrodynamics as the ‘Grad–Shafranov equation’ for a force-free magnetic
field. In general, this is a nonlinear equation that reduces to a much simpler linear
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FIGURE 3. On the geometrical meaning of the poloidal flux function.

(a) (b)

FIGURE 4. Coronal magnetic arcade. (a) Potential magnetic field (α= 0); (b) shearing of
magnetic field lines (α 6= 0).

form when By(Ψ ) = αΨ with α = const. (the so-called linear force-free magnetic
field). In this case the flux function Ψ satisfies the linear equation

∇2Ψ + α2Ψ = 0. (3.4)

Consider now a linear force-free field that does not vary along y-axis and
corresponds to the flux function

Ψ (x, z)= 2B0L
π

cos
(πx

2L

)
exp(−κz), κ = π

2L

√
1− 4α2L2

π2
> 0. (3.5a,b)

(It is easy to verify that this Ψ does satisfy (3.4).) In the 2-D domain {−L 6 x 6
L, z> 0} such a field can be used as a model of the bipolar coronal magnetic arcade
located above the photospheric surface z = 0 (see figure 4). When α = 0, the field
is a potential one with the magnetic field lines lying in the (x, z)-plane (By ≡ 0)
(figure 4a). In the non-potential case, when 0 < α < π/2L, the field component
By(x, z)= αΨ (x, z) is present, which makes the magnetic field lines stretch along the
y-axis as shown in figure 4(b). Another effect of the non-potentiality of the arcade
is its vertical bulging. An increase in α makes the parameter κ in (3.5) smaller, so
the arcade extends further upward. However, note that whatever a magnitude of α,
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the magnetic field defined by (3.5) has the same unchanged normal component at the
boundary of the arcade domain. Thus, Bn|z=0 = Bz|z=0 = ∂Ψ/∂x|z=0 =−B0 sin(πx/2L),
while Bn= 0 at x=±L and at z→+∞. Therefore, as discussed in § 2, the evolution
of the magnetic energy in the arcade, WM, can be considered independently of its
exterior. This energy, calculated per unit length along the y-axis, is given by the
integral WM =

∫ +L
−L dx

∫ +∞
0 dzB2/8π. Then, according to (3.1) and (3.5), the magnetic

field components are equal to

Bx =−∂Ψ
∂z
= B0

√
1− 4α2L2

π2
cos
(πx

2L

)
e−κz,

By = αΨ = B0
2αL
π

cos
(πx

2L

)
e−κz,

Bz = ∂Ψ
∂x
=−B0 sin

(πx
2L

)
e−κz,


(3.6)

and a straightforward integration yields

WM = B2
0L2

4π2

(
1− 4α2L2

π2

)−1/2

. (3.7)

As expected, this magnetic energy is minimal for the potential magnetic field with
α = 0, so the excess magnetic energy of the arcade is equal to

1WM =WM(α)−WM(α = 0)= B2
0L2

4π2

[(
1− 4α2L2

π2

)−1/2

− 1

]
. (3.8)

The excess magnetic energy is supplied to the corona by photospheric motions
(see § 1). Therefore, consider now in more detail the energy balance of this process
for the model under discussion. In this case, a signature of the field non-potentiality
is its non-zero toroidal component By (and, hence, extension of field lines along the
y-axis). Therefore, the first step is to derive the relation between the non-potentiality
parameter α and the magnetic footpoints displacement in this direction, ±y0(x0), as
shown in figure 4(b). To do so, we define each magnetic field line of the arcade
by the parameter x0, which is the x-coordinate of its footpoints on the photospheric
surface z = 0. In a non-potential field these footpoints are separated in y-direction
by a distance 1y, which can be calculated by using expressions (3.6) for the field
components as the following integral along a field line Ψ (x, z)= const.:

1y=
∫ +x0

−x0

dy=
∫ +x0

−x0

By

Bx
dx= x0

4αL
π

(
1− 4α2L2

π2

)−1/2

. (3.9)

Since

1y= 2y0(x0), it implies that y0(x0)= x0
2αL
π

(
1− 4α2L2

π2

)−1/2

. (3.10)

Assume now that such a displacement is provided by shearing flow V (ph)
y (x) at the

photospheric surface, which forces the magnetic arcade to evolve through a sequence
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8 G. Vekstein

of the force-free equilibria of the form (3.5), with the parameter α varying with time
as some function α(t). This requires that

V (ph)
y (x0)= dy0(x0)

dt
= x0

2L
π

d
dt

[
α

(
1− 4α2L2

π2

)−1/2
]
= x0

2L
π

(
1− 4α2L2

π2

)−3/2 dα
dt
.

(3.11)
On the other hand, temporal variation of α means that the free magnetic energy

(3.8) stored in the arcade is also changing with time. As seen from (3.8), this energy
becomes increased for larger α in the course of the photospheric shearing deformation
of the field. Since electric resistivity of the hot coronal plasma is very low (see § 4),
the time scale of the magnetic relaxation to a potential ground-energy state is very
long. Therefore, during the phase of the magnetic energy storage in the corona, Ohmic
dissipation of the magnetic energy is small, so coronal plasma can be considered a
perfectly conducting medium with no Ohmic energy losses. Furthermore, under the
quasistatic evolution of the arcade, plasma velocity remains highly sub-Alfvénic, so
kinetic energy of the plasma flow is small compared to the magnetic energy of the
system. Therefore, the energy conservation law requires that the rate of change of the
excess magnetic energy (3.8) should be equal to the energy flux supplied to the arcade
by the photospheric flow. Since the latter is determined by the Poynting flux P= c(E×
B)/4π, the necessary requirement reads

d(1WM)

dt
=
∫ +L

−L
Pz

∣∣∣∣
z=0

dx. (3.12)

In a moving perfectly conducting fluid, the electric field is equal to E=−(V ×B)/c
(see, e.g. Landau, Lifshitz & Pitaevskii 1984), and the surface integral in (3.12) can
be written as∫ +L

−L
Pz

∣∣∣∣
z=0

dx= 1
4π

∫ +L

−L
dx[VzB2−Bz(V ·B)]z=0=− 1

4π

∫ +L

−L
dxV (ph)

y (ByBz)z=0. (3.13)

By using expressions (3.6) and (3.11) for the magnetic field and the photospheric
velocity, a straightforward calculation of this integral yields∫ +L

L
dxPz(z= 0)= B2

0L4

π4
α

(
1− 4α2L2

π2

)−3/2 dα
dt
, (3.14)

which, according to (3.8), satisfies the energy conservation requirement (3.12). Thus,
it completes the demonstration of how mechanical energy of the granular photospheric
flow is transformed into the free magnetic energy stored in the solar corona.

4. Energy release: a brief summary

During a fairly strong solar flare, energy of the order of (1W)f ∼ 1032 erg is
released in a matter of tens of minutes (see, e.g. Schrijver 2009), i.e. (1t)f ∼ 103 s.
As this energy is tapped from the free magnetic energy stored in the corona, one
can estimate what coronal volume (1V)f should be involved in such an event. Thus,
assuming that a respective coronal structure is substantially non-potential, i.e. its
non-potential field component b (see § 2) is of the order of Bc∼ 102 G, one gets from
(2.5) that b2/8π(1V)f ∼ B2

c/8π(1V)f ∼ (1W)f , which yields (1V)f ∼ 3 × 1028 cm3,
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and, hence, the scale length Lf ∼ (1V)1/3f ∼ 3× 109 cm. It looks quite reasonable since
such Lf is comparable to a typical loop length Lc in a coronal active region. There
is, however, a striking disparity between the observed flare time (1t)f and the time
τη of the global resistive magnetic energy dissipation in the corona. If one assumes
that the non-potential field component b varies on a length scale of the order of Lc,
the electric current in the corona can be estimated as j(Lc)

= c(∇ × b)/4π∼ cb/4πLc.
The volumetric power of Ohmic dissipation is equal to Q(Lc) = ηj2

(Lc)
∼ ηc2b2/16π2L2

c
and, hence, it yields the respective dissipation time of

τη ∼ b2/8π

Q
∼ L2

c

Dη

, where Dη ≡ ηc2

4π
(4.1)

is the so called resistive magnetic diffusivity of a medium. In a hot fully ionized
plasma this magnetic diffusivity scales as Dη∝T−3/2, and at the coronal temperature of
Tc∼ 106 K it becomes equal to Dη≈ 104 cm2 s−1. Thus, for Lc∼ 109 cm it yields the
global dissipation time τη≈1014 s (i.e. ≈3 million years!), which is clearly completely
irrelevant.

It should be noted, however, that such a long time is required for a complete
magnetic relaxation to the ground-energy state with a potential magnetic field. Instead,
a fraction (typically, a substantial one) of the excess magnetic energy (2.5) can be
released much faster via the process of magnetic reconnection (Yamada, Kulsrud &
Ji 2010). In this case, the electric current is not distributed smoothly throughout the
whole relaxation domain (as it was assumed in the estimation of jc given above) but
is strongly concentrated inside some small regions with a spatial scale l � Lc. In
these regions, called ‘current sheets’, the electric current density jl is much higher
than jLc , jl ∼ jLc(Lc/l)� jLc . Therefore, the role of even a weak resistivity becomes
significantly enhanced inside such current sheets, which results in a much faster
breaking up of magnetic field lines. This local effect allows global restructuring
of the magnetic field that brings about a partially relaxed state. The latter, being
an equilibrium configuration in a low-β plasma, should be a force-free magnetic
field described by (2.1). Quite remarkably, it turns out that these partially relaxed
states correspond to constant-α force-free fields for which the function α(r) = const.
The reason is associated with a characteristic of the magnetic configuration known
as global magnetic helicity H = ∫V A ·B dV , where A is a vector potential of the
magnetic field. This quantity, which is a measure of the twistedness and knottedness
of the magnetic field (see, e.g. Pfister & Gekelman 1991 and references therein), is
approximately conserved under magnetic reconnection in small current sheets (Taylor
1974, 1986). Therefore, constant-α fields represent a minimum of the total magnetic
energy under the constraint of a constant magnetic helicity (Woltjer 1958). Note that
complete magnetic relaxation to a potential magnetic configuration, helicity of which
is equal to zero, implies destruction of the magnetic helicity.

In the context of magnetic relaxation in the solar corona, a possible role of
magnetic helicity and constant-α force-free fields has been first discussed in Norman
& Heyvaerts (1983). Since small-scale current sheets are likely to form quite readily
in the solar corona (Parker 1972), magnetic reconnection seems to represent a viable
mechanism that underlies solar coronal activity. There is also direct observational
evidence of reconfiguration of the magnetic field in the corona, presumably due to
magnetic reconnection, during solar flares (Tsuneta 1996).

Consider now the time scale τR of the partial magnetic relaxation via the current
sheets reconnection. Here it is useful to introduce a non-dimensional parameter called
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10 G. Vekstein

the Lundquist number, which is defined as S≡ τη/τA = LV/Dη. This is typically very
large for high-temperature plasma applications in laboratory and space. For example,
in fusion-oriented devices, S ∼ 106, while in the solar corona Sc ∼ 1012–1014. Thus,
under S � 1, the classical Sweet–Parker model (Parker 1957; Sweet 1958) of the
current sheet reconnection yields τR∼ τAS1/2. Although this time is much shorter than
the global resistive time τη= τAS that is required for the complete magnetic relaxation,
it is still far too long to account for what is actually observed. Moreover, note that
the time scale of solar flares, which is (1t)f ∼ 103 s, is only approximately hundred
times longer than the coronal Alfvén transit time τA ∼ 10 s. Therefore, bearing in
mind the extremely large value of the Lundquist number Sc, one has to conclude that
any realistic theoretical model of solar flares should yield the relaxation time which
is virtually independent on a magnitude of the Lundquist number. This issue, called
the problem of fast magnetic reconnection, is presently a hot research topic (see, e.g.
Loureiro & Uzdensky (2016) for its most recent developments).
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