A Hot Jupiter in a Nearly Polar Orbit

Brett C. Addison^{1,2}, Chris G. Tinney^{1,2}, Duncan J. Wright^{1,2}, Daniel Bayliss³, George Zhou³, Joel D. Hartman^{4,5}, Gáspár Á. Bakos^{4,5} and Brian Schmidt³

¹Exoplanetary Science Group, School of Physics, University of New South Wales, 2052, Australia
²Australian Centre of Astrobiology, University of New South Wales, 2052, Australia

³Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia ⁴Department of Astrophysical Sciences, Princeton University, NJ 08544, USA ⁵Harvard-Smithsonian Center for Astrophysics,

Cambridge, MA 02138, USA

Abstract. We measured the spin-orbit misalignment for WASP-79b, a transiting hot Jupiter from the WASP survey. Using the Rossiter-McLaughlin effect during the transit event, we determined the sky-projected obliquity to be $\lambda = -106^{+10}_{-8}$. This result indicates that the planet is in a nearly polar orbit.

Keywords. planets and satellites: formation — stars: individual (WASP-79) — techniques: radial velocities

1. Introduction

Key additional insights into the formation, migration, and evolution of the more than 900 exoplanets known (as at June 2013), can be obtained from the measurement of the sky-projected spin-orbit angle of exoplanetary systems through spectroscopic measurements of the Rossiter-McLaughlin effect (Winn *et al.* 2005).

We have carried out spectroscopic follow-up measurements of the Rossiter-McLaughlin effect for WASP-79b, a recently discovered hot Jupiter from the WASP Southern Hemisphere transit survey (Smalley *et al.* 2012). WASP-79b has a mass M_P of $0.90 \pm 0.09 M_J$, radius R_P of $1.70 \pm 0.11 R_J$, and orbits an F5 star with $T_{eff} = 6600 \pm 100$ K (Smalley *et al.* 2012). We detect the radial velocity anomaly due to the Rossiter-McLaughlin effect and determine that it is in a nearly polar orbit (Addison *et al.* 2013).

2. Rossiter-McLaughlin Effect

The Rossiter-McLaughlin effect is an anomaly in the radial velocity curve of a host star that is seen during an exoplanetary transit caused as the planet occults the stellar disk (Rossiter 1924; McLaughlin 1924; Ohta *et al.* 2005). Measurement of this anomaly provides us with an estimate of the projected rotational velocity of the stellar disk $(v \sin i_{\star})$ and the projected spin-orbit angle (λ) between the planetary orbital axis and the stellar spin axis (Winn *et al.* 2005).

Figure 1. Spectroscopic radial velocities of WASP-79 plotted as a function of time along with the best fitting main-sequence model and corresponding residuals. The filled circles are our data, while the two open cross-circles are velocities by Smalley *et al.* (2012).

3. Observations, Analysis, & Results

WASP-79 was observed using the CYCLOPS2 (see Horton *et al.* 2012) optical-fiber bundle feeding the UCLES echelle spectrograph on the 3.9 m Anglo-Australian Telescope. The data was reduced and wavelength calibrated using custom MATLAB routines (Wright and Tinney, in prep. & see Addison *et al.* 2013). Radial velocities were computed using the IRAF task, *fxcor*, by cross-correlation with a spectrum of a bright template star (HD86264) of similar spectral type.

We have developed a modeling system (the Exoplanetary Orbital Simulation and Analysis Model, or ExOSAM) to determine λ and $v \sin i_{\star}$ from the planetary orbit, a calculated in-transit lightcurve, and a velocity anomaly Hirano *et al.* (2010).

Smalley *et al.* (2012) derived two preferred solutions for WASP-79 – one with it on the main sequence $(R_{\star} = 1.64 \pm 0.08 R_{\odot})$ and one with it evolved just off the main sequence $(R_{\star} = 1.91 \pm 0.09 R_{\odot})$. Using parameters from both solutions, we found $\lambda = -106^{+10}_{-8} \circ$ and $v \sin i_{\star} = 17.5^{+1.3}_{-1.4} \,\mathrm{kms^{-1}}$ for the main sequence case and $\lambda = -85^{+13}_{-33} \circ$ and $v \sin i_{\star} = 16.0^{+1.3}_{-1.3} \,\mathrm{kms^{-1}}$ for the non-main sequence case (Addison *et al.* 2013). Figure 1 shows the observed positive Rossiter-McLaughlin velocity anomaly, indicating that WASP-79b is in a nearly polar orbit. Only a handful of planetary systems display such extreme orbits. Additional samples of spin-orbit measurements will help to provide clearer insights into the mechanisms driving planetary migration and spin-orbit misalignments.

References

Addison, B. C., Tinney, C. G., Wright, D. J., et al. 2013, ApJL, 774, 9
Hirano, T., Suto, Y., Taruya, A., et al. 2010, ApJ, 709, 458
Horton, A., Tinney, C. G., Case, S., et al. 2012, In SPIE Conf. Ser., 8446
McLaughlin, D. B. 1924, ApJ, 60, 22
Ohta, Y., Taruya, A., & Suto, Y. 2005, ApJ, 622, 1118
Rossiter, R. A. 1924, ApJ, 60, 15
Smalley, B., Anderson, D. R., Collier-Cameron, A., et al. 2012, A&A, 547, A61
Winn, J. N., Noyes, R. W., Holman, M. J., et al. 2005, ApJ, 631, 1215