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U-SETS IN COMPACT, O-DIMENSIONAL, METRIC GROUPS 

BY 

D. J. GRUBB 

ABSTRACT. This paper studies a pointwise definition of sets of unique
ness on compact, O-dimensional, metric groups. It is shown that this de
finition is equivalent for closed sets to one based on supports of pseudo 
functions. An analog of Rajchman's theorem is given leading to examples 
of sets of uniqueness. 

In [6], Vilenkin initiated the study of uniqueness in compact, O-dimensional, 
abelian, metric groups. One of his results is that the empty set is a set of unique
ness. Since that time, investigations into the structure of sets of uniqueness on the 
group of integers of a p-series field have been carried out, for example, by Wade [7] 
and Yoneda [8]. The purpose of this paper is to continue the preliminary investigation 
in Grubb [4] in the specific case of compact, O-dimensional, metric groups and to give 
methods of constructing sets of uniqueness in this case. 

Let G be a compact, O-dimensional, metric group, not necessarily abelian, and let 
{Hn}™ be a strictly decreasing sequence of open normal subgroups forming a neigh
borhood base at the identity. Let X, the dual object of G, denote the set of equivalence 
classes of irreducible representations of G. If a G X, we pick a irreducible representa
tion Ua in the equivalence class a. We also let Ha and da represent, respectively, the 
Hilbert space and the dimension of the Hilbert space on which the representation Ua 

acts. If A G B(Ha), a bounded linear operator on H°, we set 

||A||i = S|A*| and ||A||oo = max |A*| 

where the A* are the eigenvalues of A. We also set 

cd)=n *(#")> 

Fo(L) = {(Aa) G C(E) : H^Hoo vanishes at infinity on Z}, 

F!(2) = l(Aa) e C(I) : X ^ K H i < °°} 

We also let A(G) denote the algebra of absolutely convergent Fourier series on G. 
Thus, iff e A(G), we may write by 34.5 of [5] 

(1) f{x) = YJàoHA(TU°(x)) 
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where (Aa) G F\(L). Conversely, for (Aa) G F\ÇL), the above expression defines an 
element of A(G). Since FQ(L) is a subspace of the dual space of F\(L) (see 28.31 of 
[5]), we may regard elements of FQ(L) as distributions acting on the test functions 
A{G). In this guise, elements of FQ(L) are called pseudofunctions on G and rename 
F0(I) to PF(G). Thus for/ G A(G) as in (1) and S G PF(G) with formal expansion 

S ~^datr(BaU
a) 

where (Z?a) G Fo(£), we have by 28.31 of [5], the action of S o n / : 

(sj) = Y,daHB;Aa). 
CT6I 

For a pseudofunction S, and element x in G, and a non-negative integer /t, we 
define the nth partial sum of the Fourier series of S at x to be 

Sn(S,x) = Sn(S)(x) = (S.i^/MHn) 

where A is Haar measure on G. Note that for our groups £xHn G A(G). In fact, if H is 
an open subgroup and x eG, \\£XH\\A — 1-

If F is a subset of G, we say that E is a set of uniqueness (£/-set) if the only 
pseudofunction S satisfying 

lim Sn(S,x) = 0 for x not in £ 
n—>oo 

is 5 = 0. It is shown in [3] that for abelian groups and a-compact sets, this is 
equivalent to the definition of U -sets using Vilenkin's summation method. 

If S is a pseudofunction and E is a closed set, we say that S is supported on E if 
(5, / ) = 0 for every/ G A(G) with support disjoint from E. The next result shows that 
a closed set is a [/-set if and only if there are no nonzero pseudofunctions supported 
on it. 

THEOREM 1. Let S G PF{G) and V Ç G be open. The following are equivalent: 
i) lim^ooS^S,.*) = 0 for all x G V, 

ii) r/z£ //ra/7 in i) is uniform on compacta in V, 
iii) S is supported on G\V. 

The following proof works if S is a pseudomeasure on G, i.e. a bounded linear 
functional on A(G). 

PROOF. We recall from Theorem 4.3 of [4] that if lim^oo S„(S,x) = 0 for all x in 
yHm, then (S,£yHm) = 0. 

i) => iii) Let x//„ Ç V be a basic open set. If yHm is a basic open set not necessarily 
contained in V, the above says that (5, (,XHn^yHm) — 0- But functions of the form £v//w 

generate the space of trigonometric polynomials which is dense in .4(G). Thus 

<S,£rf/„/> = 0 for all f£A(G). 
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Iff has support contained in V, cover the support with finitely many disjoint sets of the 
form xHn C V. Writing/ = J2fÙHn with the sum over these set shows ( 5 , / ) = 0. 

iii) => ii) Covering compact sets with sets of the form xHn Ç V shows that Sm(S,y) 
is eventually 0 on the compactum, since for such xHn, (S, £*//„) — 0. 

ii) => i) is trivial. • 

In particular, for closed sets, our definition of (/-set is equivalent to both Vilenkin's 
original and the more general one of not supporting non-zero pseudofunctions. See 
for example, Graham and McGehee [2] in the abelian case and Bozoejko [1] in the 
non-abelian case for the definition of U-sets in locally compact groups in terms of 
pseudofunctions. Note that the space C*in [1] is our PF(G). 

A corollary to this theorem is that measurable (/-sets are of (Haar) measure 0. 
In fact, if K is a closed set of positive measure, we may regard £# as a non-zero 
pseudofunction (see below) whose support is K. Thus K is not a U -set. Since any 
measurable set of positive measure contains such a closed set K, and since subsets 
of (/-sets are (/-sets, the stated corollary follows. It follows from Theorem 4.6 of 
[4] that a countable union of closed (7-sets is again a U-set. Thus countable sets are 
(/-sets. 

Our definition of a (/-set also gives a uniqueness result for integrable functions on 
G. 

THEOREM 2. Let S be a pseudofunction, F : G —• C a (Haar) integrable function 
and E a closed U -set in G. If 

lim Sn(SjX) =f(x) for x not in E1 
n—xx> 

then S —f in the sense that 

(S,g)= ffgdX for gEA(G). 
JG 

PROOF. We first note that the case when E is empty is a special case of Theorem 
4.2 of [4]. For the general case, we define ^ G PF(G) for U a basic open set by 

(ZuS,g) = (s,zug). 

Since £u is a trigonometric polynomial, it is easy to see that £,yS is, in fact, a 
pseudofunction. Also, 

SB(ÇuS,x) = (iuS,ilH,)/\(Hn) 

= (S,(LunXH„)/MH„) 

= iu(x)(S^xHn)/\(Hn) 

= £u(x)S„(S,x), 
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for sufficiently large n depending on U. 
For x not in E\ pick m such that xHm is disjoint from E. Then 

lim Sn(^HmS,y) = £xHm(y) Urn Sn(S,y) = ïxHm(y)f(y) 
n—+00 «—•oo 

for all y G G. By the case when E is empty, iXHmS = £*//„/. If we now consider the 
pseudofunction S — / , we find that for xHm disjoint from E, 

Sm(S-f,x) = {S-f^xHm)/\(Hm) 

= (ixHm(S-f),l)/\(Hm) 

= (ÇxHmS-ÇXHmf,l)/MHm) 

= 0. 

Thus 
lim Sn(S — fjX) — 0 for x not in E. 

«—•00 

Since £ is a //-set, S = / . D 

We now turn to methods for constructing examples of // -sets. The sets produced 
have a family resemblence to the classical //-sets (see 6.3 of [9]) as well as the 
/?Z/(/n)-sets of Wade [7]. We start out with a "Rajchman" Theorem. 

THEOREM 3. Let E be a closed subset of G and {fn}™ a sequence in A(G) such that 
i) E is disjoint from supp/„ for all n ^ 0, 

ii) ||//i|U *s bounded in n, 
iii) If we write fn(x) = ^2ae<Ldatr(A(TinU

cr(x)), then A\^n —» 1, and for a ^ 1, 
Aa,n —> 0 as « —•» 00. /tor/î //m/to are m B(Ha). 

Then E is a U -set. 

PROOF. Assume S G PF(G) is supported on £ and has formal expansion 

with (#CT) G FoC^)- We wish to show that Bo = 0 for all a G S. For any given a, set 
f0(x) = datr(BaU°(x)). Then 

(SJa) = datr(B;Ba) 

which is 0 if and only if Ba = 0. Since (5,/CT) = (j^S, 1) and since faS is also a 
pseudofunction supported on £, it is enough to show B\ = (5,1) = 0. 

By i) we get that for n ^ 0, 

CTGI 
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If e > 0, find a finite subset F of ^ such that ||#a||oo < e for a not in F. Then 

\tr(BÎAhn)\ ^ £ r f > ( f i X « ) l 

^ J ] d ^ J o o - K , n | | l + ^ d a K | | o o - | | A ^ | | i 

l^a€F a£F 

^||5|k £4rKJi+e|l/»IU-

As /i —• oo, rr(^*?wAi,w) converges to £* by iii), while ^2{^aeF da\\Aain\\q —• 0. Thus 

|£*| ^ eM where M = sup \\fn\\A. 

Since e > 0 is arbitrary, the theorem is proved. D 

We now apply this result to two cases; the first of which is essentially that of groups 
of bounded order, the second that of unbounded order. If H is a closed subgroup of 
G let HL = {a G X: A//(cr) ^ 0} where \H is the Haar measure on H. This is a 
possibly larger set than the annihilator of H as defined in 28.72 of [5]. If {En} C 2 
is a sequence of subsets, write En —• oo as AZ —-> oo if for every finite set F Ç X, £„ 
is eventually disjoint from F. 

THEOREM 4. L^r E be a closed subset of G. Let {Kn} be a sequence of open 
subgroups of G such that 

a) EKn ^ G for all n, 
b) A^\{1} —-• oo as n —* oo, 
c) the index of Kn in G is bounded. 

Then E is a U -set. 

Notice that the Kn need not be normal. 

PROOF. For each n, pick xn such that xnKn HE = 0, and define fn = ^XnKn/\{Kn). 
Since Kn is open, fn is a trigonometric polynomial and so is in A(G). Also, writing 
fn(x) = *Ea&d0tr(A<wUa(x)), we have {a <E Z X „ ^ 0} C K^. Thus A ^ -> 0 for 
a ^ 1 by b). Since A\,n — J fnd\ — 1 for all n, parts i) and iii) of the previous theorem 
are satisfied. Finally,' ||/„|U = | |6„dU/A(#„) = l/X(Kn) = [G:Kn] is bounded. 
Theorem 3 gives the result. • 

An example may be obtained by taking G — YIT ^ t 0 ^ e a countable product 
of some finite group F and E — YiT^\{e}^' ^ Kn\G —> F is the nth projection, 
Kn — kemn satisfies the hypotheses of the theorem. If, however, we take a product 
of different finite groups, care must be made to insure condition c) above holds, else 
the set E may have positive measure and so could not be a U-set. In an attempt to 
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weaken c) to include such products, some leeway must be made in condition a) to 
avoid this possibility. This leads to the next result. 

THEOREM 5. Let E be a closed subset of G. Let {Kn} be a sequence of open 
subgroups of G such that 

a) card {xKn:xKn HE is nonvoid } is bounded in n, 
b) A^\{1} —-> oo as n —-> oo, 
c) X(Kn) —» 0 as n —• oo, 

Then E is a U -set. 

PROOF. Let gn = ££*#,,, the sum being over those cosets xKn which intersect E, 
and set/„ = 1 - gn. Then \\gn\\A ^ X||G/dU = Z 1 i s bounded by a), thus \\fn\\A is 
bounded. By b), we get that Aa,n —> 0 if a ^ 1, where the notation is as in Theorem 
3. Finally, by c) 

Al,n = ffnd\=\- JgndX = 1 - \(Kn) • Zl — 1 

as n —* oo. • 

An example of this theorem is obtained in the group G = 11̂ =2 ̂ 00, which is a 
product of a sequence of finite cyclic groups. If Kn — keri\n, where i\n\ G —> Z(n) is 
nth the projection, the above result shows that E = 11^21A 1} Ç= 11^2 ^(n) — G is 
a (/-set. 

Finally, we give a result that connects the idea of a [/-set to non-open subgroups 
of G. 

THEOREM 6. Le£ H be a closed subgroup of G of infinite index. Then H is a U -set. 

PROOF. Assume S G PF(G) is supported on H. As in the proof of Theorem 3, it 
is enough to show that (5,1) = 0. 

For each a Ç l , there is a basis {y\,... ,y^a} of Ha and a number 0 ^ ma ^ da 

such that wjyOO = £// if y ^ raa and jt G / / , where «?• is the coordinate function of £/a 

in the basis { j i , . . . , ^ f f } . This is proved by considering the Haar measure A# on / / , 
see section 28.72 of [5]. In fact, the basis is one for which A//(cr) is diagonal. 

If ma — 0 except for finitely many a G I , we would have A// = gA^ where g is 
a trigonometric polynomial. But this would show H to be an open subgroup and so 
not of infinite index. 

Thus, the set 2 = { f f G l : % ^ 1} is infinite. If a G Q, and we write 

S ~^datr{BaU°), 

we get for j ^ ma, 

(*) (fl a)y /= < S , I I 5 ) = « ( , - ( S , 1 ) 
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since w» = 6y on a neighborhood of H. (In fact, if a G Hr, , M? = £// on ////„). 

But now (*) shows that (5,1) is an eigenvalue of Ba, so 

KlU^Ks, i)|^o. 

Since (Ba) G FQ(L) and 2 is infinite, (5,1) = 0 as desired. D 

Finally, it should be noted that Theorems 3-5 do not explicitly use the assumption 
that G is totally disconnected. 

Many thanks to the referee for several helpful suggestions. 
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