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The capacity of the general-purpose computer to store information has approximately

doubled every 40 months since circa 1980 [7]. With near-constant increases in

computational capacity and power it is no surprise that there is an overabundance

of high-dimensional data. When high-dimensional data sets contain hundreds, even

thousands, of explanatory variables, the visualisation and identification of complex

regression structures that may be contained within the mountains of data can be

difficult. In fact, visualisation and inference already becomes a difficult task when the

data exceeds only the third dimension. Some regression information may be obtained

by projecting high-dimensional data onto lower-dimensional spaces but, in general,

this does not provide useful inference [5]. And these are not the only issues raised by

the existence of high-dimensional data. The ‘curse of dimensionality’ [1, 4] becomes

a problem when the number of observations in the sample is not sufficiently high with

respect to the dimensions of the data. As a result of this curse, traditional regression

methodologies may fail to identify underlying regression structures.

The above issues have given rise to the popularity of dimension reduction method-

ologies, the purpose of which is to capture the important information contained within

any data set in just a few summary measures with minimal loss of information.

Therefore, without requiring a prior parametric model, the regression information

is contained within the reduced data, which in turn can be explored and viewed

via what are called sufficient summary plots [2]. This has resulted in an increased

acceptance of dimension reduction methods and thus brings about the need for further

understanding with regards to the sensitivity of the associated estimators. For some

dimension reduction methods, a consequence is the lack of diagnostics that can be

used to detect influential observations.
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This thesis consists of three publications, the purpose of which is to use the

influence function (IF) [6] to study the robustness properties of dimension reduction

methods and to use those IFs to create efficient influence diagnostics.

In the first publication [10], a sensitivity comparison is made for two competing

versions of the dimension reduction method applied to the principal Hessian directions

(pHd) [9]. These comparisons consider the effects of small perturbations on the

estimation of the dimension reduction subspace via the IF. This highlights that the

two versions of pHd can behave completely differently in the presence of certain

observations. The results also provide evidence that outliers in the traditional sense

may or may not be highly influential in practice. Since influential observations may

be hidden within typical data, the IF is also considered in the empirical setting for the

efficient detection of influential observations.

The second publication [11] provides a sensitivity analysis of pHd, which is

then used to highlight how such an analysis can provide valuable insight into the

behaviour of the methods. Such insight includes reasons as to why pHd can sometimes

return informative results when it is not expected to do so, and why many prefer a

residuals-based pHd method over its response-based counterpart. A new influence

measure, based on average squared canonical correlations, is then introduced that is

applicable to many other dimension reduction methods. This new IF has the advantage

that it considers sensitivity on the dimension-reduced predictors and not just the

directions that define them. A sample version of the measure is considered, with

respect to pHd, and is applied to two example data sets.

And, finally, the third publication [12] extends the new IF from the second

publication to the method of linear discriminant analysis (LDA) [3]. Whilst influence

functions for LDA have been found for a single discriminant when dealing with two

groups, until now these have not been derived in the setting of a general number

of groups. The relationship between sliced inverse regression (SIR) [8] and LDA is

explored and exploited to develop IFs for LDA for robustness analysis. Efficient sample

diagnostics are introduced that are able to detect influential observations in practice,

and these are applied to a real data set in order to illustrate their usefulness.
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