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Abstract

Regular maps of type {p, q]r and the associated groups C ? r are considered for small values of p, q
and r. In particular, it is shown that the groups G4'66 and G5 5 6 are Abelian-by-finite, and there are
infinitely many regular maps of each of the types {4, 6)6, {5, 5}6, {5, 6}t and {6,6)6-
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1. Introduction

A map M is a 2-cell embedding of a connected graph (or multigraph) into some
closed surface S, dividing 5 into simply-connected regions called faces of the map.
We use V(M), E(M) and F(M) to denote the sets of vertices, edges and faces of M,
respectively. An automorphism of a map M is any automorphism of the underlying
graph (or multigraph) which preserves also the faces of the embedding — or, what
is essentially equivalent, a homeomorphism of the surface S preserving V(M) and
E(M) and necessarily also F(M). As usual, these automorphisms form a group under
composition, called the automorphism group of the map M, and denoted by AutM.

If AutM contains an automorphism A cyclically permuting the edges bounding
a face / (in single steps around / ) , and an automorphism B cyclically permuting
the edges incident to a vertex v of this face (in single steps around v), then M is
called a rotary map; see [6]. In this case, by connectedness AutM acts transitively
on the arcs (ordered edges) of M. Also by conjugation, it follows that every face
is bounded by the same number of edges, say p, and every vertex is incident with
the same number of edges, say q, and the map is then said to be of type {p, q}.
Counting the number of arcs of M in three different ways gives the well known
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identity q\V{M)\ = 2\E(M)\ = p\F(M)\, and the Euler characteristic of the surface
S may be calculated using the usual formula x = I V(M)\ — \E(M)\ + \F{M)\; see
[4, §8.1]. The automorphisms A and B have orders p and q respectively, and their
product AB 'flips' one of the edges incident to v in / (while interchanging / with the
other face to which this edge belongs), and so has order 2.

Following [6], we define a regular map to be a rotary map which admits also a
reflection, flipping an edge e but fixing the two faces to which e belongs. Note that
in [4] the term 'regular' is used for maps which are rotary (according to the current
definition), and 'reflexible' is used for maps we now call regular.

Suppose M is a regular map of type {p, q), with automorphisms A and B defined
(for a given face / and incident vertex v) as above. Also let e be the edge incident to
v in / that is flipped by AB, so that (t>, e, f) is a mutually incident vertex-edge-face
triple, or flag of M. If the automorphism Rx is chosen to flip this edge e while fixing
/ , then R2 = R\A and R3 = RtAB are also reflections:

/?! fixes e and / (but interchanges v with one of its neighbours on / ) , while
R2 fixes v and / (but interchanges e with one of the other edges incident to v),

and
R3 fixes v and e (but interchanges / with the other face containing e).

In particular, each of Ru R2 and R3 has order 2, while /?i/?2 (= A), R2R3 (= B) and
RtR3(= AB) have orders p, q and 2 respectively. Moreover, R\,R2 and R3 generate
the group AutM, which is transitive (indeed regular) on the set of all flags (v, e, f)
of M, every automorphism being uniquely determined by its effect on any flag. Also,
as every edge lies in four different flags, it follows easily that \AutM\ = 4|£(M)|.
The composite automorphism RtR2R3 acts like a glide reflection, moving the edge e
along a Petrie path: a 'zig-zag' circuit in which every two but no three consecutive
edges share a common incident vertex-face pair. In particular, if this path is of length
r then M is said to be of type {p, q}r, and we may now call p, q and r the parameters
of the regular map M.

In the latter case, the three reflections Ru R2 and R3 satisfy the relations R\ =
R\ = Rj = (R{R2)P = (R2R3)" = (RiR3)

2 = (RiRrfiY = 1. The map M is
orientable or non-orientable according as to whether the subgroup generated by Ri R2

and R2R3 has index 2 or 1 in AutM; in particular, when r is odd, this index has to be
1 and so M is non-orientable. In the orientable case, the genus g of the surface S (and
hence of the map M) is given by 2 - 2g = x = |AutM|(l/2<7 - 1/4 + 1/2/?).

Also these relations are defining relations for the abstract group Gp'q'r, as discussed
in [4]. Taking A = R{R2, B = R2R3 and C = (RiR2R3)~

] = R3R2Ri as alternative
generators, we have

G"'q'r = (A,B,C | A"=Bq=Cr=(AB)2={BC)2=(CA)2={ABC)2= 1),
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or equivalently, putting x — AB, y = A and t = BC,

G""-r = (x, y, t | x2 = y" = (xy)q = t2 = (xt)2 = {ytf = (xyt)r = 1 >.

Given the symmetry of these presentations, it is not difficult to show that Gp-q-r is
isomorphic to G t / m for any permutation (k, I, m) of (p, q, r), so this group may be
associated with regular maps of up to six types: {p, q}r, {p, r}q, {q, p}r, {q, r}p,
{r, p}q and {r, q}p. (See [4] or [6] for further details on this.)

Clearly the automorphism group of every regular map of type [p, q}r is a homo-
morphic image of Gp'qj. On the other hand, any non-degenerate homomorphism
(preserving the orders of the generators A, B and C) of Gp'q-r to a finite group G gives
rise to a regular map of type {p, q}r, as follows:

First take the universal tessellation [p, q] of the sphere, Euclidean plane or hyper-
bolic plane (depending on the value of \/ p + \/q + \/r), and identify pairs of vertices
at distance r along a Petrie path, as in [4, §8.6]). At this stage we have a map with
Gp'qj as its automorphism group. Now if K is the kernel of the homomorphism from
Gp-q-r to G, simply identify those pairs of vertices in the same orbit of the normal
subgroup K. The resulting map is of type {p, q}r, with G as its automorphism group.

(In particular, for some flag (u, e, / ) of this map, the images of B and AC generate
the stabilizer of v, while the images of AB and CA generate the stabilizer of e, and
the images of A and BC generate the stabilizer of / ; see earlier.)

In this paper, we consider regular maps with small parameters, and in particular
those with p, q and r all at most 6.

Many such maps were found by Coxeter in the course of his investigation [3] into
which of the groups Gp-q-r are finite; see also [4, Table 8]. Some of this information
will be summarized in Section 2. Unfortunately the investigation begun in [3] has
not been completed: for example it is still not known whether G3>719 is finite. On the
other hand, for some p, q, r, the group Gp'qj is known not only to be infinite, but
also to have all but finitely many alternating and symmetric groups as quotients, so
that every finite group is a subgroup of some factor group of Gp'q'r\ for example, this
is true of G6'66 (see [2]). The infinite cases of Gp'q'r (and associated regular maps)
with p, q and r all at most 6 are discussed in Section 3, and some open questions are
given in Section 4.

2. Finite cases

The following list describes all the cases where the group Gpqj is finite, for
2<P<q<r<6. Recall that each such group gives rise to up to six different
regular maps, of types {p, q}r, {p, r}q, {q, p}r, {q, r}p, {r, p}q and {r, q}p. Also note
that when the order of Gp*r is 1,2 or 4, the group is trivial, C2 or C2 x C2 respectively,
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and in these cases the associated maps are all trivial. In all other cases the numbers
of vertices, edges and faces of the associated maps may be calculated by the formulae
given in the Introduction.

p q r \GP-1'\ GP-q'r

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
5

2
2
2
2
2
3
3
3
3
4
4
4
5
5
6
3
3
3
3
4
4
4
5
5
6
4
4
4
5
5
5

2
3
4
5
6
3
4
5
6
4
5
6
5
6
6
3
4
5
6
4
5
6
5
6
6
4
5
6
5
6
5

8
4
8
4
8
6
4
2

12
16
4
8

10
4

24
1

24
1
6
4
2

48
60
2

108
64
4

144
160
240
660

C2 x C2 x C2

C2 x C2 x C2

C2xC2x C2

D3

D6

D4xC2

C2xC2x C2

D5

D6xC2

54

D3

54 x C2

A5

(C3 x C3).D6

(C2 x C2).(£>4 x C2)

(C3 x C3).(D4 x C2)
(C2 x C2 x C2 x C2).D5

55 x C 2

These and many of the other known finite cases (for larger p, q and r) as given
in [4] may be confirmed by coset enumeration using CAYLEY [1] or GAP [5].

3. Infinite cases

The only cases (for small p, q and r) missing from the list in Section 1 are G466,
G5,5,6 G5,6,6 m d G6,6,6
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THEOREM 1. G4 A 6 is an extension by S4 x C2 of a free Abelian group of rank 3.

PROOF. Let x, y and t be generators for G46'6 satisfying the relations x2 = y4 =
(xy)6 = t2 = (xt)2 = (yt)2 = (xyt)6 = 1. As (xyt)2 = xytxyt = xyxtyt =
xyxy~\ we note the relation (xyxy~1)3 = 1 is satisfied also.

Now put u = xy2xy2t, v = y~lxy2xyt, and w — xy~lxy2xyxt. It is not difficult
to show that these three elements and their inverses are conjugated among themselves
by x, v and t. First x~lux = y2xy2tx — ty~2xy~2x = a"1, and similarly y~luy = v,
t~lut = u, x~xvx = w, y~lvy — u~l, t~lvt — v~l, x~lwx = v, and t~lwt = w~l.
Finally y~l wy = w~l, which may be seen as follows:

y~lwy = y~1xy~ixy2xyxy~1t
= y~1xy~1xy~1(y~ixyxy~l)t
— y~xxy~xxy~xxy~xxyxy~xxt since (xyxy~x)3 = 1
= xyxy2xy~lxt since (xy)5 = 1
= txy~xxy2xyx

= u;"1.

In particular, u, v and w generate a normal subgroup K of the group G = (x, y, t).
But further, it follows that u~lvu — ty~2xy'2xvxy2xy2t = ty~2xy~2wy2xy2t

= ty~2xwxy2t = ty~2vy2t = tv~lt = v, so that u and v commute. Conjugating by x
and then by y, we find that u and w commute, as do v and w, therefore K is Abelian.

The factor group G/K has presentation {x,y,t \ x2 = y4 = (xy)6 = t2 = (xt)2 =
(yt)2 = (xyt)6 = xy2xy2t = 1), and by coset enumeration using CAYLEY [1] or
GAP [5] this is easily shown to have order 48, being a direct product 54 x C2.

Finally, we show the group G has a concrete representation of the form described
in the statement of the theorem, by exhibiting the following transitive permutation
representation on the integers:

= 8 * - 4 y(8k) = 8k + 1 t(8k) = 8k + 1
JC(8* + 1) = 8k-3 y(8k+l) = 8k+ 2 t(8k + l) = 8k
x(U + 2) = 8A: + 7 y(8k + 2) = 8k + 3 /(8/t + 2) = 8k + 3
x(8* + 3) = 8>fe + 6 y(8)t + 3) = 8/t t(8k + 3) = 8k+ 2
jc(8ifc + 4) = 8£ + 8 y(8k + 4) = 8k+ 5 r(8* + 4) = 8k+ 5
jc(8)t + 5) = 8/t + 9 y(8* + 5) = 8k + 6 f(8/t + 5) = 8^ + 4
x(8Jt + 6) = 8k+ 3 y(8k + 6) = 8k +1 t(8k + 6) = 8k+ 1
x(8k + l) = 8k+ 2 y(8k + 7) = 8k+ 4 t(8k + 7) = 8k+ 6.

These permutations (defined for H e Z ) satisfy the required relations, and generate
a transitive but imprimitive group on Z, with residue classes modulo 8 as blocks of
imprimitivity. It is not difficult to show that the permutations induced by u = xy2xy2t,
v = y~lxy2xyt, and w = xy~lxy2xyxt generate a free Abelian group of rank 3, and
the rest follows.
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COROLLARY 1. For every positive integer n, there exists a regular map of type
{4, 6}6 having Sn3 vertices, 24n3 edges and Yin3 faces, on an orientable surface of
genus 2n3 + 1.

PROOF. Take the permutations given at the end of the above proof, modulo 8«;
these generate a quotient of G4'66 of order 96n3, and the rest follows from material
presented in the Introduction.

NOTE. Also when n is even, the image of un/2vn/2wn/2 generates a central subgroup
of order 2, with corresponding factor group of order 48«3 giving rise to a regular map
of type {4, 6}6 having An3 vertices, 12n3 edges and 6«3 faces, on an orientable surface
of genus n3 + 1. Similarly (when n is even), the images of un/2vn/2 and un/2wn/2

generate a normal subgroup of order 4, with corresponding factor group of order 24«3

giving rise to a regular map of type {4, 6}6 having 2n3 vertices, 6«3 edges and 3n3

faces, on an orientable surface of genus «3/2 + 1.

THEOREM 2. G5'5'6 is an extension by A5 x C2 of a free Abelian group of rank 4.

PROOF. Let x, y and t be generators for G5>5>6 satisfying the relations x2 = y5 =
(xy)5 = t2 — (xt)2 = (yt)2 = (xyt)6 = 1. As in the proof of Theorem 1, the relation
(xyxy~1)3 = 1 is a consequence of these.

Now put v0 = (xy2)3, and t>, = y~'uoy' for 1 < / < 4. These five elements
generate a subgroup K of G = (x,y,t) which is easily seen to be normalized by
y and by /; in fact t~lVit = ufj,- for 0 < i < 3, while t~lv4t — v^\ Also
U0V2U4U1V3 = xy2(xy4)5y~2x — xy2x(y*x)5xy~2x = xy2x(xy)~5xy~2x = 1, and so
K is generated by any four of the u,. Next, it is easy to see that x~xvox = v3 and
x~lv^x = v0, and with a little more effort:

x~~xV\X = xy~x xy2 xy2 xy~2 x
= xy~lxy2xy~1xy2VQl

= yxyxyxy~2xy~lxy2v$l since (xy)5 = 1
= yxy2xy~1xyxy~ixy~1xy~lxy2VQ1 since (xyxy~1)3 = 1
= yxy2xy~ixy2xy~2VQ1 since (xy)5 — 1

Similarly x~lv2x = v^lv2vA and x~*v4x = u^ 'u^ 'uf 1 ^ 1 (with either one of these
obtainable from other using the identity vov2v4viv3 = 1), and it follows that the
subgroup K is normalized also by x and is therefore normal in G. But furthermore
the relations give:

1 1 = y~2xy~2xy~2xyxy~2xy~2xy2xy2xy~1xy2xy~i

= y~2xy~2xy~lxy~lxyxy~xxy~lxy~2xy2xyxyxy~xxyxyxy~x
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= v~2jry~' xyxy~2xyxy~l xyxy~lxy2xy~l xy~2

— y~2xy~1xyxy~1 {y~x xyxj* xyxy~l xy~2

= y~2(xy~lxy)ly2

= 1;

conjugation by powers of y then shows that u,-i>,-+2 = u,-+2U; for all i (modulo 5), so K
is Abelian.

The factor group G/K has presentation (x,y,t | x2 = y5 = (xy)5 = t2 = {xt)2 =
(yt)2 = (xyt)6 = (xy2)3 = 1), and by coset enumeration using CAYLEY [1] or
GAP [5] this is easily shown to have order 120, being a direct product A5 x C2.

Finally, as in proof of Theorem 1, we show the group G has a concrete representation
of the required form by exhibiting a transitive permutation representation on the
integers:

x(5k)
x(5k + 1)
x(5* + 2)
x(5k + 3)
x(5k + 4)

5*
= 5* +
= 5* +
= 5 * -
= 5 * -

13
14
9
8

y(5k)
y(5k +
y(5k +
y(5k +
y(5* +

1)
2)
3)
4)

= 5*+l
= 5*+ 2
= 5*+ 3
= 5*+ 4
= 5*

t(5k)
t(5k+l)
t(5k + 2)
t(5k + 3)
t(5k + 4)

= 5-5*
= 9-5*
= 8-5*
= 7-5*
= 6-5*.

Again these permutations (defined for k € Z) satisfy the required relations and generate
a transitive but imprimitive group on Z, with residue classes modulo 5 this time as
blocks of imprimitivity. Also the permutations induced by v0 = (xy2)3 and its
conjugates generate a free Abelian group of rank 4, and the rest follows.

COROLLARY 2. For every positive integer n, there exists a regular map of type
{5, 5}6 having 12«4 vertices, 30«4 edges and 12«4 faces, on an orientable surface of
genus 3n4 + 1.

PROOF. Take the permutations given at the end of the above proof, modulo lOn;
these generate a quotient of G5'5'6 of order 120n4, and the rest follows from material
presented in the Introduction.

THEOREM 3. G5>6>6 is an infinite insoluble group, with infinitely many finite quo-
tients.

PROOF. Let x, y and t be generators for G5-66 satisfying the relations x2 = y5 =
(xy)6 = t2 — (xt)2 = (yt)2 = (xyt)6 = 1. As (xyt)2 = xyt xyt — xyxtyt =
xyxy~l, we note the relation (xyxy~1)3 = 1 is satisfied also; in fact, by the
Reidemeister-Schreier process (with transversal {1, t}), the index 2 subgroup gen-
erated by x and y has presentation (x, y \ x2 = y5 = (xy)6 = (xyxy~1)3 = 1).
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Now let K be the normal subgroup generated by « = (xyxyxy~lxy~1)2 and its
conjugates. By coset enumeration (using CAYLEY [1] or GAP [5]), the subgroup K
can be shown to have index 1440 in (x, y, t), or index 720 in {x, y), with corresponding
quotients isomorphic to S6 x C2 and S6 respectively. In particular, as the alternating
group A6 is simple, this shows G5i6>6 is insoluble.

Next by the Abelianised form of the Reidemeister-Schreier process (for example,
using the 'abelian quotient invariants' command in CAYLEY [1]), we find the Abelian-
isation K/K' of K is isomorphic to C3 x I9 (the direct product of C3 with a free Abelian
group of rank 9). It follows that G5>6>6 is infinite, and also that it has infinitely many
(insoluble) quotients: for every positive integer n, a quotient of order 1440«9 is ob-
tainable by factoring out the pre-image of the normal subgroup of K/K' generated by
the C3 part and the nth powers of the generators of the free Abelian part of K/K'.

COROLLARY 3. For every positive integer n, there exists a regular map of type
{5, 6}6 having 120«9 vertices, 360«9 edges and 144n9 faces, on an orientable surface
of genus 48«9 + 1.

This follows immediately from the proof of Theorem 3. As in the corollaries
to Theorems 1 and 2, explicit generating permutations may be found for the auto-
morphism groups of these maps, however they are too cumbersome to be given here.
Also we remark that G56'6 has many finite quotients different from those mentioned
above, such as S45 and 5^ for example. In particular, it is very unlikely that G5-6'6 is
Abelian-by-finite; see Section 4 for further discussion.

THEOREM 4. G6'6'6 is an infinite insoluble group, with infinitely many finite quo-
tients.

PROOF. This is an immediate consequence of the main result of [2]. Alternatively:
Let x, y and t be generators for G66-6 satisfying the relations x2 = y6 = (JCV)6 =

t2 = (xt)2 = (yt)2 = (xyt)6 = 1. As in the proof of Theorem 3, the index 2 subgroup
generated by x and v has presentation (x, y \ x2 = y6 = (xy)6 = (xyxy"1)3 = 1).

This time let K be the normal subgroup generated by u = (xy2)2 and its conjugates.
By coset enumeration (using CAYLEY [1] or GAP [5]), the subgroup K can be shown
to have index 72 in (x,y,t), or index 36 in (x, y), with corresponding quotients
isomorphic to S3 x S3 x C2 and S3 x S3.

Next, as in the proof of Theorem 3, the Abelianised form of the Reidemeister-
Schreier process may be used to find the Abelianisation K/K' of K; in fact K/K' is
isomorphic to C3 x Z4 (the direct product of C3 with a free Abelian group of rank 4).
It follows that G6i6>6 is infinite, and also that it has infinitely many (soluble) quotients:
for every positive integer n, a quotient of order 72/j4 is obtainable by factoring out
the pre-image of the normal subgroup of K/K' generated by the C3 part and the «th
powers of the generators of the free Abelian part of K/K'.
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Finally we note that G6>6>6 has some insoluble quotients, such as S5, 5]4 and A23\
for example, there is a homomorphism from G6>6>6 onto S5 taking x to (1, 2) (3, 4), y
to (1, 3)(2, 4, 5), and t to (2, 3)(4, 5). In particular, G666 itself is insoluble.

COROLLARY 4. For every positive integer n, there exists a regular map of type
{6, 6}6 having 6«4 vertices, 18/z4 edges and 6n4 faces, on an orientable surface of
genus 3n4 + 1. Also for all but finitely many n, there exists a regular map of type
{6, 6}6 having nl/12 vertices, «!/4 edges and nl/12 faces, on an orientable surface
of genus n\/24 + 1.

The first assertion here follows immediately from the proof above, and again
explicit generating permutations may be found for the automorphism groups of these
maps, however they are too cumbersome to be given here. The second assertion relies
on further detail from [2], viz. that for all but finitely many n there is a homomorphism
from G6'66 onto Sn mapping the index 2 subgroup generated by x and y onto An.

4. Final remarks

A few obvious questions remain unanswered.
(1) Exactly for which triples (p, q, r) is the group Gp'q'r finite? This is the

problem considered by Coxeter, and has still not been settled.
(2) Are any other of the groups Gp<?r Abelian-by-finite? or nilpotent-by-finite?
(3) At the other extreme: which of the groups Gp'q'r have all but finitely many

An and Sn as quotients? or (just) infinitely many An and/or Sn as quotients?
(4) In particular, what else can be said about the structure of the group G566? Is

it Abelian-by-finite? or does it have all but finitely many alternating and/or symmetric
groups as quotients? It certainly has some Sn as quotients, such as S6, S45 and S46, but
(so far) it has resisted all attempts by the author to prove it has infinitely many.

Of course one can play this game with Gp-qr for larger values of p,q andr. It is not
hard to show, for instance, that G4510 is infinite but soluble, with a rank 5 free Abelian
normal subgroup of index 320; on the other hand, each of G4536, G4-616, G5512 and
G5614 has all but finitely many alternating and symmetric groups as quotients. Further
details on these examples are available from the author on request.
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