J. Austral. Math. Soc. (Series A) 44 (1988), 350-361

QUASI-INJECTIVE MODULES SATISFYING CERTAIN RELATIVE FINITENESS CONDITIONS

TATSUO IZAWA

(Received 28 August 28 1986)

Communicated by R. Lidl Dedicated to the memory of Professor Akira Hattori

Abstract

We study the endomorphism ring of a quasi-injective right *R*-module Q such that *R* satisfies certain finiteness conditions relative to Q. And we are concerned with a module ${}_{S}\operatorname{Hom}_{R}(M,Q)$, where *S* is the endomorphism ring of Q_{R}

1980 Mathematics subject classification (Amer. Math. Soc.): primary 16 A 52; secondary 16 A 65.

1. Introduction

Endomorphism rings of Σ (respectively Δ)-(quasi-)injective modules over an associative ring with identity have been studied mainly by Faith and Năstăsescu (refer to [4], [10], [2], and so on). An injective right *R*-module *Q* is said to be Σ (respectively Δ)-injective if the lattice of all *Q*-closed right ideals of *R*, that is, $C_Q(R) = \{I_R \subseteq R_R | R / I \text{ is } Q\text{-torsionless}\}$ is noetherian (respectively artinian). Faith has shown in [4] that the endomorphism ring of a finitely generated Σ (respectively Δ)-injective right *R*-module is a right perfect (respectively a left artinian) ring. Moreover, Năstăsescu has shown in [10] that (1) the endomorphism ring $\text{End}(Q_R)$ of a Σ (respectively Δ)-injective right *R*-module *Q* which has a finitely generated *R*-submodule *Q'* such that $\text{Hom}_R(Q/Q', Q) = (0)$ (in particular, of a finitely generated Σ (respectively Δ)-injective right *R*-module

^{© 1988} Australian Mathematical Society 0263-6115/88 \$A2.00 + 0.00

Quasi-injective modules

Q), is a semi-primary (respectively a left artinian) ring, and (2) if Q is a noetherian or artinian, Δ -injective right *R*-module, then $\operatorname{End}(Q_R)$, the endomorphism ring of Q_R , is a left artinian ring and $\operatorname{Biend}(Q_R)$, the biendomorphism ring of Q_R , is a right artinian ring.

In the present paper we shall generalize those results to the case where Q_R is quasi-injective. For this purpose we shall introduce the concepts of Q-noetherian, Q-artinian and Q-finitely generated modules with respect to any right R-module Q. And we shall show that when Q is a quasi-injective right *R*-module with $S = \text{End}(Q_R)$ and M is a Q-finitely generated (in particular, finitely generated) right R-module such that Q is M-injective, then (1) if R_R is Q-noetherian, $_{S}\operatorname{Hom}_{R}(M,Q)$ is coperfect (Theorem 4.1), (2) if R_{R} is Q-artinian, $_{S}\operatorname{Hom}_{R}(M,Q)$ is noetherian (Theorem 4.4), and (3) if R_R is both Q-noetherian and Q-artinian, _SHom_R(M,Q) has finite length (Theorem 4.6). As these applications, we shall show that when Q is a quasi-injective, Q-finitely generated (in particular, finitely generated) right R-module with $S = \text{End}(Q_R)$, then (1) if R_R is Q-noetherian, then S is a semi-primary ring (Theorem 4.2), (2) if R_R is Q-artinian, then S is a left noetherian ring (Corollary 4.5), and (3) if R_R is both Q-noetherian and Q-artinian, then S is a left artinian ring (Corollary 4.8). In addition, we shall show that if Q is a noetherian or artinian, quasi-injective right R-module such that R_R is Q-artinian, then $\operatorname{End}(Q_R)$ is a left artinian ring and $\operatorname{Biend}(Q_R)$ is a right artinian ring (Theorems 4.12 and 4.13). In the sequel, in Section 5 we shall be concerned with endomorphism rings of (quasi-)projective, quasi-injective modules satisfying some finiteness conditions.

2. Preliminaries

Let R be an associative ring with identity and Mod-R the category of all unital right R-modules. For $M, Q \in Mod-R, M$ is said to be Q-torsion if $\operatorname{Hom}_R(M,Q) = (0)$, and said to be Q-torsionless if M is embeddable in a direct product of copies of Q. An R-submodule L of M is said to be a Q-closed submodule of M if M/L is Q-torsionless. The set of all Q-closed submodules of M is denoted by $C_Q(M)$ throughout this paper. It is well known that $L \in C_Q(M)$ if and only if $L = \operatorname{Ann}_M(\operatorname{Ann}_{M^*}(L))$, where $M^* = \operatorname{Hom}_R(M,Q)$. We set $\tau_Q(M) = \operatorname{Ann}_M(M^*) = \{x \in M | f(x) = 0 \text{ for all } f \in M^* = \operatorname{Hom}_R(M,Q)\}$ for $M, Q \in \operatorname{Mod-R}$. Clearly, $\tau_Q(M)$ is the smallest Q-closed submodule of M. By setting $L \wedge N = L \cap N$ and $(L \vee N)/(L+N) = \tau_Q(M/(L+N))$ for $L, N \in C_Q(M)$, we can give a lattice structure to $C_Q(M)$. We set $\Psi(Q) = \{M \in \operatorname{Mod-R}|Q \text{ is}$ M-injective} for any $Q \in \operatorname{Mod-R}$. If $Q \in \Psi(Q)$, Q is said to be quasi-injective, and if $\Psi(Q) = \operatorname{Mod-R}$, Q is injective. The following result is well known.

LEMMA 2.1. $\Psi(Q)$ is closed under taking submodules, homomorphic images and direct sums.

If $C_Q(R) = \{I_R \subseteq R_R | I = \operatorname{Ann}_R(X) \text{ for some subset } X \text{ of } Q\}$ satisfies the ACC (respectively DCC), then Q_R is said to be a Σ (respectively Δ)-module for any $Q \in \operatorname{Mod} R$. If an (a quasi-)injective right R-module Q is a Σ (respectively Δ)-module, Q is said to be Σ (respectively Δ)-(quasi-)injective. For $M \in \operatorname{Mod} R$, let $\operatorname{End}(M_R)$ denote the endomorphism ring of M_R and $\operatorname{Biend}(M_R)$ the biendomorphism ring of M_R , that is, $\operatorname{Biend}(M_R) = \operatorname{End}(SM)$, where $S = \operatorname{End}(M_R)$. Any homomorphism will be written on the side opposite to the scalars. For $M \in \operatorname{Mod} R$, M^n denotes the direct sum of *n*-copies of M_R . The ACC (respectively DCC) denotes the ascending (respectively descending) chain condition.

3. Q-noetherian modules and Q-artinian modules

Let E be an injective right R-module and $\mathcal{F} = \{I_R \subseteq R_R | \operatorname{Hom}_R(R/I, E) = (0)\}$. Then \mathcal{F} is a Gabriel topology on R associated with a hereditary torsion theory defined by E. In [11], [8] and [1], Năstăsescu-Niță-Albu have defined and studied \mathcal{F} -noetherian and \mathcal{F} -artinian modules and rings. In this section we shall define and study Q-noetherian and Q-artinian modules in case Q_R is not necessarily an injective module.

DEFINITIONS. Let $M, Q \in Mod-R$.

(1) M is said to be *Q*-noetherian (respectively *Q*-artinian) if, for each ascending (respectively descending) chain

 $M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots$ (respectively $M_1 \supseteq M_2 \supseteq M_3 \supseteq \cdots$)

of R-submodules of M, there exists an integer $k \ge 1$ such that M_{i+1}/M_i (respectively M_i/M_{i+1}) is Q-torsion for all $i \ge k$. A ring R is said to be Q-noetherian (respectively Q-artinian) if R_R is Q-noetherian (respectively Q-artinian).

(2) If \mathcal{A} is a non-empty set of R-submodules of $M, N \in \mathcal{A}$ is said to be a *Q*-maximal (respectively *Q*-minimal) element in \mathcal{A} if, for each $N' \in \mathcal{A}$ such that $N \subseteq N'$ (respectively $N' \subseteq N$), N'/N (respectively N/N') is *Q*-torsion.

(3) M is said to be *Q*-finitely generated if there exists a finitely generated R-submodule M' of M such that M/M' is *Q*-torsion.

If Q is a cogenerator in Mod-R, each Q-noetherian (respectively Q-artinian) module is exactly a noetherian (respectively artinian) module. When Q is an injective right R-module cogenerating a hereditary torsion theory associated with a Gabriel topology \mathcal{F} , these definitions are identified with those of \mathcal{F} -noetherian, \mathcal{F} -artinian, \mathcal{F} -maximal, \mathcal{F} -minimal and \mathcal{F} -finitely generated modules in the sense of Năstăsescu-Niţa-Albu. LEMMA 3.1. Let $M \in \Psi(Q)$. If M is Q-torison, then M is both Q-noetherian and Q-artinian.

PROOF. Let $M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots$ be any ascending chain of *R*-submodules of *M*. Since *M* is *Q*-torsion, M/M_k is *Q*-torsion, too, for all $k \ge 1$. Since $M/M_k \in \Psi(Q)$ by Lemma 2.1, every *R*-submodule of M/M_i , in particular M_{k+1}/M_k is *Q*-torsion by [6, Lemma 2.1]. Hence *M* is *Q*-noetherian. Similarly, *M* is *Q*-artinian.

LEMMA 3.2. Let us consider the following conditions.

(1) M is Q-noetherian.

(2) Each non-empty set of R-submodules of M has a Q-maximal element.

(3) $C_Q(M)$ is a noetherian lattice.

(4) Each R-submodule of M is Q-finitely generated. Then we have the implications, $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$. In addition, if $M \in \Psi(Q)$, all four conditions are equivalent.

PROOF. The implications, $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ can be proved in the same manner as in the proof of [2, Proposition 6.1]. Next, assume that Q is *M*-injective.

(3) \Rightarrow (4). Suppose that M has a submodule N which is not Q-finitely generated. Choose $x_1 \in N$ with $x_1 \neq 0$. Then N/x_1R is not Q-torsion, and so in particular $N/x_1R \neq (0)$. Hence there exists $x_2 \in N$ such that $x_1R \subsetneq x_1R + x_2R$ and $(x_1R + x_2R)/x_1R$ is not Q-torsion. For, since $N/x_1R \in \Psi(Q)$ by Lemma 2.1, $\tau_Q(N/x_1R)$ is Q-torsion by [6, (2) of Lemma 2.1], and hence $\tau_Q(N/x_1R) \subsetneqq N/x_1R$. Hence for each $x_2 + x_1R \notin \tau_Q(N/x_1R)$, there exists $f \in \operatorname{Hom}_R(N/x_1R, Q)$ such that $f(x_2 + x_1R) \neq 0$. So the restriction of f onto $(x_1R + x_2R)/x_1R$ is not a zero map. Hence $(x_1R + x_2R)/x_1R$ is not Q-torsion. And then, $N/(x_1R + x_2R)$ is not Q-torsion. Continuing the same argument, we are able to find a strictly ascending chain of R-submodules of M,

$$x_1R \subsetneqq x_1R + x_2R \subsetneqq x_1R + x_2R + x_3R \subsetneqq \cdots$$

such that N_{k+1}/N_k is not Q-torsion for all $k \ge 1$, where $N_k = x_1R + x_2R + \cdots + x_kR$. Let us put $N'_i/N_i = \tau_Q(M/N_i)$ for each integer *i*. Then we get an ascending chain of elements of $C_Q(M), N'_1 \subseteq N'_2 \subseteq N'_3 \subseteq \cdots$. Suppose $N'_i = N'_{i+1}$ for some *i*. Then $N_{i+1}/N_i \subseteq N'_{i+1}/N_i = N'_i/N_i$. By using Lemma 2.1 and [6, Lemma 2.1], since N'_i/N_i is Q-torsion, so is also N_{i+1}/N_i . This is a contradiction. Consequently, we have $N'_i \subseteq N'_{i+1}$ for all $i \ge 1$, and which contradicts the assumption (3).

(4) \Rightarrow (1). Let $M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots$ be an ascending chain of *R*-submodules of *M*. Since $N = \bigcup_{i=1}^{\infty} M_i$ is *Q*-finitely generated, then there exist

 $x_1, x_2, \ldots, x_n \in N$ such that $N/(x_1R + \cdots + x_nR)$ is Q-torsion. On the other hand, there exists an integer k such that $x_1R + \cdots + x_nR \subseteq M_k$, so N/M_{k+j} is Q-torsion for all $j \ge 0$. Since $N/M_{k+j} \in \Psi(Q)$ by Lemma 2.1, M_{k+j+1}/M_{k+j} is Q-torsion according to [6, (1) of Lemma 2.1]. Hence M is Q-noetherian.

LEMMA 3.3. Let us consider the following conditions.

(1) M is Q-artinian.

(2) Each non-empty set of R-submodules of M has a Q-minimal element.

(3) $C_Q(M)$ is an artinian lattice.

Then the implications $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ hold. In addition, if $M \in \Psi(Q)$, all three conditions are equivalent.

PROOF. The implications, $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ can be proved in the same manner as in the proof of [2, Proposition 6.2]. Next, assume that Q is *M*-injective.

 $(3) \Rightarrow (1).$ Let $L_1 \supseteq L_2 \supseteq L_3 \supseteq \cdots$ be a descending chain of *R*-submodules of *M*. Put $L'_i/L_i = \tau_Q(M/L_i)$ for each integer *i*. Then we have the descending chain of elements of $C_Q(M), L'_1 \supseteq L'_2 \supseteq L'_3 \supseteq \cdots$. By the assumption (3), there exists an integer *k* such that $L'_k = L'_{k+1} = L'_{k+2} = \cdots$. For each $i \ge k$, $L_i/L_{i+1} \subseteq L'_i/L_{i+1} = L'_{i+1}/L_{i+1} = \tau_Q(M/L_{i+1})$. Since $M/L_{i+1} \in \Psi(Q)$ by Lemma 2.1, $\tau_Q(M/L_{i+1})$ is *Q*-torsion, and hence so is also L_i/L_{i+1} for all $i \ge k$, by using [6, Lemma 2.1].

PROPOSITION 3.4. Let $M, Q \in Mod-R$, and let

$$(0) \to M' \xrightarrow{\psi} M \xrightarrow{\varphi} M'' \to (0)$$

be an exact sequence of right R-modules. Then, if M is Q-noetherian (resp. Qartinian), so are also M' and M". If $M \in \Psi(Q)$, and if both M' and M" are Q-noetherian (resp. Q-artinian), so is also M.

PROOF. (I) Q-noetherian case. The first part of the statement can be proved by the standard discussion. Next, suppose that $M \in \Psi(Q)$ and both M' and M'' are Q-noetherian. Let L be an R-submodule of M. $\varphi(L)$ has a finitely generated R-submodule $N = \sum_{i=1}^{n} z_i R$ such that $\varphi(L)/N$ is Q-torsion. Choose $x_i \in L$ such that $\varphi(x_i) = z_i$ for i = 1, 2, ..., n. Put $K = \sum_{i=1}^{n} x_i R$. On the other hand, $L \cap \psi(M')$ has a finitely generated R-submodule $H = \sum_{j=1}^{m} y_j R$ such that $(L \cap \psi(M'))/H$ is Q-torsion. Then, since $L \cap \varphi^{-1}(N) = (L \cap \psi(M')) + K$, we have the exact sequence as follows:

$$(0) \to ((L \cap \psi(M')) + K)/(H + K) \to L/(H + K) \to \varphi(L)/N \to (0).$$

Since $L/(H+K) \in \Psi(Q)$ by Lemma 2.1, we have the exact sequence,

$$(0) \to \operatorname{Hom}_{R}(\varphi(L)/N, Q) \to \operatorname{Hom}_{R}(L/(H+K), Q)$$
$$\to \operatorname{Hom}_{R}(((L \cap \psi(M')) + K)/(H+K), Q) \to (0)$$

Since $((L \cap \psi(M')) + K)/(H + K)$ is a homomorphic image of $(L \cap \psi(M'))/H$, $((L \cap \psi(M')) + K)/(H + K)$ is Q-torsion, too. Hence

 $\operatorname{Hom}_{R}(\varphi(L)/N,Q) = \operatorname{Hom}_{R}(((L \cap \psi(M')) + K)/(H + K),Q) = (0);$

so $\operatorname{Hom}_R(L/(H+K),Q) = (0)$. Therefore L is Q-finitely generated. Hence M is Q-noetherian.

(II) Q-artinian case. The first part can be proved by the standard discussion. Next, suppose that $M \in \Psi(Q)$ and both M' and M'' are Q-artinian. let $L_1 \supseteq L_2 \supseteq L_3 \supseteq \cdots$ be a descending chain of R-submodules of M. Then for the descending chain, $L_1 \cap \psi(M') \supseteq L_2 \cap \psi(M') \supseteq L_3 \cap \psi(M') \supseteq \cdots$, there exists an integer k such that $(L_i \cap \psi(M'))/(L_{i+1} \cap \psi(M'))$ is Q-torsion for all $i \ge k$. And, for the descending chain $\varphi(L_1) \supseteq \varphi(L_2) \supseteq \varphi(L_3) \supseteq \cdots$, there exists an integer k' such that $\varphi(L_i)/\varphi(L_{i+1})$ is Q-torsion for all $i \ge k'$. Let $n = \max\{k, k'\}$. Then for all $i \ge n$, let us consider the exact sequence as follows:

$$(0) \rightarrow ((L_i \cap \psi(M')) + L_{i+1})/L_{i+1} \rightarrow L_i/L_{i+1} \rightarrow \varphi(L_i)/\varphi(L_{i+1}) \rightarrow (0)$$

Then we have the exact sequence,

$$(0) \to \operatorname{Hom}_{R}(\varphi(L_{i})/\varphi(L_{i+1}), Q) \to \operatorname{Hom}_{R}(L_{i}/L_{i+1}, Q)$$
$$\to \operatorname{Hom}_{R}(((L_{i} \cap \psi(M')) + L_{i+1})/L_{i+1}, Q) \to (0),$$

because $L_i/L_{i+1} \in \Psi(Q)$. Since

$$((L_i \cap \psi(M')) + L_{i+1})/L_{i+1} \cong (L_i \cap \psi(M'))/((L_i \cap \psi(M')) \cap L_{i+1})$$

= $(L_i \cap \psi(M'))/(L_{i+1} \cap \psi(M')),$

 $\operatorname{Hom}_R(\varphi(L_i)/\varphi(L_{i+1}), Q) = \operatorname{Hom}_R(((L_i \cap \psi(M')) + L_{i+1})/L_{i+1}, Q) = (0).$ Hence $\operatorname{Hom}_R(L_i/L_{i+1}, Q) = (0)$, that is, L_i/L_{i+1} is Q-torsion for all $i \geq n$. Therefore M is Q-artinian.

COROLLARY 3.5. Let $M \in \Psi(Q)$. If R is a Q-noetherian (resp. Q-artinian) ring, and if M is a Q-finitely generated right R-module, then M is Q-noetherian (resp. Q-artinian).

PROOF. Since R is Q-noetherian (resp. Q-artinian), every cyclic right Rmodule is Q-noetherian (resp. Q-artinian) by Proposition 3.4. By the assumption there exists a finitely generated R-submodule M' of M such that M/M' is Q-torsion. Put $M' = \sum_{i=1}^{n} x_i R$. Then $x_i R$ is Q-noetherian (resp. Q-artinian).

Since Q is M-injective, $\bigoplus_{i=1}^{k} x_i R \in \Psi(Q)$ for all integer k such that $1 \le k \le n$, by Lemma 2.1. Let us consider the exact sequence,

$$0 \to x_1 R \to x_1 R \oplus x_2 R \to x_2 R \to (0).$$

Since x_1R and x_2R both are Q-noetherian (resp. Q-artinian), $x_1R \oplus x_2R$ is Q-noetherian (resp. Q-artinian) by Proposition 3.4. By the similar discussion, if $x_1R + \cdots + x_{k-1}R$ is Q-noetherian (resp. Q-artinian), the exact sequence

$$(0) \to x_1 R \oplus \cdots \oplus x_{k-1} R \to x_1 R \oplus \cdots \oplus x_{k-1} R \oplus x_k R \to x_k R \to (0)$$

implies that $x_1 R \oplus \cdots \oplus x_k R$ is Q-noetherian (resp. Q-artinian) by Proposition 3.4. Thus, we can conclude that $\bigoplus_{i=1}^k x_i R$ for each k, in particular, $\bigoplus_{i=1}^n x_i R$ is Q-noetherian (resp. Q-artinian). Next, since the map $\psi : \bigoplus_{i=1}^n x_i R \to M'$ defined by $\psi(x_1 r_1, x_2 r_2, \ldots, x_n r_n) = \sum_{i=1}^n x_i r_i$, is an R-epimorphism, M' is Qnoetherian (resp. Q-artinian) by Proposition 3.4. On the other hand, M/M' is Q-noetherian (resp. Q-artinian) by Lemma 3.1. Hence the exact sequence

$$(0) \to M' \to M \to M/M' \to (0)$$

implies that M is Q-noetherian (resp. Q-artinian) by Proposition 3.4, as desired.

4. Quasi-injective module Q such that R is Q-noetherian (Q-artinian)

Let $M \in Mod-R$. If $\mathcal{C}_M(R) = \{I_R \subseteq R_R | I = \operatorname{Ann}_R(X) \text{ for some subset } X \text{ of } M\}$ is noetherian (respectively artinian), then M_R is said to be a Σ (respectively Δ)-module. If an (a quasi-)injective right R-module Q is a Σ (respectively Δ)-module, then Q_R is said to be a Σ (respectively Δ)-(quasi-)injective module. According to Lemmas 3.2 and 3.3, an injective right R-module Q such that R_R is Q-noetherian (respectively Q-artinian) is exactly a Σ (respectively Δ)-injective module. And, a quasi-injective right R-module Q such that R is Q-noetherian (respectively Q-artinian) is Σ (respectively Δ)-quasi-injective. However, a Σ (respectively Δ)-quasi-injective right R-module Q does not necessarily satisfy the condition for R to be Q-noetherian (respectively Q-artinian). In this section we are concerned with a quasi-injective right R-module Q such that R is Q-noetherian or Q-artinian.

THEOREM 4.1. Let Q be a quasi-injective right R-module such that R is Q-noetherian and $S = \text{End}(Q_R)$. If M_R is Q-finitely generated (in particular, finitely generated) and $M \in \Psi(Q)$, then ${}_{S}\text{Hom}_{R}(M,Q)$ is coperfect.

PROOF. Since M is a Q-finitely generated right module over a Q-noetherian ring R, M is Q-noetherian by Corollary 3.5. Hence $C_Q(M)$ is a noetherian lattice by Lemma 3.2. Therefore ${}_{S}\operatorname{Hom}_R(M,Q)$ is coperfect by [6, Theorem 4.1] or [2, Corollary 4.3].

THEOREM 4.2. Let Q be a quasi-injective, Q-finitely generated (in particular, finitely generated) right R-module such that R is Q-noetherian. Then $S = \text{End}(Q_R)$ is a semi-primary ring.

PROOF. In this case $C_Q(Q)$ is a noetherian lattice. Hence S is a semi-primary ring by [2, Corollary 4.5].

COROLLARY 4.3. If Q is a quasi-injective, Q-finitely generated (in particular, finitely generated) right module over a right noetherian ring R, then $S = \text{End}(Q_R)$ is a semi-primary ring.

THEOREM 4.4. Let Q be a quasi-injective right R-module such that R is Qartinian and $S = \text{End}(Q_R)$. If M is a Q-finitely generated (in particular, finitely generated) right R-module and $M \in \Psi(Q)$, then ${}_{S}\text{Hom}_{R}(M,Q)$ is noetherian.

PROOF. Since M_R is a Q-finitely generated module over a Q-artinian ring R, M_R is Q-artinian by Corollary 3.5. Hence $C_Q(M)$ is an artinian lattice by Lemma 3.3. According to [6, Theorem 4.3] or [2, Corollary 4.3], $_{S}\operatorname{Hom}_R(M,Q)$ is noetherian if and only if $C_Q(M)$ is artinian, as desired.

COROLLARY 4.5. Let Q be a quasi-injective, Q-finitely generated (in particular, finitely generated) right R-module such that R is Q-artinian. Then $S = \text{End}(Q_R)$ is a left noetherian ring.

THEOREM 4.6. Let Q be a quasi-injective right R-module such that R is both Q-noetherian and Q-artinian and $S = \text{End}(Q_R)$. If M is a Q-finitely generated (in particular, finitely generated) right R-module and $M \in \Psi(Q)$, then $S \text{Hom}_R(M, Q)$ has finite length.

PROOF. By Theorems 4.1 and 4.4, ${}_{S}\operatorname{Hom}_{R}(M,Q)$ is coperfect and noetherian. Therefore ${}_{S}\operatorname{Hom}_{R}(M,Q)$ has finite length.

COROLLARY 4.7. Let Q be a Δ -injective right R-module with $S = \text{End}(Q_R)$. If M is a Q-finitely generated (in particular, finitely generated) right R-module, then $_{S}\text{Hom}_{R}(M,Q)$ has finite length.

COROLLARY 4.8. Let Q be a quasi-injective, Q-finitely generated (in particular, finitely generated) right R-module such that R is both Q-noetherian and Q-artinian. Then $S = \text{End}(Q_R)$ is a left artinian ring. In particular, if Q is a Qfinitely generated (in particular, finitely generated) Δ -injective right R-module, then $S = \text{End}(Q_R)$ is a left artinian ring.

[8]

REMARK. The latter part of Corollary 4.8 is due to Faith [3, Corollary 6.4] and Năstăsescu [10, Proposition 1.5].

THEOREM 4.9. Let U be a right R-module such that R is both U-noetherian and U-artinian. If Q is a quasi-injective, U-torsionless, U-finitely generated right R-module such that U is Q-injective, then $S = \text{End}(Q_R)$ is a left artinian ring.

PROOF. Since Q is a U-finitely generated right module over a U-noetherian and U-artinian ring R and since U is Q-injective, then Q_R is both U-noetherian and U-artinian by Corollary 3.5. So $C_U(Q)$ is a noetherian and artinian lattice by Lemmas 3.2 and 3.3. On the other hand, since Q_R is U-torsionless, every Q-closed submodule of Q is also a U-closed submodule of Q. Hence $C_Q(Q)$ is a noetherian and artinian lattice, too. Thus, since Q_R is quasi-injective, Q_R has a Q-composition series by [6, Theorem 2.6]. Therefore, according to [6, Theorems 2.8 and 3.4], we have $len_S S = Q - len Q_R = n$ for some integer $n \ge 0$, as desired.

COROLLARY 4.10 (NÅSTÅSESCU [10, PROPOSITION 1.5]). Let U be a Δ -injective right R-module. If Q is a quasi-injective, U-torsionless, U-finitely generated right R-module, then $S = \text{End}(Q_R)$ is a left artinian ring.

PROOF. Since U_R is Δ -injective, R is a both U-noetherian and U-artinian ring according to Miller-Teply's theorem in [7]. Hence the result follows directly from Theorem 4.9.

LEMMA 4.11. Let Q be a quasi-injective right R-module such that R is Qartinian, and let us put $T = \text{Biend}(Q_R)$. Then T is a semi-primary ring and Q_T is a Δ -injective module.

PROOF. In this case Q_R is Δ -quasi-injective by Lemma 3.3. Hence ${}_SQ$ has finite length according to [4, Proposition 8.1], where $S = \text{End}(Q_R)$. Therefore $T = \text{End}({}_SQ)$ is a semi-primary ring. And, since Q_R is finendo and quasiinjective, Q_T is injective (refer to [3, Proposition 19.18]). Since $S = \text{End}(Q_T)$, it follows that Q_T is Δ -injective by [4, Corollary 7.5].

THEOREM 4.12. If Q is a noetherian, quasi-injective right R-module such that R is Q-artinian, then we have the following assertions.

(1) $S = \text{End}(Q_R)$ is a left artinian ring.

(2) $T = \text{Biend}(Q_R)$ is a right artinian ring.

PROOF. (1) Since Q_R is noetherian, so is also Q_T . In particular, Q_T is finitely generated. On the other hand, Q_T is Δ -injective by Lemma 4.11, and $S = \text{End}(Q_T)$. Hence S is a left artinian ring by Corollary 4.8.

Quasi-injective modules

(2) In this case Q_R is Δ -quasi-injective, and so ${}_{S}Q$ has finite length by [4, Proposition 8.1]. In particular, ${}_{S}Q$ is finitely gnerated. Thus, Q_T is a finendo, faithful, injective module. So Q_T is compactly faithful by [3, Proposition 19.15], that is $T_T \hookrightarrow Q_T^n$ for some integer $n \geq 1$. Since Q_T is noetherian, Q_T^n , and hence T_T is noetherian. On the other hand, since T is a semi-primary ring by Lemma 4.11, T is a right artinian ring.

THEOREM 4.13. If Q is an artinian, quasi-injective right R-module such that R is Q-artinian, then we have the following assertions.

- (1) $S = \text{End}(Q_R)$ is a left artinian ring.
- (2) $T = \text{Biend}(Q_R)$ is a right artinian ring.

PROOF. In this case $C_Q(R)$ is an artinian lattice by Lemma 3.3. Since $\operatorname{Ann}_R(Q) = \bigcap_{x \in Q} \operatorname{Ann}_R(x)$, there exist a finite number of elements $x_1, x_2, \ldots, x_n \in Q$ such that $\operatorname{Ann}_R(Q) = \bigcap_{i=1}^n \operatorname{Ann}_R(x_i)$. Hence, if we put $\overline{R} = R/\operatorname{Ann}_R(Q)$, $\overline{R}_R \hookrightarrow x_1 R \oplus x_2 R \oplus \cdots \oplus x_n R$. Since $x_1 R \oplus \cdots \oplus x_n R$ is an artinian right *R*-module, \overline{R}_R is artinian, too. Hence \overline{R} is a right artinian ring. Since Q_R is artinian, $Q_{\overline{R}}$ is an artinian module over a right artinian ring \overline{R} . Hence $Q_{\overline{R}}$ is also noetherian by [9, Corollary 1.3]. Thus, Q_R is noetherian. Therefore the results follow directly from Theorem 4.12.

COROLLARY 4.14 (FAITH-NĂSTĂSESCU). Let Q be a Δ -injective right R-module with $S = \text{End}(Q_R)$ and $T = \text{Biend}(Q_R)$. If Q_R is either noetherian or artinian, then S is a left artinian ring and T is a right artinian ring.

COROLLARY 4.15. Let R be a right artinian ring. If Q is a noetherian (or an artinian), quasi-injective right R-module, then $S = \text{End}(Q_R)$ is a left artinian ring and $T = \text{Biend}(Q_R)$ is a right artinian ring.

5. Endomorphism rings of quasi-projective, quasi-injective modules

THEOREM 5.1. If Q is a finitely generated projective, quasi-injective right R-module such that R is Q-artinian, then $S = \text{End}(Q_R)$ is a left artinian ring.

PROOF. According to Corollary 4.5, S is a left noetherian ring. On the other hand, since Q_R is Δ -quasi-injective in this case, ${}_SQ$ has finite length by [4, Theorem 8.1]. Hence $T = \operatorname{End}({}_SQ)$ is a semi-primary ring. And, since Q_T is finitely generated projective and $S = \operatorname{End}(Q_T)$, S is a semi-primary ring, too, by [5, Proposition 4.5]. Hence S is a left artinian ring.

THEOREM 5.2. Let R be a left noetherian ring. If Q is a finitely generated projective, quasi-injective, finendo right R-module, then $S = \text{End}(Q_R)$ is a left artinian ring.

PROOF. In this case S is a left noetherian ring and $_SQ$ is finitely generated. Hence $_SQ$ is noetherian. And, since Q_R is finendo and quasi-injective, Q_T is injective by [3, Proposition 19.18], where $T = \text{Biend}(Q_R)$. Hence Q_T is Δ -injective according to [4, Proposition 8.1]. Thus, Q_T is a finitely generated Δ -injective module with $S = \text{End}(Q_T)$. Therefore S is a left artinian ring by Corollary 4.8.

THEOREM 5.3. Let Q be a quasi-projective, quasi-injective, artinian right R-module. Then $S = \text{End}(Q_R)$ is a left artinian ring.

PROOF. Since Q_R is quasi-projective and artinian, S is a semi-primary ring by [2, Corollary 4.14]. On the other hand, since Q_R is quasi-injective and artinian, S is a left noetherian ring by [2, Corollary 4.4.] or [6, Corollary 4.4]. Hence S is a left artinian ring.

THEOREM 5.4. Let Q be a quasi-projective, quasi-injective, noetherian right R-module. Then $S = \text{End}(Q_R)$ is a right artinian ring.

PROOF. Since Q_R is quasi-injective and noetherian, S is a semi-primary ring by [2, Corollary 4.5]. On the other hand, since Q_R is quasi-projective and noetherian, S is a right noetherian ring by [2, Corollary 4.12]. Hence S is a right artinian ring.

COROLLARY 5.5. Let Q be a quasi-projective, quasi-injective, noetherian or artinian, right R-module such that R is Q-artinian. Then $S = \text{End}(Q_R)$ is a left and right artinian ring.

PROOF. First, suppose that Q_R is noetherian. Then S is a right artinian ring by Theorem 5.4, while S is a left artinian ring by Theorem 4.12. Next, consider the case where Q_R is artinian. As has been shown in the proof of Theorem 4.13, Q_R is necessarily noetherian. Hence the result is due to the first case.

Note. In connection with Theorems 4.12 and 4.13, it should be noticed that in general, if Q is a quasi-injective right R-module having the right artinian biendomorphism ring T, Q is necessarily injective as a right T-module. Indeed, since Q is a faithful right module over a right artinian ring T, Q_T is compactly faithful according to a result of Beachy [12, Proposition 1] (see also Vámos [13]). On the other hand, since any quasi-injective module Q_R remains quasi-injective Quasi-injective modules

as a module over $T = \text{Biend}(Q_R)$, Q_T is compactly faithful and quasi-injective. Therefore Q_T is injective by [3, Proposition 19.15], as desired.

The author would like to express his thanks to the referee who has suggested the above comment.

Addendum

We are able to strengthen Corollary 4.5. Under the same assumption as in Corollary 4.5 we can conclude that $S = \text{End}(Q_R)$ is a left artinian ring. For, since R is also Q-noetherian by [4, Theorem 7.1], it follows by Theorems 4.2 and 4.4 that S is both semi-primary and left noetherian. Hence S is left artinian. Thus, our Corollary 4.8 is needless.

References

- T. Albu and C. Năstăsescu, 'Décompositions primaires dans les catégories de Grothendieck commutatives I', J. Reine Angew. Math. 280 (1976), 172-194.
- [2] T. Albu and C. Nästäsescu, Relative finiteness in module theory (Marcel Dekker Inc., 1984).
- [3] C. Faith, Algebra II : Ring theory (Springer-Verlag, 1975).
- [4] C. Faith, Injective modules and injective quotient rings (Marcel Dekker Inc., 1982).
- [5] T. Izawa, 'Maximal quotient rings of endomorphism rings of $E(R_R)$ -torsionfree generators', Canad. J. Math. 33 (1981), 585–605.
- [6] T. Izawa, 'Composition series relative to a module', J. Pure Appl. Algebra 35 (1985), 15-33.
- [7] R. W. Miller and M. L. Teply, 'The descending chain condition relative to a torsion theory', Pacific J. Math. 83 (1979), 207-220.
- [8] C. Năstăsescu, 'La structure des modules par rapport à une topologie additive', Tôhoku Math. J. 26 (1974), 173-201.
- C. Năstăsescu, 'Conditions de finitude pour les modules', Rev. Roumaine Math. Pures Appl. 24 (1979), 745-758.
- [10] C. Năstăsescu, 'Conditions de finitude pour les modules II', Rev. Roumaine Math. Pures Appl. 25 (1980), 615-630.
- [11] C. Năstăsescu and C. Niță, 'Objets noethérian par rapport à une sous-catégorie èpaisse d'une catégorie abélienne', Rev. Roumaine Math. Pures Appl. 9 (1965), 1459-1468.
- [12] J. A. Beachy, 'On quasi-artinian rings', J. London Math. Soc. (2) 3 (1971), 449-452.
- [13] P. Vámos, 'The dual of the notion of "finitely generated" ', J. London Math. Soc. 43 (1968), 643-646.

Department of Mathematics Shizuoka University Ohya 836, Shizuoka 422 Japan