C*-ALGEBRAS ASSOCIATED WITH PRESENTATIONS OF SUBSHIFTS II. IDEAL STRUCTURE AND LAMBDA-GRAPH SUBSYSTEMS

KENGO MATSUMOTO

(Received 28 December 2004; revised 27 June 2005)

Communicated by G. Willis

Abstract

A λ -graph system is a labeled Bratteli diagram with shift transformation. It is a generalization of finite labeled graphs and presents a subshift. In *Doc. Math.* 7 (2002) 1–30, the author constructed a C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ associated with a λ -graph system \mathfrak{L} from a graph theoretic view-point. If a λ -graph system comes from a finite labeled graph, the algebra becomes a Cuntz-Krieger algebra. In this paper, we prove that there is a bijective correspondence between the lattice of all saturated hereditary subsets of \mathfrak{L} and the lattice of all ideals of the algebra $\mathcal{O}_{\mathfrak{L}}$, under a certain condition on \mathfrak{L} called (II). As a result, the class of the C^* -algebras associated with λ -graph systems under condition (II) is closed under quotients by its ideals.

2000 Mathematics subject classification: primary 46L35; secondary 46L05, 37B10.

1. Introduction

In [7], Cuntz and Krieger presented a class of C^* -algebras associated with finite square matrices with entries in {0, 1}. The C^* -algebras are called *Cuntz-Krieger* algebras. They are simple if the matrices are irreducible with condition (I). Cuntz-Krieger observed that the C^* -algebras have a close relationship to topological Markov shifts ([7]). The topological Markov shifts form a subclass of subshifts. For a finite set Σ , a subshift (Λ , σ) is a topological dynamical system defined by a closed shiftinvariant subset Λ of the compact set $\Sigma^{\mathbb{Z}}$ of all bi-infinite sequences of Σ with shift transformation σ . In [21] (compare [25, 5]), the author generalized the class of the Cuntz-Krieger algebras to a class of C^* -algebras associated with subshifts. He also

^{© 2006} Australian Mathematical Society 1446-7887/06 \$A2.00 + 0.00

introduced several topological conjugacy invariants and presentations for subshifts by using K-theory and algebraic structure of the associated C^* -algebras with the subshifts in [23]. For presentation of subshifts, notions of the λ -graph system and symbolic matrix system have been introduced ([23]). They are generalizations of the λ -graph (labeled graph) and the symbolic matrix for sofic subshifts to general subshifts.

We henceforth denote by \mathbb{Z}_+ the set of all nonnegative integers. Let Σ be a finite set that is called an alphabet. A λ -graph system $\mathfrak{L} = (V, E, \lambda, \iota)$ consists of a vertex set $V = \bigcup_{l \in \mathbb{Z}_+} V_l$, an edge set $E = \bigcup_{l \in \mathbb{Z}_+} E_{l,l+1}$, a labeling map $\lambda : E \to \Sigma$ and a surjective map $\iota(=\iota_{l,l+1}) : V_{l+1} \to V_l$ for each $l \in \mathbb{Z}_+$ with a certain compatible condition, called the local property. Its matrix presentation $(\mathcal{M}_{l,l+1}, I_{l,l+1}), l \in \mathbb{Z}_+$ is called a symbolic matrix system, denoted by (\mathcal{M}, I) . The λ -graph systems give rise to subshifts by gathering label sequences appearing in the labeled Bratteli diagrams of the λ -graph systems. Conversely, there is a canonical method to construct a λ -graph system from an arbitrary subshift [23]. It is called the *canonical* λ -graph system for subshift Λ .

In [24], the author constructed C^* -algebras from λ -graph systems and studied their structure. Let $\mathfrak{L} = (V, E, \lambda, \iota)$ be a λ -graph system over alphabet Σ . Let $\{v_1^l, \ldots, v_{m(l)}^l\}$ be the set of the vertex V_l . We henceforth assume that a λ -graph system \mathfrak{L} is left-resolving, that is, there are no distinct edges with the same label and the same terminal vertex. The C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ is realized as a universal unique C^* -algebra subject to certain operator relations among generating partial isometries S_{α} , corresponding to the symbols $\alpha \in \Sigma$ and projections E_i^l corresponding to the vertices $v_i^l \in V_l$, $i = 1, \ldots, m(l)$, $l \in \mathbb{Z}_+$, encoded by the concatenation rule of \mathfrak{L} . Irreducibility and aperiodicity for finite directed graphs have been generalized to λ -graph systems in [24]. If \mathfrak{L} satisfies condition (I), a condition generalizing condition (I) for finite square matrices defined by [7], and is irreducible, then the C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ is simple. In particular, if \mathfrak{L} is aperiodic, then $\mathcal{O}_{\mathfrak{L}}$ is simple and purely infinite ([24], compare [27]).

In this paper, we investigate ideal structures of the C^* -algebras $\mathcal{O}_{\mathfrak{L}}$. The discussions are based on a line of Cuntz's paper [6] in which the ideal structure of the Cuntz-Krieger algebras were studied (compare [13]). We generalize condition (II) for finite directed graphs, defined in [6], to λ -graph systems. By considering saturated hereditary subsets of \mathfrak{L} with respect to arrows of edges, we show the following theorem.

THEOREM A (Proposition 3.5, Theorem 3.6). Suppose that \mathfrak{L} satisfies condition (II). There is a bijective correspondence between the lattice of all saturated hereditary subsets of \mathfrak{L} and the lattice of all ideals of the algebra $\mathcal{O}_{\mathfrak{L}}$. Furthermore, for any ideal \mathcal{I} of $\mathcal{O}_{\mathfrak{L}}$, the quotient C^* -algebra $\mathcal{O}_{\mathfrak{L}}/\mathcal{I}$ is isomorphic to the C^* -algebra $\mathcal{O}_{\mathfrak{L}^{\setminus C_{\mathcal{I}}}}$ associated with the λ -graph system $\mathfrak{L}^{\setminus C_{\mathcal{I}}}$, obtained by removing the corresponding saturated hereditary subset $C_{\mathcal{I}}$ for \mathcal{I} . COROLLARY B. In the λ -graph systems satisfying condition (II), the class of the C*-algebras associated with λ -graph systems is closed under quotients by ideals.

By Corollary B, it is expected that rich examples of simple purely infinite nuclear C^* -algebras of this class live outside Cuntz-Krieger algebras (compare [24, Theorem 7.7], [16], [26] and [20]). We further study the structure of an ideal of $\mathcal{O}_{\mathfrak{L}}$ in Section 4. We prove that an ideal of $\mathcal{O}_{\mathfrak{L}}$ is stably isomorphic to the C^* -subalgebra of $\mathcal{O}_{\mathfrak{L}}$ associated with the corresponding saturated hereditary subset of V (Theorem 4.3). As a result, the K-theory formulae for ideals of $\mathcal{O}_{\mathfrak{L}}$ are presented in terms of the corresponding saturated hereditary subsets of V (Theorem 4.5).

If a λ -graph system \mathfrak{L} comes from a finite directed graph G, the associated C^* algebra $\mathcal{O}_{\mathfrak{L}}$ becomes a Cuntz-Krieger algebra \mathcal{O}_{A_G} for its adjacency matrix A_G with entries in {0, 1}. The results of this paper, Theorem A, Corollary B, Theorem 4.3, Theorem 4.5, and Proposition 4.6 are generalizations of Cuntz's result [6, Theorem 2.5] for Cuntz-Krieger algebras. Other generalizations of Cuntz-Krieger algebras from this graph point of view have been studied by [2, 10, 12, 15, 17, 18, 30, 34] and [35]. Related discussions for C^* -algebras generated by Hilbert C^* -bimodules can be found in [14].

2. Review of the C^{*}-algebras associated with λ -graph systems

Recall that a λ -graph system $\mathfrak{L} = (V, E, \lambda, \iota)$ over an alphabet Σ is a directed Bratteli diagram with vertex set $V = \bigcup_{l \in \mathbb{Z}_+} V_l$ and edge set $E = \bigcup_{l \in \mathbb{Z}_+} E_{l,l+1}$ that is labeled with symbols in Σ by $\lambda : E \to \Sigma$, and that is supplied with surjective maps $\iota (= \iota_{l,l+1}) : V_{l+1} \to V_l$ for $l \in \mathbb{Z}_+$. Here, both the vertex sets $V_l, l \in \mathbb{Z}_+$ and the edge sets $E_{l,l+1}$, $l \in \mathbb{Z}_+$ are finite disjoint sets. An edge e in $E_{l,l+1}$ has its source vertex s(e) in V_l and its terminal vertex t(e) in V_{l+1} respectively. Every vertex in V has a successor and every vertex in V_l for $l \in \mathbb{N}$ has a predecessor. It is required that there exists a bijective correspondence, which preserves labels, between $\{e \in E_{l,l+1} \mid t(e) = v, \iota(s(e)) = u\}$ and $\{e \in E_{l-1,l} \mid s(e) = u, t(e) = \iota(v)\}$ for all pairs of vertices $u \in V_{l-1}$ and $v \in V_{l+1}$. This property of the λ -graph systems is called the *local property*. We call an edge $e \in E_{l,l+1}$ a λ -edge and a connecting finite sequence of λ -edges a λ -path. For $u, v \in V$, if $\iota(v) = u$, we say that there exists an *i-edge* from v to u. Similarly we use the term *i-path*. We denote by $\{v_1^l, v_2^l, \ldots, v_{m(l)}^l\}$ the vertex set V_l of V at level l. A finite labeled graph (G, λ) over Σ with underlying finite directed graph G = (V, E) and labeling map $\lambda : E \rightarrow \Sigma$ yields a λ -graph system $\mathfrak{L}_{(G,\lambda)}$ by setting $V_l = V$, $E_{l,l+1} = E$ for $l \in \mathbb{Z}_+$ and $\iota = id$ (compare [24, Section 7]).

Let us now briefly review the C^{*}-algebra $\mathcal{O}_{\mathfrak{L}}$ associated with the λ -graph system \mathfrak{L} , which was originally constructed in [24] to be a groupoid C^{*}-algebra of a groupoid

of a continuous graph obtained by \mathfrak{L} (compare [8, 9, 31]). The C*-algebras $\mathcal{O}_{\mathfrak{L}}$ are generalization of the C*-algebras associated with subshifts. That is, if the λ -graph system is the canonical λ -graph system for a subshift Λ , the constructed C*-algebra coincides with the C*-algebra \mathcal{O}_{Λ} associated with the subshift Λ in [26] (compare [5]).

Let $\mathfrak{L} = (V, E, \lambda, \iota)$ be a left-resolving λ -graph system over Σ . We denote by Λ the presented subshift $\Lambda_{\mathfrak{L}}$ by \mathfrak{L} . We denote by Λ^k the set of admissible words in Λ of length k. We set $\Lambda^* = \bigcup_{k=0}^{\infty} \Lambda^k$, where Λ^0 denotes the empty word. Define the transition matrices $A_{l,l+1}$, $I_{l,l+1}$ of \mathfrak{L} by setting for i = 1, 2, ..., m(l), $j = 1, 2, ..., m(l+1), \alpha \in \Sigma$,

$$A_{l,l+1}(i, \alpha, j) = \begin{cases} 1 & \text{if } s(e) = v_i^l, \lambda(e) = \alpha, t(e) = v_j^{l+1} \text{ for some } e \in E_{l,l+1}, \\ 0 & \text{otherwise}, \end{cases}$$
$$I_{l,l+1}(i, j) = \begin{cases} 1 & \text{if } \iota_{l,l+1}(v_j^{l+1}) = v_i^l, \\ 0 & \text{otherwise}. \end{cases}$$

The C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ is realized as the universal unital C^* -algebra generated by partial isometries $S_{\alpha}, \alpha \in \Sigma$ and projections $E_i^l, i = 1, 2, ..., m(l), l \in \mathbb{Z}_+$ subject to the following operator relations called (\mathfrak{L})

(2.1)
$$\sum_{\alpha \in \Sigma} S_{\alpha} S_{\alpha}^* = 1,$$

(2.2)
$$\sum_{i=1}^{m(l)} E_i^l = 1, \quad E_i^l = \sum_{j=1}^{m(l+1)} I_{l,l+1}(i,j) E_j^{l+1},$$

(2.3)
$$S_{\beta}S_{\beta}^{*}E_{i}^{l} = E_{i}^{l}S_{\beta}S_{\beta}^{*},$$

(2.4)
$$S_{\beta}^{*}E_{i}^{l}S_{\beta} = \sum_{j=1}^{m(l+1)} A_{l,l+1}(i,\beta,j)E_{j}^{l+1},$$

for $\beta \in \Sigma$, i = 1, 2, ..., m(l), $l \in \mathbb{Z}_+$. It is nuclear ([24, Proposition 5.6]). The relations (2.1), (2.3) and (2.4) yield the relations

(2.5)
$$E_{i}^{l} = \sum_{\alpha \in \Sigma} \sum_{j=1}^{m(l+1)} A_{l,l+1}(i, \alpha, j) S_{\alpha} E_{j}^{l+1} S_{\alpha}^{*}$$

for i = 1, 2, ..., m(l), $l \in \mathbb{Z}_+$. For a word $\mu = \mu_1 \cdots \mu_k \in \Lambda^k$, we set $S_{\mu} = S_{\mu_1} \cdots S_{\mu_k}$. Then the algebra of all finite linear combinations of the elements of the form $S_{\mu} E_i^l S_{\nu}^*$, for $\mu, \nu \in \Lambda^*$, $i = 1, ..., m(l), l \in \mathbb{Z}_+$, is a dense *-subalgebra of $\mathcal{O}_{\mathfrak{L}}$. We define three C*-subalgebras \mathcal{F}_k^l , $(k \leq l)$, \mathcal{F}_k^{∞} and $\mathcal{F}_{\mathfrak{L}}$ of $\mathcal{O}_{\mathfrak{L}}$. The first one, \mathcal{F}_k^l , is generated by $S_{\mu} E_i^l S_{\nu}^*$, $\mu, \nu \in \Lambda^k$, i = 1, ..., m(l), the second one, \mathcal{F}_k^{∞} , is

generated by \mathcal{F}_{k}^{l} , $k \leq l$, $l \in \mathbb{Z}_{+}$, and the third one, $\mathcal{F}_{\mathfrak{L}}$, is generated by \mathcal{F}_{k}^{∞} , $k \in \mathbb{Z}_{+}$. There exist two embeddings $\iota_{l,l+1} : \mathcal{F}_{k}^{l} \hookrightarrow \mathcal{F}_{k}^{l+1}$, coming from the second relation of (2.2) and $\lambda_{k,k+1} : \mathcal{F}_{k}^{l} \hookrightarrow \mathcal{F}_{k+1}^{l+1}$, coming from (2.5). The latter embeddings induce an embedding of \mathcal{F}_{k}^{∞} into $\mathcal{F}_{k+1}^{\infty}$ that we also denote by $\lambda_{k,k+1}$. Since the algebra \mathcal{F}_{k}^{l} is finite dimensional, the embeddings $\iota_{l,l+1} : \mathcal{F}_{k}^{l} \hookrightarrow \mathcal{F}_{k}^{l+1}$, $l \in \mathbb{N}$ yield the AF-algebra $\mathcal{F}_{\mathfrak{L}}^{\infty}$, and the embeddings $\lambda_{k,k+1} : \mathcal{F}_{k}^{\infty} \hookrightarrow \mathcal{F}_{k+1}^{\infty}$, $k \in \mathbb{N}$ yield the AF-algebra $\mathcal{F}_{\mathfrak{L}}$.

For a vertex $v_i^l \in V_l$, set

$$\Gamma^+(v_i^l) = \left\{ (\alpha_1, \alpha_2, \dots) \in \Sigma^{\mathbb{N}} \middle| \begin{array}{l} \text{there exists an edge } e_{n,n+1} \in E_{n,n+1} \text{ for } n \geq l \\ \text{such that } v_i^l = s(e_{l,l+1}), t(e_{n,n+1}) = s(e_{n+1,n+2}), \\ \lambda(e_{n,n+1}) = \alpha_{n-l+1} \end{array} \right\},$$

the set of all label sequences in \mathfrak{L} starting at v_i^l . We say that \mathfrak{L} satisfies condition (I) if for each $v_i^l \in V$, the set $\Gamma^+(v_i^l)$ contains at least two distinct sequences. Under condition (I), the algebra $\mathcal{O}_{\mathfrak{L}}$ can be realized as the unique C^* -algebra subject to the relations (\mathfrak{L}). This means that if \widehat{S}_{α} , $\alpha \in \Sigma$, and \widehat{E}_i^l , $i = 1, \ldots, m(l)$, $l \in \mathbb{Z}_+$, are another family of nonzero partial isometries and nonzero projections satisfying the relations (\mathfrak{L}), then the map $S_{\alpha} \to \widehat{S}_{\alpha}$, $E_i^l \to \widehat{E}_i^l$ extends to an isomorphism from $\mathcal{O}_{\mathfrak{L}}$ onto the C^* -algebra $\widehat{\mathcal{O}}_{\mathfrak{L}}$ generated by \widehat{S}_{α} , $\alpha \in \Sigma$, and \widehat{E}_i^l , $i = 1, \ldots, m(l)$, $l \in \mathbb{Z}_+$ ([24, Theorem 4.3]).

Let $\mathcal{A}_{\mathfrak{L}}$ be the C^* -subalgebra of $\mathcal{O}_{\mathfrak{L}}$ generated by the projections $E_i^l, i = 1, 2, ..., m(l), l \in \mathbb{Z}_+$. Let $\Omega_{\mathfrak{L}}$ the projective limit of the system $\iota_{l,l+1} : V_{l+1} \rightarrow V_l, l \in \mathbb{Z}_+$. We endow $\Omega_{\mathfrak{L}}$ with the projective limit topology so that it is a compact Hausdorff space. An element of $\Omega_{\mathfrak{L}}$ is called an *ι*-orbit. By the universality of the algebra $\mathcal{O}_{\mathfrak{L}}$ the algebra $\mathcal{A}_{\mathfrak{L}}$ is isomorphic to the commutative C^* -algebra $C(\Omega_{\mathfrak{L}})$ of all complex valued continuous functions on $\Omega_{\mathfrak{L}}$. As a corollary of [24, Theorem 4.3], if \mathfrak{L} satisfies condition (I), for a nonzero ideal \mathcal{I} of $\mathcal{O}_{\mathfrak{L}}$, we have $\mathcal{I} \cap \mathcal{A}_{\mathfrak{L}} \neq \{0\}$.

A λ -graph system \mathfrak{L} is said to be *irreducible* if for a vertex $v \in V_l$ and an *i*-orbit $x = (x_i)_{i \in \mathbb{Z}_+} \in \Omega_{\mathfrak{L}}$, there exists a λ -path starting at v and terminating at x_{l+N} for some $N \in \mathbb{N}$. Define a positive operator $\lambda_{\mathfrak{L}}$ on $\mathcal{A}_{\mathfrak{L}}$ by $\lambda_{\mathfrak{L}}(X) = \sum_{\alpha \in \mathfrak{L}} S^*_{\alpha} X S_{\alpha}$ for $X \in \mathcal{A}_{\mathfrak{L}}$. The operator $\lambda_{\mathfrak{L}}$ on $\mathcal{A}_{\mathfrak{L}}$ induces the embedding $\mathcal{F}_k^{\infty} \subset \mathcal{F}_{k+1}^{\infty}$, $k \in \mathbb{N}$ so as to define the AF-algebra $\mathcal{F}_{\mathfrak{L}} = \lim_{\alpha \in \mathfrak{L}} \mathcal{F}_k^{\infty}$. We say that $\lambda_{\mathfrak{L}}$ is *irreducible* if there exists no non-trivial ideal of $\mathcal{A}_{\mathfrak{L}}$ invariant under $\lambda_{\mathfrak{L}}$. Then \mathfrak{L} is *irreducible* if and only if $\lambda_{\mathfrak{L}}$ is *irreducible*. If \mathfrak{L} is *irreducible* with condition (I), the C*-algebra $\mathcal{O}_{\mathfrak{L}}$ is simple ([24, Theorem 4.7], compare [27]).

3. Hereditary subsets of the vertices and ideals

This section and the next section are the main parts of this paper. In what follows we assume that a λ -graph system $\mathfrak{L} = (V, E, \lambda, \iota)$ over Σ is left-resolving and satisfies

condition (I). We mean by an ideal of a C^* -algebra a closed two-sided ideal. Recall

that the vertex set V_l is denoted by $\{v_1^l, \ldots, v_{m(l)}^l\}$. For $v_i^l \in V_l$ and $v_j^{l+1} \in V_{l+1}$, we write $v_i^l \ge v_j^{l+1}$ if $\iota_{l,l+1}(v_j^{l+1}) = v_i^l$. We also write $v_i^l \ge v_j^{l+1}$ if there exists an edge $e \in E_{l,l+1}$ such that $s(e) = v_i^l$, $t(e) = v_j^{l+1}$. For $v_i^l \in V_l$ and $v_m^{l+k} \in V_{l+k}$, we write $v_i^l \ge v_m^{l+k}$ (respectively $v_i^l \ge v_m^{l+k}$) if there exist $v_{i_{1-1}}^{l+1}, \ldots, v_{i_{k-1}}^{l+k-1}$ such that

$$v_i^l \stackrel{\iota}{\geq} v_{i_1}^{l+1} \stackrel{\iota}{\geq} \cdots \stackrel{\iota}{\geq} v_{i_{k-1}}^{l+k-1} \stackrel{\iota}{\geq} v_m^{l+k} \quad (\text{respectively } v_i^l \stackrel{\lambda}{\geq} v_{i_1}^{l+1} \stackrel{\lambda}{\geq} \cdots \stackrel{\lambda}{\geq} v_{i_{k-1}}^{l+k-1} \stackrel{\lambda}{\geq} v_m^{l+k})$$

A subset C of V is said to be *i*-hereditary (respectively λ -hereditary) if for $v_i^l \in C \cap V_l$ the condition $v_i^l \stackrel{i}{\geq} v_j^{l+1}$ (respectively $v_i^l \stackrel{\lambda}{\geq} v_j^{l+1}$) implies $v_j^{l+1} \in C$. It is said to be hereditary if C is both *i*-hereditary and λ -hereditary. It is said to be *i*-saturated (respectively λ -saturated) if it contains every vertex $v_i^l \in C \cap V_l$ for which $v_i^l \stackrel{i}{\geq} v_i^{l+1}$ (respectively $v_i^l \stackrel{\lambda}{\geq} v_j^{l+1}$) implies $v_j^{l+1} \in C$. If C is both *i*-saturated and λ -saturated, it is said to be saturated.

DEFINITION. A λ -graph system $\mathfrak{L}' = (V', E', \lambda', \iota')$ over Σ' is said to be a λ -graph subsystem of \mathfrak{L} if it satisfies the following conditions:

$$\emptyset \neq V'_l \subset V_l, \quad \emptyset \neq E'_{l,l+1} \subset E_{l,l+1}, \quad \text{for } l \in \mathbb{Z}_+, \\ \lambda|_{E'} = \lambda', \quad \iota|_{V'} = \iota', \quad \Sigma' \subset \Sigma,$$

and an edge $e \in E$ belongs to E' if and only if the both vertices s(e), t(e) belong to V'. Hence a λ -graph subsystem is determined by only its vertex set.

LEMMA 3.1. For a saturated hereditary subset $C \subset V$, set

$$V^{\setminus C} = V \setminus C,$$

$$E^{\setminus C} = \{ e \in E \mid s(e), \ t(e) \in V \setminus C \},$$

$$\lambda^{\setminus C} = \lambda \mid_{E^{\setminus C}}, \quad \iota^{\setminus C} = \iota \mid_{V^{\setminus C}}.$$

Then $(V^{\setminus C}, E^{\setminus C}, \lambda^{\setminus C}, \iota^{\setminus C})$ is a λ -graph subsystem over Σ of \mathfrak{L} .

PROOF. For a vertex $u \in V_l^{\setminus C}$, there exists a vertex $w \in V_{l+1}^{\setminus C}$ such that $\iota(w) = u$, because C is *i*-saturated. Similarly, there exist an edge $e \in E_{l,l+1}^{\setminus C}$ and a vertex $w' \in V_{l+1}^{\setminus C}$ such that s(e) = u, t(e) = w', because C is λ -saturated. Let u, v be vertices with $u \in V_l^{\setminus C}$, $v \in V_{l+2}^{\setminus C}$. Put $v' = \iota(v)$. As C is *i*-hereditary, we have that v' belongs to $V_{l+1}^{\setminus C}$. As C is λ -hereditary, if an edge $e \in E_{l,l+1}$ satisfies t(e) = v, one sees that s(e) belongs to $V_{l+1}^{\setminus C}$ and hence *e* belongs to $E_{l,l+1}^{\setminus C}$. Therefore $(V^{\setminus C}, E^{\setminus C}, \lambda^{\setminus C}, \iota^{\setminus C})$ inherits the local property of \mathfrak{L} . Thus $(V^{\setminus C}, E^{\setminus C}, \lambda^{\setminus C}, \iota^{\setminus C})$ becomes a λ -graph system. We denote by $\mathfrak{L}^{\backslash C}$ the λ -graph system $(V^{\backslash C}, E^{\backslash C}, \lambda^{\backslash C}, \iota^{\backslash C})$ and call it the λ -graph subsystem of \mathfrak{L} obtained by removing C. Let \mathcal{I}_C be the closed ideal of $\mathcal{O}_{\mathfrak{L}}$ generated by the projections E_i^l for $v_i^l \in C$, that is, $\mathcal{I}_C = \mathcal{O}_{\mathfrak{L}} \{E_i^l \mid v_i^l \in C\} \mathcal{O}_{\mathfrak{L}}$ the closure of $\mathcal{O}_{\mathfrak{L}} \{E_i^l \mid v_i^l \in C\} \mathcal{O}_{\mathfrak{L}}$.

LEMMA 3.2. The set of all linear combinations of elements of the form

(3.1)
$$S_{\mu}E_{i}^{l}S_{\nu}^{*}, \quad for \ v_{i}^{l} \in C, \ \mu, \nu \in \Lambda^{*}$$

is dense in \mathcal{I}_C .

PROOF. Since the finite linear combinations of elements of the form $S_{\xi} E_f^p S_{\eta}^*$ for $|\xi|, |\eta| \le p, f = 1, ..., m(p)$ is dense in $\mathcal{O}_{\mathfrak{L}}$, elements of the form

$$S_{\xi}E_{f}^{p}S_{\eta}^{*}E_{i}^{l}S_{\zeta}E_{g}^{q}S_{\gamma}^{*}, \text{ for } v_{i}^{l} \in C, |\xi|, |\eta| \leq p, |\zeta|, |\gamma| \leq q$$

span the ideal \mathcal{I}_C . Put $T = S_{\xi} E_f^p S_{\eta}^* E_i^l S_{\zeta} E_g^q S_{\gamma}^*$ and assume $T \neq 0$. The equality

$$S_{\eta}^{*}E_{i}^{l}S_{\eta} = \sum_{j=1}^{m(l+|\eta|)} A_{l,l+|\eta|}(i,\eta,j)E_{j}^{l+|\eta|}$$

holds, where $A_{l,l+|\eta|}(i, \eta, j) = 1$, if there exists a λ -path from v_i^l to $v_j^{l+|\eta|}$ with label η , otherwise $A_{l,l+|\eta|}(i, \eta, j) = 0$. The vertex $v_j^{l+|\eta|}$ belongs to C if $A_{l,l+|\eta|}(i, \eta, j) = 1$, because $v_i^l \in C$ and C is λ -hereditary. As $T = S_{\xi} E_f^p S_{\eta}^* E_i^l S_{\eta} S_{\xi} E_g^q S_{\gamma}^*$ and we may assume that l is large enough, T is assumed to be of the form $T = S_{\xi} E_i^l S_{\eta}^* S_{\xi} E_g^q S_{\gamma}^*$ for $v_i^l \in C$. As $T \neq 0$, the element $E_i^l S_{\eta}^* S_{\zeta}$ is either of the form $E_i^l S_{\nu}$, or $E_i^l S_{\nu}^* f$ for some word ν . In the former case, we have $T = S_{\xi} S_{\nu} S_{\nu}^* E_i^l S_{\nu} E_g^q S_{\gamma}^*$. Since $S_{\nu}^* E_i^l S_{\nu}$ is a finite linear combination of $E_j^{l+|\nu|}$ for $v_j^{l+|\nu|} \in C$ and l is large enough, T is a finite linear combinations of elements of the form (3.1), because C is λ -hereditary. In the latter case, we have $T = S_{\xi} E_i^l S_{\nu} E_g^q S_{\nu} S_{\nu}^* S_{\gamma}^*$. Since $S_{\nu}^* E_g^q S_{\nu}$ is a finite linear combinations of $E_j^{q+|\nu|}$ for $v_j^{q+|\nu|} \in V_{q+|\nu|}$ and l is large enough, we have $T = S_{\xi} E_i^l S_{\gamma\nu}^*$. Hence we get the desired assertion.

LEMMA 3.3. If E_i^l belongs to the ideal \mathcal{I}_C , the vertex v_i^l belongs to the set C.

PROOF. For $k \leq l$, set

$$E_{k,l} = \sum_{\substack{\mu, j \\ |\mu| = k, v'_j \in C}} S_{\mu} E^l_j S^*_{\mu}$$

belonging to \mathcal{I}_C . For an operator $T = S_{\xi} E_i^l S_{\eta}^*$ with $v_i^l \in C$, it follows that $T E_{k,l} = E_{k,l}T = T$ for large enough k, l. Lemma 3.2 says that $\{E_{k,l}\}_{k,l}$ is an approximate unit

for \mathcal{I}_C . Suppose that a vertex $v_J^L \in V$ does not belong to C. It suffices to show that the equality

(3.2)
$$||E_J^L E_{k,l} - E_J^L|| = 1$$

holds for all large enough k, l. We fix $k \leq l$ large enough. We may assume that $E_J^L E_{k,l} \neq 0$ and $L + k \leq l$. There exists an admissible word μ of length k such that $S_{\mu}^* E_J^L S_{\mu} E_j^l \neq 0$ and hence $S_{\mu}^* E_J^L S_{\mu} \geq E_j^l$. On the other hand, C is saturated, so we may find a λ -path π in $E_{L,L+k}$ whose source vertex $s(\pi)$ is v_J^L , and an *i*-path from the terminal vertex $t(\pi)$ of π to a vertex v_p^l that does not belong to C. We set $\gamma = \lambda(\pi)$ the label of π so that $S_{\nu}^* E_J^L S_{\nu} \geq E_p^l$. It then follows that

$$E_{J}^{L} \geq S_{\mu}S_{\mu}^{*}E_{J}^{L}S_{\mu}S_{\mu}^{*} + S_{\gamma}S_{\gamma}^{*}E_{J}^{L}S_{\gamma}S_{\gamma}^{*} \geq S_{\mu}E_{J}^{l}S_{\mu}^{*} + S_{\gamma}E_{p}^{l}S_{\gamma}^{*}.$$

Since $\sum_{|\nu|=k, \nu_j^l \in C} S_{\nu} E_j^l S_{\nu}^*$ is orthogonal to $S_{\gamma} E_p^l S_{\gamma}^*$, one obtains that

$$E_J^L E_{k,l} - E_J^L \ge S_\gamma E_p^l S_\gamma^*$$

so that (3.2) holds.

LEMMA 3.4. For any nonzero closed ideal \mathcal{I} of the C^{*}-algebra $\mathcal{O}_{\mathfrak{L}}$, put

$$C_{\mathcal{I}} = \{ v_i^l \in V \mid E_i^l \in \mathcal{I} \}.$$

Then $C_{\mathcal{I}}$ is a nonempty saturated hereditary subset of V.

PROOF. Since \mathfrak{L} satisfies condition (I), the set $C_{\mathcal{I}}$ is nonempty because of the uniqueness of the algebra $\mathcal{O}_{\mathfrak{L}}$. Take $v_i^l \in C_{\mathcal{I}}$. Suppose that v_j^{l+1} satisfies $v_i^l \succeq v_j^{l+1}$. The inequality $E_i^l \ge E_j^{l+1}$ assures $E_j^{l+1} \in \mathcal{I}$. Suppose next $v_i^l \ge v_j^{l+1}$. There exists a symbol $\alpha \in \Sigma$ such that $A_{l,l+1}(i, \alpha, j) = 1$. By (2.4), we have $S_{\alpha}^* E_i^l S_{\alpha} \ge E_j^{l+1}$ so that $E_j^{l+1} \in \mathcal{I}$. Hence $C_{\mathcal{I}}$ is hereditary. For v_i^l , suppose that $v_i^l \succeq v_j^{l+1}$ implies $v_j^{l+1} \in C_{\mathcal{I}}$. This means that $I_{l,l+1}(i, j) = 1$ implies $E_j^{l+1} \in \mathcal{I}$. By the second equality of (2.2), we see $E_i^l \in \mathcal{I}$. Suppose next that $v_i^l \succeq v_j^{l+1}$ implies $v_j^{l+1} \in C_{\mathcal{I}}$. This means that $A_{l,l+1}(i, \alpha, j) = 1$ implies $E_j^{l+1} \in \mathcal{I}$. By (2.4), we have $S_{\alpha}^* E_i^l S_{\alpha} \in \mathcal{I}$ for all $\alpha \in \Sigma$, so that $E_i^l = \sum_{\alpha \in \Sigma} S_{\alpha} S_{\alpha}^* E_i^l S_{\alpha} \in \mathcal{I}$ belongs to \mathcal{I} . Thus \mathcal{I} is saturated.

PROPOSITION 3.5. Let $\mathfrak{L} = (V, E, \lambda, \iota)$ be a λ -graph system satisfying condition (I). Let C be a saturated hereditary subset of V. A vertex v_i^l belongs to C if and only if E_i^l belongs to \mathcal{I}_C . Hence there exists a bijective correspondence between the set of all saturated hereditary subsets of V and the set of all ideals in $\mathcal{O}_{\mathfrak{L}}$.

PROOF. Let C be a saturated hereditary subset of V. For a vertex $v_i^l \in V$, we have $v_i^l \in C$ if and only if $E_i^l \in \mathcal{I}_C$ by Lemma 3.3. For an ideal \mathcal{I} of $\mathcal{O}_{\mathfrak{L}}$, we have $E_i^l \in \mathcal{I}$ if and only if $v_i^l \in \mathcal{C}_{\mathcal{I}}$ by definition of $\mathcal{C}_{\mathcal{I}}$. Hence we conclude the assertions.

[8]

DEFINITION. A λ -graph system \mathfrak{L} satisfies *condition* (II) if for every saturated hereditary subset $C \subset V$, the λ -graph system $\mathfrak{L}^{\setminus C}$ satisfies condition (I).

Let A be an $n \times n$ square matrix with entries in {0, 1}. Then A satisfies condition (II) in the sense of Cuntz [6] if and only if the natural λ -graph system \mathcal{L}^{Λ_A} constructed from A satisfies condition (II) in the above sense (compare Section 5).

THEOREM 3.6. Suppose that a λ -graph system \mathfrak{L} satisfies condition (II). For an ideal \mathcal{I} of $\mathcal{O}_{\mathfrak{L}}$, the quotient C^* -algebra $\mathcal{O}_{\mathfrak{L}}/\mathcal{I}$ is isomorphic to the C^* -algebra $\mathcal{O}_{\mathfrak{L}^{\setminus C_{\mathcal{I}}}}$ associated with the λ -graph system $\mathfrak{L}^{\setminus C_{\mathcal{I}}}$ obtained from \mathfrak{L} by removing the saturated hereditary subset $C_{\mathcal{I}}$ for \mathcal{I} .

PROOF. We denote by \overline{S}_{α} , \overline{E}_{i}^{l} the quotient images of S_{α} , E_{i}^{l} in the quotient C^{*} -algebra $\mathcal{O}_{\mathfrak{L}}/\mathcal{I}$ respectively. Let s_{α} , e_{i}^{l} be the canonical generating partial isometries for $\alpha \in \Sigma$ and the projections corresponding to the vertices v_{i}^{l} of $V^{\setminus C_{\mathfrak{I}}}$ in $\mathcal{O}_{\mathfrak{L}^{\setminus C_{\mathfrak{I}}}}$. Since we have $\overline{E}_{i}^{l} \neq 0$ if and only if $v_{i}^{l} \in V^{\setminus C_{\mathfrak{I}}}$, the relations

$$\overline{S}_{\alpha}^{*}\overline{E}_{i}^{l}\overline{S}_{\alpha} = \sum_{k=1}^{m(l+1)} A_{l,l+1}(i,\alpha,k)\overline{E}_{k}^{l+1}, \quad \text{for } \alpha \in \Sigma$$

hold. By the uniqueness of the algebras $\mathcal{O}_{\mathfrak{L}}$ and $\mathcal{O}_{\mathfrak{L}^{\backslash C_{\mathcal{I}}}}$, subject to the operator relations, the correspondence $\overline{S}_{\alpha} \leftrightarrow s_{\alpha}$, $\overline{E}_{i}^{l} \leftrightarrow e_{i}^{l}$ for $\alpha \in \Sigma$, $v_{i}^{l} \in V^{\backslash C_{\mathcal{I}}}$ extends to an isomorphism between $\mathcal{O}_{\mathfrak{L}}/\mathcal{I}$ and $\mathcal{O}_{\mathfrak{L}^{\backslash C_{\mathcal{I}}}}$.

COROLLARY 3.7. In the λ -graph systems satisfying condition (II), the class of the C^{*}-algebras associated with λ -graph systems is closed under quotients by its ideals.

We say a closed ideal \mathcal{J} of $\mathcal{A}_{\mathfrak{L}}$ to be *saturated* if $\lambda_{\mathfrak{L}}(E_i^l) \in \mathcal{J}$ implies $E_i^l \in \mathcal{J}$. We are assuming that a λ -graph system \mathfrak{L} satisfies condition (I).

LEMMA 3.8. For an ideal \mathcal{I} of $\mathcal{O}_{\mathfrak{L}}$, set $\mathcal{J} = \mathcal{I} \cap \mathcal{A}_{\mathfrak{L}}$. Then \mathcal{J} is a nonzero $\lambda_{\mathfrak{L}}$ -invariant saturated ideal of $\mathcal{A}_{\mathfrak{L}}$.

PROOF. It suffices to show that \mathcal{J} is saturated. Suppose that $\lambda_{\mathfrak{L}}(E_i^l) \in \mathcal{J}$. We see $S^*_{\alpha} E_i^l S_{\alpha}$ belongs to \mathcal{J} for each $\alpha \in \Sigma$. Hence $E_i^l = \sum_{\alpha \in \Sigma} S_{\alpha} S^*_{\alpha} E_i^l S_{\alpha} S^*_{\alpha}$ belongs to \mathcal{J} .

LEMMA 3.9. There exists a bijective correspondence between the set of $\lambda_{\mathfrak{L}}$ -invariant closed saturated ideals of $\mathcal{A}_{\mathfrak{L}}$ and the set of saturated hereditary subsets of V.

PROOF. Let \mathcal{J} be a $\lambda_{\mathfrak{L}}$ -invariant saturated ideal of $\mathcal{A}_{\mathfrak{L}}$. Put $C_{\mathcal{J}} = \{v_i^l \in V \mid E_i^l \in \mathcal{J}\}$. As \mathcal{J} is $\lambda_{\mathfrak{L}}$ -invariant, we have $\sum_{\alpha \in \Sigma} S_{\alpha}^* E_i^l S_{\alpha}$ belongs to \mathcal{J} for $v_i^l \in C_{\mathcal{J}}$. Hence

 $A_{l,l+1}(i, \alpha, j) = 1$ implies $E_j^{l+1} \in \mathcal{J}$. This means that $C_{\mathcal{J}}$ is λ -hereditary. Suppose that $A_{l,l+1}(i, \alpha, j) = 1$ implies $v_j^{l+1} \in C_{\mathcal{J}}$. It follows that $\lambda_{\mathfrak{L}}(E_i^l) \in \mathcal{J}$ and hence $v_i^l \in C_{\mathcal{J}}$, because \mathcal{J} is saturated. By the second equality of (2.2), we know that $C_{\mathcal{J}}$ is *i*-hereditary and *i*-saturated.

For a saturated hereditary subset C of V, let \mathcal{I}_C be the ideal of $\mathcal{O}_{\mathfrak{L}}$ generated by E_i^l for $v_i^l \in C$. Put $\mathcal{J}_C = \mathcal{I}_C \cap \mathcal{A}_{\mathfrak{L}}$. By Proposition 3.5, a vertex v_i^l belongs to C if and only if E_i^l belongs to \mathcal{J}_C . It is easy to see that \mathcal{J}_C is $\lambda_{\mathfrak{L}}$ -invariant because C is λ -hereditary, and \mathcal{J}_C is saturated because C is λ -saturated.

We remark that \mathfrak{L} is irreducible if and only if there is no nontrivial $\lambda_{\mathfrak{L}}$ -invariant ideal of $\mathcal{A}_{\mathfrak{L}}$. The latter property is also equivalent to the condition that there is no proper hereditary and *i*-saturated subset of V. Thus we see the following theorem.

THEOREM 3.10. Consider the following six conditions.

- (i) $\mathcal{O}_{\mathfrak{L}}$ is simple.
- (ii) There is no nontrivial $\lambda_{\mathfrak{L}}$ -invariant saturated ideal of $\mathcal{A}_{\mathfrak{L}}$.
- (iii) There is no proper saturated hereditary subset of V.
- (iv) \mathfrak{L} is irreducible.
- (v) There is no nontrivial $\lambda_{\mathfrak{L}}$ -invariant ideal of $\mathcal{A}_{\mathfrak{L}}$.
- (vi) There is no proper hereditary and ι -saturated subset of V.

Conditions (i)-(iii) are equivalent to each other, and also conditions (iv)-(vi) are equivalent to each other. The latter conditions imply the former conditions.

PROOF. As nontrivial ideals of $\mathcal{O}_{\mathfrak{L}}$ bijectively correspond to saturated hereditary subsets of V, the first three conditions are equivalent each other. It suffices to show that (iv) is equivalent to (vi). Assume that \mathfrak{L} is irreducible. Let C be a nonempty hereditary and *i*-saturated subset of V. Take a vertex $v_i^l \in C$. Let $U_N(v_i^l)$ be the set of *i*-orbits $u = (u_n)_{n \in \mathbb{Z}_+} \in \Omega_{\mathfrak{L}}$ such that there exists a λ -path of length N from v_i^l to the vertex u_{l+N} . Since \mathfrak{L} is irreducible, we have $\Omega_{\mathfrak{L}} = \bigcup_{N=0}^{\infty} U_N(v_i^l)$. Hence there exist N_1, N_2, \ldots, N_n such that $\Omega_{\mathfrak{L}} = \bigcup_{j=1}^n U_{N_j}(v_i^l)$, because $U_N(v_i^l)$ is open in $\Omega_{\mathfrak{L}}$. We may assume that $0 \leq N_1 \leq N_2 \leq \cdots \leq N_n$. We put $N_n = L$. For a vertex $w \in V_{l+L}$, find an *i*-orbit $x = (x_n)_{n \in \mathbb{Z}_+} \in \Omega_{\mathfrak{L}}$ such that $x_{l+L} = w$. Take N_k such that $x \in U_{N_k}(v_i^l)$. Since C is λ -hereditary and *i*-hereditary, we see $x_{l+N_k} \in C$ and hence $w \in C$. This implies $V_{l+N} \subset C$. Now C is *i*-saturated, so we conclude that V = C. Therefore we get the implication from (iv) to (vi).

Suppose that \mathfrak{L} is not irreducible. There exists an *i*-orbit $u = (u_n)_{n \in \mathbb{Z}_+} \in \Omega_{\mathfrak{L}}$ and a vertex v_i^l such that *u* does not belong to $\bigcup_{N=0}^{\infty} U_N(v_i^l)$. Let $V^N(v_i^l)$ be the set of all vertices *w* in V_{l+N} that are terminal vertices of λ -edges whose source vertices are v_i^l . Put $V(v_i^l) = \bigcup_{N=0}^{\infty} V^N(v_i^l)$ and

 $W(v_i^l) = \left\{ w \in V \mid v \stackrel{i}{\geq} w \text{ for some vertex } v \in V(v_i^l) \right\} \cup V(v_i^l).$

By the local property of the λ -graph system, the set $W(v_i^l)$ is λ -hereditary and the vertices u_n do not belong to $W(v_i^l)$ for all $n \in \mathbb{Z}_+$. It is by definition that $W(v_i^l)$ is *i*-hereditary. Let C be the saturation of $W(v_i^l)$ with respect to $\geq \cdot$. As $W(v_i^l)$ is λ -hereditary, C is so from the local property of λ -graph system. It is obvious that C is *i*-hereditary. We obtain a proper hereditary and *i*-saturated subset C of V. \Box

4. Structure of ideals

In this section, we prove that an ideal of $\mathcal{O}_{\mathfrak{L}}$ is stably isomorphic to the C^* subalgebra of $\mathcal{O}_{\mathfrak{L}}$ associated with the corresponding saturated hereditary subset of V. As a result, we can present the K-theory formulae for ideals of $\mathcal{O}_{\mathfrak{L}}$ in terms of the corresponding saturated hereditary subsets of V. The notation is as in the previous sections. For a saturated hereditary subset C of V, put for $v_i^l \in C$

$$\Lambda^{C}(v_{i}^{l}) = \left\{ \mu \in \Lambda^{*} \middle| \begin{array}{l} \text{there exists a } \lambda \text{-path } \pi \text{ such that } \lambda(\pi) = \mu, \\ s(\pi) \in C, t(\pi) = v_{i}^{l} \end{array} \right\},$$

where $s(\pi)$ and $t(\pi)$ are the source vertex and the terminal vertex of π respectively. We denote by $\mathcal{O}_{\mathfrak{L}}(C)$ the C*-subalgebra of $\mathcal{O}_{\mathfrak{L}}$ generated by elements of the form $S_{\mu}E_{i}^{l}S_{\nu}^{*}$, for $\mu, \nu \in \Lambda^{C}(v_{i}^{l}), v_{i}^{l} \in C$.

LEMMA 4.1. The set of all finite linear combinations of elements of the form $S_{\mu} E_i^l S_{\nu}^*$, for $\mu, \nu \in \Lambda^C(\nu_i^l), \nu_i^l \in C$, is a dense *-subalgebra of $\mathcal{O}_{\mathfrak{L}}(C)$.

PROOF. For $v_i^l, v_i^k \in C, \mu, \nu \in \Lambda^C(v_i^l), \xi, \eta \in \Lambda^C(v_i^k)$, suppose that

$$S_{\mu}E_i^l S_{\nu}^* S_{\xi}E_j^k S_{\eta}^* \neq 0.$$

We may assume $|\nu| > |\xi|$. We then have $\nu = \xi \nu'$ for some ν' , so that

$$S_{\mu}E_{i}^{l}S_{\nu}^{*}S_{\xi}E_{j}^{k}S_{\eta}^{*}=S_{\mu}E_{i}^{l}S_{\nu'}^{*}E_{j}^{k}S_{\nu'}S_{\eta\nu'}^{*}.$$

If $|\nu'| + k \leq l$, we have that $E_i^l S_{\nu'}^* E_j^k S_{\nu'} = E_i^l$. If $|\nu'| + k \geq l$, we see that $E_i^l S_{\nu'}^* E_j^k S_{\nu'}$ is a finite sum of projections $E_h^{|\nu'|+k}$ with $v_h^{|\nu'|+k} \in C$. In both cases, $S_\mu E_i^l S_\nu^* S_\xi E_j^k S_\eta^*$ is a finite linear combination of $S_\zeta E_h^m S_\delta^*$ with $\zeta, \delta \in \Lambda^C(v_h^m), v_h^m \in C$.

We prove that the ideal \mathcal{I}_C of $\mathcal{O}_{\mathfrak{L}}$ is stably isomorphic to the C^* -algebra $\mathcal{O}_{\mathfrak{L}}(C)$ under some condition. Put $P_l = \sum_{i,v_i \in C} E_i^l$ for $l \in \mathbb{N}$. It belongs to the algebra $\mathcal{O}_{\mathfrak{L}}(C)$ and satisfies $P_l \leq P_{l+1}$. We see then a sequence of natural embeddings $P_l \mathcal{O}_{\mathfrak{L}} P_l \subset P_{l+1} \mathcal{O}_{\mathfrak{L}} P_{l+1} \subset \cdots$.

PROPOSITION 4.2. $\mathcal{O}_{\mathfrak{L}}(C) = \lim_{l \to \infty} P_l \mathcal{O}_{\mathfrak{L}} P_l$.

PROOF. We first prove the inclusion relation $\mathcal{O}_{\mathfrak{L}}(C) \subset \lim_{l \to \infty} P_l \mathcal{O}_{\mathfrak{L}} P_l$. For $v_i^l \in C$ and $\mu \in \Lambda^C(v_i^l)$, take a λ -path π such that $s(\pi) \in C$, $t(\pi) = v_i^l$, and $\lambda(\pi) = \mu$. We put $s(\pi) = v_{j_1}^{l_1}$. The projection $E_{j_1}^{l_1}$ satisfies the inequality $S_{\mu}^* E_{j_1}^{l_1} S_{\mu} \geq E_i^l$ so that $E_{j_1}^{l_1} S_{\mu} E_i^l = S_{\mu} E_i^l$. As \mathfrak{L} is left-resolving, we know that $S_{\mu}^* E_{k_1}^{l_1} S_{\mu} E_i^l = 0$ for $k_1 \neq j_1$. It then follows that $P_{l_1} S_{\mu} E_i^l = S_{\mu} E_i^l$. Symmetrically we have that $E_i^l S_{\nu}^* P_{l_2} = E_i^l S_{\nu}^*$ for some l_2 . Hence we see that $P_{l_1} S_{\mu} E_i^l S_{\nu}^* P_{l_2} = S_{\mu} E_i^l S_{\nu}^*$. Thus we have proved that for $v_i^l \in C$ and $\mu, \nu \in \Lambda^C(v_i^l)$, there exists $M \in \mathbb{N}$ such that $P_m S_{\mu} E_i^l S_{\nu}^* P_m = S_{\mu} E_i^l S_{\nu}^*$ for all $m \geq M$. This implies the inclusion relation $\mathcal{O}_{\mathfrak{L}}(C) \subset \lim_{l \to \infty} P_l \mathcal{O}_{\mathfrak{L}} P_l$.

For $v_i^l \in V$, $\mu, \nu \in \Lambda^*$, and $v_{j_i}^{l_1}, v_{j_2}^{l_2} \in C$, we next prove that the element $E_{j_i}^{l_1} S_{\mu} E_i^l S_{\nu}^* E_{j_2}^{l_2}$ belongs to the algebra $\mathcal{O}_{\mathfrak{L}}(C)$. We may assume that l is large enough because of the second relation of (2.2). Assume $S_{\mu}^* E_{j_1}^{l_1} S_{\mu} E_i^l S_{\nu}^* E_{j_2}^{l_2} S_{\nu} \neq 0$ so that $S_{\mu}^* E_{j_1}^{l_1} S_{\mu} \geq E_i^l$. Hence there exists a λ -path whose source is $v_{j_1}^{l_1}$ and terminal is connected to v_i^l by an ι -path. By the local property of the λ -graph system, we may find a λ -path π in E such that $\lambda(\pi) = \mu$, $t(\pi) = v_i^l$ and an ι -path that connects between $s(\pi)$ and $v_{j_1}^{l_1}$. Since $v_{j_1}^{l_1}$ belongs to C and C is hereditary, we see that $v_i^l \in C$ and μ belongs to $\Lambda^C(v_i^l)$. Symmetrically one sees that ν belongs to $\Lambda^C(v_i^l)$ from the inequality $S_{\nu}^* E_{j_2}^{l_2} S_{\nu} \geq E_i^l$. Hence we have $E_{j_1}^{l_1} S_{\mu} E_i^l S_{\nu}^* E_{j_2}^{l_2} = S_{\mu} E_i^l S_{\nu}^*$ and it belongs to the algebra $\mathcal{O}_{\mathfrak{L}}(C)$. Thus we have $\lim_{n \to \infty} P_l \mathcal{O}_{\mathfrak{L}} P_l \subset \mathcal{O}_{\mathfrak{L}}(C)$.

THEOREM 4.3. The ideal $\mathcal{I}_{\mathcal{C}}$ is stably isomorphic to the algebra $\mathcal{O}_{\mathfrak{L}}(\mathcal{C})$.

PROOF. Let $X_l = \mathcal{O}_{\mathfrak{L}} P_l$ for $l \in \mathbb{N}$. Then X_l has a Hilbert left $\overline{\mathcal{O}_{\mathfrak{L}} P_l \mathcal{O}_{\mathfrak{L}}}$ -module and a Hilbert right $P_l \mathcal{O}_{\mathfrak{L}} P_l$ -module structure in a natural way. Its left $\overline{\mathcal{O}_{\mathfrak{L}} P_l \mathcal{O}_{\mathfrak{L}}}$ -valued inner product and right $P_l \mathcal{O}_{\mathfrak{L}} P_l$ -valued inner product are given by

$$\langle aP_l, bP_l \rangle_L = aP_lb^*, \quad \langle aP_l, bP_l \rangle_R = P_la^*bP_l,$$

for $a, b \in \mathcal{O}_{\mathfrak{L}}$ respectively. Hence the norms on X_l coming from their respect inner products coincide with the norm on the C^* -algebra $\mathcal{O}_{\mathfrak{L}}$. As $P_l \leq P_{l+1}$, we have a natural embedding $X_l \hookrightarrow X_{l+1}$. Let X_C be the closure of $\bigcup_{l=1}^{\infty} X_l$ in the norm of $\mathcal{O}_{\mathfrak{L}}$, that is regarded as the inductive limit of the inclusions $X_l \hookrightarrow X_{l+1}, l \in \mathbb{N}$. The ideal \mathcal{I}_C and the algebra $\mathcal{O}_{\mathfrak{L}}(C)$ are the inductive limits $\lim_{l\to\infty} \overline{\mathcal{O}_{\mathfrak{L}}} P_l \mathcal{O}_{\mathfrak{L}}$ and $\lim_{l\to\infty} P_l \mathcal{O}_{\mathfrak{L}} P_l$ respectively. We then see that the subspace X_C of $\mathcal{O}_{\mathfrak{L}}$ has an induced left \mathcal{I}_C -valued inner product and right $\mathcal{O}_{\mathfrak{L}}(C)$ -valued inner product such as

$$\langle \xi, \eta \rangle_L = \xi \eta^* \in \mathcal{I}_C, \quad \langle \xi, \eta \rangle_R = \xi^* \eta \in \mathcal{O}_{\mathfrak{L}}(C),$$

for $\xi, \eta \in X_C$ respectively. It also has a natural left \mathcal{I}_C -module and right $\mathcal{O}_{\mathfrak{L}}(C)$ module structures respectively. It is easy to see that both the linear spans of $\langle \xi, \eta \rangle_L$, for $\xi, \eta \in X_C$, and $\langle \xi, \eta \rangle_R$, for $\xi, \eta \in X_C$, are dense in \mathcal{I}_C and $\mathcal{O}_{\mathfrak{L}}(C)$ respectively. Hence X_C is a full Hilbert left \mathcal{I}_C -module, and a full Hilbert right $\mathcal{O}_{\mathfrak{L}}(C)$ -module such that $\langle \xi, \eta \rangle_L \zeta = \xi \langle \eta, \zeta \rangle_R$, for $\xi, \eta, \zeta \in X_C$. This means that X_C is an $\mathcal{I}_C - \mathcal{O}_{\mathfrak{L}}(C)$ imprimitivity bimodule, so that \mathcal{I}_C and $\mathcal{O}_{\mathfrak{L}}(C)$ are Morita equivalent ([32]). By [4], they are stably isomorphic to each other.

By using the above result, we next compute the K-theory of the ideal \mathcal{I}_C . The subalgebra $\mathcal{O}_{\mathfrak{L}}(C)$ is invariant globally under the gauge action $\alpha_{\mathfrak{L}}$ on $\mathcal{O}_{\mathfrak{L}}$. We still denote by $\alpha_{\mathfrak{L}}$ the restriction of $\alpha_{\mathfrak{L}}$ to $\mathcal{O}_{\mathfrak{L}}(C)$. We denote by $\mathcal{F}_{\mathfrak{L}}(C)$ the C^* -subalgebra of $\mathcal{O}_{\mathfrak{L}}(C)$ generated by $S_{\mu}E_i^lS_{\nu}^*$, $\mu, \nu \in \Lambda^C(v_i^l)$, $|\mu| = |\nu|$, $v_i^l \in C$. That is, $\mathcal{F}_{\mathfrak{L}}(C) = \mathcal{F}_{\mathfrak{L}} \cap \mathcal{I}_C$. It is direct to see that the fixed point algebra $\mathcal{O}_{\mathfrak{L}}(C)^{\alpha_{\mathfrak{L}}}$ of $\mathcal{O}_{\mathfrak{L}}(C)$ under $\alpha_{\mathfrak{L}}$ is the algebra $\mathcal{F}_{\mathfrak{L}}(C)$. A similar discussion to [22] (compare [24]) assures that the crossed product $\mathcal{O}_{\mathfrak{L}}(C) \rtimes_{\alpha_{\mathfrak{L}}} \mathbb{T}$ is stably isomorphic to $\mathcal{F}_{\mathfrak{L}}(C)$. We can show the following result.

LEMMA 4.4 (compare [24, Lemma 7.5], [22, Lemma 4.3]).

(i)
$$K_0(\mathcal{O}_{\mathfrak{L}}(C)) \cong K_0(\mathcal{O}_{\mathfrak{L}}(C) \rtimes_{\alpha_{\mathfrak{L}}} \mathbb{T})/(\mathrm{id} - \widehat{\alpha_{\mathfrak{L}}}^{-1})K_0(\mathcal{O}_{\mathfrak{L}}(C) \rtimes_{\alpha_{\mathfrak{L}}} \mathbb{T})$$

(ii) $K_1(\mathcal{O}_{\mathfrak{L}}(C)) \cong \operatorname{Ker}(\operatorname{id} - \widehat{\alpha_{\mathfrak{L}}}^{-1}) \text{ on } K_0(\mathcal{O}_{\mathfrak{L}}(C) \rtimes_{\alpha_{\mathfrak{L}}} \mathbb{T}),$

where $\widehat{\alpha_{\mathfrak{L}}}$ is the dual action of $\alpha_{\mathfrak{L}}$.

[13]

Let $\mathcal{F}_{k}^{l}(C)$ be the C*-subalgebra of $\mathcal{F}_{\mathfrak{L}}(C)$ generated by $S_{\mu}E_{i}^{l}S_{\nu}^{*}$, $\mu, \nu \in \Lambda^{C}(v_{i}^{l})$, $|\mu| = |\nu| = k, v_{i}^{l} \in C \cap V_{l}$ and $\mathcal{F}_{k}^{\infty}(C)$ the C*-subalgebra of $\mathcal{F}_{\mathfrak{L}}(C)$ generated by $\mathcal{F}_{k}^{l}(C), k \leq l \in \mathbb{N}$. Hence we see that

$$\mathcal{F}_k^l(C) = \mathcal{F}_k^l \cap \mathcal{O}_{\mathfrak{L}}(C), \quad \mathcal{F}_k^{\infty}(C) = \mathcal{F}_k^{\infty} \cap \mathcal{O}_{\mathfrak{L}}(C).$$

The embeddings of $\iota_{l,l+1} : \mathcal{F}_k^l \hookrightarrow \mathcal{F}_k^{l+1}$ and $\lambda_{k,k+1} : \mathcal{F}_k^{\infty} \hookrightarrow \mathcal{F}_{k+1}^{\infty}$ of the original AF-algebra $\mathcal{F}_{\mathfrak{L}}$, are inherited in the algebras $\mathcal{F}_k^l(C), \mathcal{F}_{\mathfrak{L}}^{\infty}(C), \mathcal{F}_{\mathfrak{L}}(C)$, so that $\mathcal{F}_{\mathfrak{L}}(C)$ is an AF-algebra. Let $m_C(l)$ be the cardinal number of the vertex set $C \cap V_l$. We put $C \cap V_l = \{u_1^l, u_2^l, \ldots, u_{m_C(l)}^l\}$. Define the following matrices:

$$A(C)_{l,l+1}(i, \alpha, j) = \begin{cases} 1 & \text{if } s(e) = u_i^l, \lambda(e) = \alpha, \ t(e) = u_j^{l+1} \text{ for some } e \in E_{l,l+1} \\ 0 & \text{otherwise,} \end{cases}$$
$$I(C)_{l,l+1}(i, j) = \begin{cases} 1 & \text{if } \iota_{l,l+1}(u_j^{l+1}) = u_i^l \\ 0 & \text{otherwise,} \end{cases}$$
$$A(C)_{l,l+1}(i, j) = \sum_{\alpha \in \Sigma} A(C)_{l,l+1}(i, \alpha, j),$$

for $i = 1, 2, ..., m_C(l), j = 1, 2, ..., m_C(l+1)$. Let

$$D(C)_{l,l+1} = I(C)_{l,l+1}^{t} - A(C)_{l,l+1}^{t} : \mathbb{Z}^{m_{C}(l)} \to \mathbb{Z}^{m_{C}(l+1)}, \quad l \in \mathbb{Z}_{+}.$$

As $I(C)_{l+1,l+2}^{t}A(C)_{l,l+1}^{t} = A(C)_{l+1,l+2}^{t}I(C)_{l,l+1}^{t}$, the matrix $I(C)_{l+1,l+2}^{t}$ induces a homomorphism from $\mathbb{Z}^{m_{c}(l+1)}/D(C)_{l,l+1}\mathbb{Z}^{m_{c}(l)}$ to $\mathbb{Z}^{m_{c}(l+2)}/D(C)_{l+1,l+2}\mathbb{Z}^{m_{c}(l+1)}$ that is denoted by $\overline{I(C)}_{l+1,l+2}^{t}$. Thanks to Theorem 4.3, we can present the K-theory formulae for ideals of $\mathcal{O}_{\mathfrak{L}}$.

THEOREM 4.5. Let \mathfrak{L} be a λ -graph system satisfying condition (II). Let \mathcal{I} be an ideal of $\mathcal{O}_{\mathfrak{L}}$ and C its corresponding saturated hereditary subset of the vertex set of \mathfrak{L} . Then we have

$$K_0(\mathcal{I}) \cong \lim_{l \to l} \left\{ \mathbb{Z}^{m_c(l+1)} / D(C)_{l,l+1}^t \mathbb{Z}^{m_c(l)}; \overline{I(C)}_{l+1,l+2}^t \right\},$$

$$K_1(\mathcal{I}) \cong \lim_{l \to l} \left\{ \operatorname{Ker} D(C)_{l,l+1} \text{ in } \mathbb{Z}^{m_c(l)}; I(C)_{l,l+1}^t \right\}.$$

Although the C^{*}-algebra $\mathcal{O}_{\mathfrak{L}}$ is not necessarily defined by a λ -graph system, in the case when C has a *bounded upper bound*, it is given by a λ -graph system. Let

 $V_C^{\iota} = C \cup \{v \in V \mid \text{ there exists } u_0 \in C \text{ such that } \iota^m(u_0) = v \text{ for some } m \in \mathbb{N}\}.$

A saturated hereditary subset C of V is said to have a *bounded upper bound* if the cardinality of the set $V_C^{\iota} \setminus C$ is finite. It is equivalent to the condition that there exists $L \in \mathbb{N}$ such that $V_n \cap V_C^{\iota} = V_n \cap C$ for all $n \ge L$. We will assume that C has a bounded upper bound. Take $L \in \mathbb{N}$ as above. Define for $l \in \mathbb{Z}_+$

$$V_{l}^{C} = C \cap V_{l+L},$$

$$E_{l,l+1}^{C} = \left\{ e \in E_{l+L,l+L+1} \mid s(e) \in V_{l}^{C}, t(e) \in V_{l+1}^{C} \right\},$$

$$\lambda^{C} = \lambda \mid_{E^{C}}, \quad \iota_{l,l+1}^{C} = \iota \mid_{V_{l+1}^{C}}.$$

Since $V_C^i \cap V_{l+L} = C \cap V_{l+L}$, one sees that $\iota(u) \in V_l^C$ for $u \in V_{l+1}^C$. It is straightforward to see that $(V_l^C, E_{l,l+1}^C, \lambda^C, \iota_{l,l+1}^C)_{l \in \mathbb{Z}_+}$ yields a λ -graph system, denoted by \mathfrak{L}_C . We note that C has a bounded upper bound if and only if there exists $L \in \mathbb{N}$ such that $P_l = P_L$ for all $l \geq L$.

PROPOSITION 4.6. Let \mathfrak{L} be a λ -graph system satisfying condition (II). If a saturated hereditary subset C of V has a bounded upper bound, the algebra $\mathcal{O}_{\mathfrak{L}}(C)$ is isomorphic to the C*-algebra $\mathcal{O}_{\mathfrak{L}_{C}}$ associated with the λ -graph system \mathfrak{L}_{C} . Hence the ideal \mathcal{I}_{C} is stably isomorphic to the C*-algebra $\mathcal{O}_{\mathfrak{L}_{C}}$.

PROOF. Take $L \in \mathbb{N}$ such that $V_n \cap V_C^i = V_n \cap C$ for all $n \ge L$. As $P_l = P_L$ for all $l \ge L$, one has $\mathcal{O}_{\mathfrak{L}}(C) = P_L \mathcal{O}_{\mathfrak{L}} P_L$ by Proposition 4.2. Let $\mathfrak{L}^{(L)} = (V^{(L)}, E^{(L)}, \lambda^{(L)}, \iota^{(L)})$ be the L-shift λ -graph system of \mathfrak{L} defined by

$$V_l^{(L)} = V_{l+L}, \quad E_{l,l+1}^{(L)} = E_{l+L,l+L+1}, \quad \lambda^{(L)} = \lambda|_{E^{(L)}}, \quad \iota_{l,l+1}^{(L)} = \iota_{l+L,l+L+1}$$

for $l \in \mathbb{Z}_+$. By [28, Proposition 2.3], the algebra $\mathcal{O}_{\mathfrak{L}}$ coincides with the the algebra $\mathcal{O}_{\mathfrak{L}^{(L)}}$. It is direct to see that $P_L \mathcal{O}_{\mathfrak{L}^{(L)}} P_L$ is isomorphic to $\mathcal{O}_{\mathfrak{L}_c}$. Hence $\mathcal{O}_{\mathfrak{L}}(C)$ is isomorphic to $\mathcal{O}_{\mathfrak{L}_c}$. \Box

5. Examples

Let G = (V, E) be a finite directed graph with finite vertex set V and finite edge set E. Let $\mathcal{G} = (G, \lambda)$ be a labeled graph over an alphabet Σ defined by G and a labeling map $\lambda : E \to \Sigma$. Suppose that it is left-resolving and predecessor-separated (see [19]). Let A_G be the adjacency matrix of G that is defined by

$$A_G(e, f) = \begin{cases} 1 & \text{if } t(e) = s(e), \\ 0 & \text{otherwise,} \end{cases}$$

for $e, f \in E$. The matrix A_G defines a shift of finite type by regarding the edge set E as its alphabet. Since the matrix A_G has entries in $\{0, 1\}$, we have the Cuntz-Krieger algebra \mathcal{O}_{A_G} defined by A_G ([7] compare [18, 33]). By putting $V_l^{\mathcal{G}} = V$, $E_{l,l+1}^{\mathcal{G}} = E$ for $l \in \mathbb{Z}_+$, and $\lambda^{\mathcal{G}} = \lambda$, $\iota^{\mathcal{G}} = id$, we have a λ -graph system $\mathfrak{L}_{\mathcal{G}} = (V^{\mathcal{G}}, E^{\mathcal{G}}, \lambda^{\mathcal{G}}, \iota^{\mathcal{G}})$. The C*-algebra $\mathcal{O}_{\mathfrak{L}_G}$ is isomorphic to the Cuntz-Krieger algebra \mathcal{O}_{A_G} ([24, Proposition 7.1]).

Let us consider the following labeled graph. The vertex set V is $\{v_1, v_2, v_3\}$. The edges labeled α are from v_2 to v_3 and from v_3 to v_2 and a self-loop at v_1 . The edges labeled β are self-loops at v_1 and at v_3 . The edge labeled γ is from v_1 to v_2 . The resulting labeled graph is denoted by \mathcal{G} . The λ -graph system $\mathcal{L}_{\mathcal{G}}$ is left-resolving and satisfies condition (II). In $\mathcal{L}_{\mathcal{G}}$, let C be the vertex set corresponding to $\{v_2, v_3\}$. It is saturated hereditary. The λ -graph subsystem $\mathcal{L}_{\mathcal{G}}^C$ of $\mathcal{L}_{\mathcal{G}}$ obtained by removing C consists of one ι -orbit of the vertex $\{v_1\}$ with two self-loops labeled α and β . Hence we have

$$\mathcal{O}_{\mathfrak{L}_{\mathcal{G}}} \cong \mathcal{O}_{\left[\begin{smallmatrix} 2 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{smallmatrix}\right]}, \quad \mathcal{O}_{\mathfrak{L}_{\mathcal{G}}}/\mathcal{I}_{\mathcal{C}} \cong \mathcal{O}_{\mathfrak{L}_{\mathcal{G}}^{\setminus C}} \cong \mathcal{O}_{2}, \quad \mathcal{I}_{\mathcal{C}} \otimes \mathcal{K} \cong \mathcal{O}_{\left[\begin{smallmatrix} 1 & 1 \\ 1 & 0 \end{smallmatrix}\right]} \otimes \mathcal{K}.$$

The second example is the canonical λ -graph system for the Dyck shift D_2 , that is not a sofic subshift. The subshift comes from automata theory and language theory (compare [1, 11]). Its alphabet Σ consists of two kinds of four brackets: (,), and [,]. The forbidden words consist of words that do not obey the standard bracket rules. Let \mathfrak{L}^{D_2} be the canonical λ -graph system for D_2 . In [29], the K-groups of the symbolic matrix system for \mathfrak{L}^{D_2} have been computed. They are the K-groups for the associated C^* -algebra $\mathcal{O}_{\mathfrak{L}^{D_2}}$, so that we see $K_0(\mathcal{O}_{\mathfrak{L}^{D_2}}) \cong \mathbb{Z}^{\infty}$, and $K_1(\mathcal{O}_{\mathfrak{L}^{D_2}}) \cong 0$, where \mathbb{Z}^{∞} is the countable infinite sum of the group \mathbb{Z} . The C^* -algebra $\mathcal{O}_{\mathfrak{L}^{D_2}}$ has a proper ideal.

[16]

The λ -graph system \mathfrak{L}^{D_2} satisfies condition (II). Let $\mathfrak{L}^{Ch(D_2)}$ be the λ -graph subsystem of \mathfrak{L}^{D_2} , called the Cantor horizon λ -graph system of D_2 (see [16] for details). Then $\mathfrak{L}^{Ch(D_2)}$ is a periodic and a minimal irreducible component of \mathfrak{L}^{D_2} . Hence the associated algebra $\mathcal{O}_{\mathfrak{L}^{Ch(D_2)}}$ is a simple purely infinite C^* -algebra realized as a quotient of $\mathcal{O}_{\mathfrak{L}^{D_2}}$ by an ideal corresponding to a saturated hereditary subset of \mathfrak{L}^{D_2} . In [16], its K-groups have been computed to be $K_0(\mathcal{O}_{\mathfrak{L}^{Ch(D_2)}}) \cong \mathbb{Z}/2\mathbb{Z} \oplus C(\mathfrak{C}, \mathbb{Z})$, and $K_1(\mathcal{O}_{\mathfrak{L}^{Ch(D_2)}}) \cong 0$, where $C(\mathfrak{C}, \mathbb{Z})$ denotes the abelian group of all \mathbb{Z} -valued continuous functions on a Cantor discontinuum \mathfrak{C} . As $\mathfrak{L}^{Ch(D_2)}$ is predecessor-separated, the algebra $\mathcal{O}_{\mathfrak{L}^{Ch(D_2)}}$ is generated by only the four partial isometries S_{α} , $\alpha = (,), [,]$ corresponding to the brackets (,), [,]. Hence $\mathcal{O}_{\mathfrak{L}^{Ch(D_2)}}$ is finitely generated, but its K_0 -group is not finitely generated. This means that the algebra $\mathcal{O}_{\mathfrak{L}^{Ch(D_2)}}$ is simple and purely infinite, but not semi-projective (compare [3]). Full details and its generalizations are seen in [16] and [20].

Acknowledgements

The author would like to thank the referee for his valuable suggestions to shorten the original manuscript of this paper, especially for his advices in Section 4 to directly use Morita equivalence.

References

- [1] A. V. Aho and J. Ullman, 'The theory of language', Math. Systems Theory 2 (1968), 97-125.
- [2] T. Bates, D. Pask, I. Raeburn and W. Szymański, 'The C*-algebras of row-finite graphs', New York J. Math. 6 (2000), 307–324.
- [3] B. Blackadar, 'Semi-projectivity in simple C*-algebras', Adv. Stud. Pure Math. 38 (2004), 1-17.
- [4] L. G. Brown, P. Green and M. A. Rieffel, 'Stable isomorphism and strong Morita equivalence of C*-algebras', Pacific. J. Math. 71 (1977), 349–363.
- [5] T. M. Carlsen and K. Matsumoto, 'Some remarks on the C*-algebras associated with subshifts', Math. Scand. 95 (2004), 145–160.
- [6] J. Cuntz, 'A class of C*-algebras and topological Markov chains II: reducible chains and the Extfunctor for C*-algebras', *Invent. Math.* 63 (1980), 25–40.
- [7] J. Cuntz and W. Krieger, 'A class of C*-algebras and topological Markov chains', *Invent. Math.* 56 (1980), 251–268.
- [8] V. Deaconu, 'Groupoids associated with endomorphisms', Trans. Amer. Math. Soc. 347 (1995), 1779–1786.
- [9] —, 'Generalized solenoids and C*-algebras', Pacific. J. Math. 190 (1999), 247-260.
- [10] R. Excel and M. Laca, 'Cuntz-Krieger algebras for infinite matrices', J. Reine. Angew. Math. 512 (1999), 119–172.
- [11] D. Fiebig and U.-R. Fiebig, 'Covers for coded systems', Contemp. Math. 135 (1992), 139-180.
- [12] N. Fowler, M. Laca and I. Raeburn, 'The C*-algebras of infinite graphs', Proc. Amer. Math. Soc. 8 (2000), 2319–2327.
- [13] A. an Huef and I. Raeburn, 'The ideal structure of Cuntz-Krieger algebras', Ergodic Theory Dynam. Systems 17 (1997), 611–624.

[17]

- [14] T. Kajiwara, C. Pinzari and Y. Watatani, 'Ideal structure and simplicity of the C*-algebras generated by Hilbert modules', J. Funct. Anal. 159 (1998), 295–322.
- [15] T. Katsura, 'A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras I, fundamental results', Trans. Amer. Math. Soc. 356 (2004), 4287–4322.
- [16] W. Krieger and K. Matsumoto, 'A lambda-graph system for the dyck shift and its K-groups', Doc. Math. 8 (2003), 79–96.
- [17] A. Kumjian, D. Pask and I. Raeburn, 'Cuntz-Krieger algebras of directed graphs', *Pacific J. Math.* 184 (1998), 161–174.
- [18] A. Kumjian, D. Pask, I. Raeburn and J. Renault, 'Graphs, groupoids and Cuntz-Krieger algebras', J. Funct. Anal. 144 (1997), 505-541.
- [19] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding (Cambridge University Press, Cambridge, 1995).
- [20] K. Matsumoto, 'On the simple C*-algebras arising from Dyck systems', J. Operator Theory to appear.
- [21] —, 'On C*-algebras associated with subshifts', Internat. J. Math. 8 (1997), 357-374.
- [22] ——, 'K-theory for C*-algebras associated with subshifts', Math. Scand. 82 (1998), 237–255.
- [23] _____, 'Presentations of subshifts and their topological conjugacy invariants', *Doc. Math.* 4 (1999), 285–340.
- [24] —, 'C*-algebras associated with presentations of subshifts', Doc. Math. 7 (2002), 1-30.
- [25] —, 'Symbolic dynamics and C*-algebras', in: Selected papers on analysis and differential equations, Amer. Math. Soc. Transl. Ser. 211 (Amer. Math. Soc., Providence, RI, 2003) pp. 47-70,.
- [26] _____, 'A simple purely infnite C*-algebra associated with a lambda-graph system of the Motzkin shift', Math. Z. 248 (2004), 369–394.
- [27] —, 'Construction and pure infiniteness of the C*-algebras associated with λ -graph systems', Math. Scand. 97 (2005), 73–88.
- [28] —, 'Factor maps of symbolic dynamics and inclusions of C*-algebras', Internat. J. Math. 14 (2005), 313–339.
- [29] _____, 'K-theoretic invariants and conformal measures of the Dyck shifts', Internat. J. Math. 16 (2005), 213-248.
- [30] P. S. Muhly and B. Solel, 'On the simplicity of some Cuntz-Pimsner algebras', Math. Scand. 83 (1998), 53-73.
- [31] J. N. Renault, A groupoid approach to C*-algebras, Lecture Notes in Math. 793 (Springer, Berlin, 1980).
- [32] M. A. Rieffel, 'Induced representations of C*-algebras', Adv. Math. 13 (1974), 176-257.
- [33] M. Rørdam, 'Classification of Cuntz-Krieger algebras', K-Theory 9 (1995), 31-58.
- [34] M. Tomforde, 'A unified approach to Exel-Laca algebras and C*-algebras associated to graphs', J. Operator Theory 50 (2003), 345–368.
- [35] Y. Watatani, 'Graph theory for C*-algebras', in: Operator Algebras and their Applications (ed. R. V. Kadison), Proc. Sympos. Pure Math. 38, part 1 (Amer. Math. Soc., Providence, RI, 1982) pp. 195–197.

Department of Mathematical Sciences Yokohama City University Seto 22-2, Kanazawa-ku Yokohama 236-0027 Japan e-mail: kengo@yokohama-cu.ac.jp