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Abstract

Surface melt on the coastal Antarctic ice sheet (AIS) determines the viability of its ice shelves and
the stability of the grounded ice sheet, but very few in situ melt rate estimates exist to date. Here
we present a benchmark dataset of in situ surface melt rates and energy balance from nine sites in
the eastern Antarctic Peninsula (AP) and coastal Dronning Maud Land (DML), East Antarctica,
seven of which are located on AIS ice shelves. Meteorological time series from eight automatic
and one staffed weather station (Neumayer), ranging in length from 15 months to almost 24
years, serve as input for an energy-balance model to obtain consistent surface melt rates and
energy-balance results. We find that surface melt rates exhibit large temporal, spatial and process
variability. Intermittent summer melt in coastal DML is primarily driven by absorption of short-
wave radiation, while non-summer melt events in the eastern AP occur during föhn events that
force a large downward directed turbulent flux of sensible heat. We use the in situ surface melt
rate dataset to evaluate melt rates from the regional atmospheric climate model RACMO2 and
validate a melt product from the QuikSCAT satellite.

Introduction

For most of the Antarctic ice sheet (AIS), the near-surface climate is too cold to allow for wide-
spread or continuous summer melting, such as occurs in the lower ablation zone of the
Greenland ice sheet (Bell and others, 2018). Therefore, in most of Antarctica, surface melting
is an intermittent process, associated with warm and moist air advection (Scott and others,
2019). An exception is the Antarctic Peninsula (AP), where the relatively mild summer climate
allows for more extensive melt episodes (Kuipers Munneke and others, 2012a; Barrand and
others, 2013; Luckman and others, 2014), while on the east side of the AP föhn events
cause episodic surface melt throughout the year (Kuipers Munneke and others, 2018;
Wiesenekker and others, 2018). Most meltwater refreezes in the cold firn, and runoff currently
represents a negligible contribution to AIS mass balance (Van Wessem and others, 2018). In
spite of this, meltwater lakes are widespread on the AIS (Kingslake and others, 2017; Bell and
others, 2017; Stokes and others, 2019), and have the potential to influence its dynamical evo-
lution. On ice shelves in the eastern AP, firn saturation and meltwater ponding have been asso-
ciated with ice-shelf hydrofracturing (Banwell and others, 2013; Kuipers Munneke and others,
2014). Ice shelves buttress the glaciers that feed them; therefore, ice-shelf disintegration causes
glacier acceleration (Scambos and others, 2004), which leads in turn to grounded ice loss and
sea-level rise. Trusel and others (2015) suggest a melt rate threshold for ice-shelf viability of
725 mm w.e. a−1, but with considerable uncertainty associated with firn conditions, basal
melt rates and ice-shelf stress regimes. As ice shelves are present along ∼74% of the margins
of the AIS (Bindschadler and others, 2011), the developments in the AP could serve as an ana-
logue for future ice-shelf disintegration and ice-sheet destabilisation elsewhere in Antarctica
when the climate continues to warm, with different roles for local and large-scale atmospheric
circulation and ice dynamics (Nicolas and Bromwich, 2014; Fürst and others, 2016; Reese and
others, 2018). That is why a robust quantification and understanding of contemporary
Antarctic surface melt is essential for improving future predictions of AIS mass loss and sea
level rise (Trusel and others, 2015; DeConto and Pollard, 2016).

Nevertheless, very few studies exist that directly and robustly quantify in situ surface melt
rates in Antarctica. The main reason is that this requires accurate measurements, not only of
near-surface climate variables (pressure, wind speed, temperature and humidity) but also
incoming and outgoing shortwave and longwave radiation fluxes. Only then can the surface
energy balance (SEB) be closed and the energy available for surface melt be quantified (e.g.
Reijmer and Oerlemans, 2002; Van den Broeke and others, 2006; Kuipers Munneke and
others, 2012b). Apart from the remoteness and the harsh climate, in situ observations in
Antarctica are also hindered by accumulating snow, which buries the instruments if they
are not regularly raised. Hence, very few Automatic Weather Stations (AWSs) or even staffed
meteorological stations on the ice sheet are equipped with radiation sensors (Kuipers Munneke
and others, 2014, 2018). The prime long-term (1981–present) site is Neumayer station, located
on the Ekström Ice Shelf in Dronning Maud Land (DML), which is part of the Baseline
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Surface Radiation Network and therefore also provides high-
quality radiation measurements. Furthermore, it has the added
benefit of being situated on the ice shelf, rather than on ice-free
rock with very different surface characteristics (Van den Broeke
and others, 2005, 2010b; König-Langlo and Loose, 2007; Jakobs
and others, 2019).

To circumvent the scarcity of suitable in situ observations,
alternative methods have been developed to assess Antarctic sur-
face melt rates. Temperature–index models rely solely on air tem-
perature records and assume melt to occur when air temperature
exceeds 0°C while adopting an index that couples the air tempera-
ture to surface melt rate. This method has proven valuable to
obtain longer-term regional estimates for Antarctic surface melt
patterns (Van den Broeke, 2005; Barrand and others, 2013;
Leeson and others, 2017), but lacks a physical basis and properly
constrained parameters (Wake and Marshall, 2015); for instance,
it does not explicitly resolve the snowmelt–albedo feedback, which
has the potential to enhance melt rates threefold in Antarctic
regions with intermittent melt (Jakobs and others, 2019).
Remote sensing provides a valuable tool for the direct, continent-
wide observation of surface melt by measuring surface brightness
temperatures (Picard and others, 2007) and by the attenuation of
radar waves in the presence of liquid water in the near-surface
snow (Trusel and others, 2012). By correlating satellite signal
attenuation to in situ surface melt, continent-wide maps of sum-
mer melt totals can be obtained (Trusel and others, 2013). Finally,
surface melt rates can be modelled using (regional) climate mod-
els (King and others, 2015; Kuipers Munneke and others, 2017;
Van Wessem and others, 2018; Donat-Magnin and others,
2019). These models generally perform adequately, but suffer
from climate biases and limited resolution that smoothens the
topography, especially in topographically steep regions such as
the AP and the relatively steep escarpment zone in DML, East
Antarctica. This smoothing results in biases in temperature,
wind speed and surface melt (Van Wessem and others, 2014a).

All of these methods depend on in situ observations of melt
rates for calibration (temperature–index models, satellite melt
rate), validation (satellite melt detection) or evaluation (climate
models). That is why building a benchmark dataset of consistently
derived in situ Antarctic melt rate observations is crucial. As of
today, most studies that have explicitly quantified the SEB and
melt rate in Antarctica were restricted to a single location, for
example the Larsen C Ice Shelf in the AP (Kuipers Munneke
and others, 2012b; King and others, 2015, 2017), Berkner Island
(Reijmer and others, 1999) or glaciers situated on islands close
to the AP (e.g. Bintanja, 1995; Jonsell and others, 2012; Falk
and others, 2018). While these studies provide important infor-
mation about surface melt and its temporal variability, their spa-
tial coverage remains limited.

Here, we present a benchmark dataset of Antarctic surface
melt rates and energy balance from one staffed research station
(Neumayer) and eight AWSs. All sites are located in the
Atlantic sector of Antarctica, ranging from the eastern AP to
DML (Fig. 1). Although some individual results from Neumayer
and three AWSs have been published before (e.g. Van den
Broeke and others, 2010b; Kuipers Munneke and others, 2012b,
2018; King and others, 2015, 2017; Wiesenekker and others,
2018; Jakobs and others, 2019), this study expands on previous
work by updating the time series, using a single SEB model frame-
work to process all station data and determine uncertainties in a
consistent manner. Subsequently, we use the resulting in situ melt
data to assess the validity of simplified temperature–index models,
evaluate Antarctic surface melt from the regional climate model
RACMO2 and validate the QuikSCAT satellite melt product.

In the next section, we describe the instruments used on the
weather stations and introduce the SEB model. Next, we present

the dataset and discuss its main characteristics including annual
averages and seasonal and daily variability. We proceed to use
the new dataset to calibrate, evaluate and validate alternative
Antarctic melt products, followed by conclusions.

Methods

Automatic weather stations

Since 1995, the Institute for Marine and Atmospheric Research of
Utrecht University (IMAU) has deployed and maintained 19
AWSs in Antarctica. As of November 2019, four of these AWSs
are still operational. The stations have technically evolved from
Type 1 (T1) to Type 3 (T3) (Table 1, see also Smeets and others,
2018). Here we only use data of T2 and T3 AWSs as these meas-
ure the full radiation balance, that is incoming and reflected
broadband shortwave radiation, SW↓ and SW↑, and downward
and upward broadband longwave radiation, LW↓ and LW↑. In
addition, the AWS measure near-surface air temperature (T ),
wind speed (WS), wind direction (WD), relative humidity (RH),
instrument height (H ), air pressure ( p) and snow temperature
(Tsn) at various depths. Specifications of the used sensors are pre-
sented in Table 1. The stations sample every 6 min, after which
2-hourly (T2, until January 2001), hourly (T2, from January
2001 onwards) or half-hourly (T3) means are calculated, stored
locally and transmitted through the Argos satellite system. The
AWSs are powered by lithium batteries, while T3 stations in add-
ition use solar cells. The temperature/humidity and radiation sen-
sors are not ventilated because of energy considerations, which
may negatively affect their performance. The magnitude of the
resulting error depends on the amount of incoming and reflected
solar radiation, the wind speed and the type of radiation shield
used (Van den Broeke and others, 2004c). Bintanja (2000) and
Van As and others (2005) show that, based on a comparison
with ventilated instruments, the radiation error does not exceed
the sensor accuracy listed in Table 1 for the T2 stations.

Fig. 1. Locations and identifiers of used automatic weather stations in the AP (yellow
triangles) and DML (blue dots). Neumayer station is denoted with an N (blue dot).
Background colours represent period-average annual melt amounts (1979–2017) as
simulated by the regional atmospheric climate model RACMO2 (Van Wessem and
others, 2018). The thin black line represents the 10 m height contour (∼shelf
edge), the thick black line represents the 150 m height contour (∼grounding line),
grey lines indicate 500 m height intervals.
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Due to the low temperatures encountered at several sites, some
of the sensors are operated outside of their range of operational
specifications. This mostly affects the relative humidity and long-
wave radiation observations. The relative humidity observations are
corrected based on the method described by Anderson (1994) and
Van den Broeke and others (2004a). The accuracy of the radiation
sensors, which are affected by icing/riming, tilt, low sun angles and
window heating offset, is discussed in Van den Broeke and
others (2004c). They conclude that with an accuracy of 5% for
the daily averages, the radiation sensors perform better than their
specifications; we follow their methods to check for rime forma-
tion. To reduce net shortwave radiation errors on sub-daily time
scales, we calculate a 24 h running mean albedo, which is then
applied to the reflected shortwave radiation to obtain incoming
and net shortwave radiation fluxes. For all variables, erroneous
values were removed by automated and manual detection.

We use data of four AWSs on ice shelves in the eastern AP and
four in DML, East Antarctica (indicated in Fig. 1). Furthermore,
we use data of Neumayer Station, located on Ekström Ice Shelf in
DML (König-Langlo, 2017) (also indicated in Fig. 1). The
Neumayer meteorological observatory is operated by the Alfred
Wegener Institute and is part of the Baseline Surface Radiation
Network, a global network of artificially ventilated, high-quality
radiation observations, with instantaneous individual broadband
fluxes more accurate than 5 W m−2 (see König-Langlo and
Loose (2007) for technical specifications and Jakobs and
others (2019) for measurement accuracies). The same variables
are measured at Neumayer as by the AWS except for the sonic
height ranger, which is not present at Neumayer. Instead, height
changes are measured at Neumayer by weekly stake
measurements.

Table 2 provides station names, locations, altitudes and obser-
vation period of the stations used in this study. AWS 4 was located
on the flat Riiser-Larsen ice shelf, AWS 5 was located inland of the
grounding line in the steep escarpment zone, dominated by kata-
batic winds (Van den Broeke and others, 1999; Van Wessem and
others, 2014a). Neumayer is located on Ekström ice shelf, which is
prone to low-pressure systems passing north of the station. This
results in frequent strong synoptically-forced easterly winds,
advecting warm moist air (Herman and others, 2013). AWS 11
was located relatively close to Neumayer but on an ice rise; its
higher elevation leads to significantly less surface melt. AWS 19
was located close to the grounding line on the Roi Baudouin ice
shelf, where föhn winds occur frequently (Lenaerts and others,
2017). In the AP, AWS 18 is also prone to frequent föhn events,
located close to the grounding line just east of the AP mountain

range (Kuipers Munneke and others, 2018; Wiesenekker and
others, 2018). Farther from the grounding line on the flat ice
shelf, AWS 14 and 15 are affected much less by föhn winds.
AWS 17 was located more to the north on Scar Inlet, the
Larsen B remnant. Because of the northerly location, it experi-
enced more melt than AWS 14 and 15.

Surface energy balance model

Surface melt energy is calculated by solving the SEB equation:

M = SW � +SW � +LW � +LW � +QS + QL + QG

= SWnet + LWnet + QS + QL + QG,
(1)

in which SWnet and LWnet are the net short- and longwave radi-
ation fluxes, QS and QL are the turbulent fluxes of sensible and
latent heat, QG the conductive subsurface heat flux, and M the
energy available for surface melt respectively. By convention, posi-
tive fluxes are directed towards the surface. The turbulent fluxes
QS and QL are calculated using the flux-profile method between
the measurement level and the surface, using Monin–Obukhov
similarity theory with the stability functions from Dyer (1974)
for unstable conditions and those from Holtslag and De
Bruin (1988) for stable conditions. Energy added through liquid
precipitation is neglected as rainfall is rare in Antarctica. M is
zero when the surface temperature TS is below the freezing
point (273.15 K). TS is derived by assuming the energy balance
equation to be valid for an infinitesimally thin surface layer
(skin layer). To that end, all terms in Eqn (1), apart from SWnet

and LW↓, are expressed as a function of TS after which Eqn (1)
is solved iteratively for TS so that the SEB is closed. A more
detailed description of the model can be found in Reijmer and
others (1999).

The snowpack is initialised with 70 layers of varying thickness:
1 cm at the top, gradually increasing to 2 m at 25 m. The lowest
layer is kept at a constant, prescribed temperature: the annually
averaged air temperature. Layer thickness can vary as a result of
dry snow densification, meltwater refreezing and mass changes
by sublimation or deposition. Meltwater percolation is modelled
with the tipping-bucket method (e.g. Ligtenberg and others,
2014), in which meltwater is assumed to percolate downwards
instantaneously when a layer has reached its maximum capillary
retention, which is parameterised following Schneider and
Jansson (2004). Shortwave radiation penetration into the subsur-
face is calculated using a spectral model from Kuipers Munneke

Table 1. Sensors used on the different types of automatic weather stations

Sensor Station type Sensor Type Range Accuracy

Atmospheric pressure T2 Vaisala PTB101B 600–1060 hPa ±4 hPa
T3 Freescale Xtrinsic MPL3115A2 200–1100 hPa ±0.4 hPa

Air temperature T2 Vaisala HMP35AC −80 to 56°C ±0.3°C
T3 NTC thermistor −60 to 40°C <0.1°C

Relative humidity T2 Vaisala HMP35AC 0–100% ±2% (RH , 90%)
3% (RH . 90%)

T3 Sensirion SHT35 0–100% ±1.5%
Wind speed T2/3 Young 05103 0–60 m s−1 ±0.3 m s−1

Wind direction T2/3 Young 05103 0–360° ±3°
Pyranometer T2 Kipp and Zonen CNR1 305–2800 nm, 0–2000 W m−2 ±10% EADT

T3 Kipp and Zonen CNR4 300–2800 nm, 0–2000 W m−2 ±10% EADT
Pyrradiometer T2 Kipp and Zonen CNR1 5–50 μm, −250–250 W m−2 ±10% EADT

T3 Kipp and Zonen CNR4 4.5–42 μm, −250–250 W m−2 ±10% EADT
Sonic height ranger T2 Cambell SR50 0.5–10 m 0.01 m or 0.4%

T3 MaxBotix HRXL MaxSonar WRS 0.5–5 m <1%

EADT = estimated accuracy for daily totals. For technical details of the observations at Neumayer the reader is referred to König-Langlo and Loose (2007) and Jakobs and others (2019).
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and others (2009), based on Schlatter (1972) and Brandt and
Warren (1993). Temperature and specific humidity are recalcu-
lated to 2 m values and wind speed to 10 m values using
Monin–Obukhov similarity theory.

For all stations, we use the same constant value for surface
momentum roughness length z0,m of 1.65 mm, following Jakobs
and others (2019). Currently, insufficient data are available to
make z0,m time-dependent across the stations in a consistent man-
ner. The surface roughness lengths for moisture and heat are cal-
culated using the expressions of Andreas (1987). The density of
new snow is determined for each station separately by running
the model multiple times and minimising the difference between
modelled TS and observed TS derived from LW↑. The sensitivity
to different choices for z0,m, new snow density and the inclusion
of shortwave radiation penetration are used to estimate the uncer-
tainty in the determined heat fluxes and surface melt rates follow-
ing the method outlined in Jakobs and others (2019).

Results

Annual means and seasonal cycles

Table 3 lists annual (July–June) totals (snowmelt, sublimation)
and mean values of climatological variables and SEB components
for the nine sites. Surface melt and sublimation rates are expressed
in mm w.e. a−1, which is equal to kg m−2 a−1. Uncertainties in QS,
QL, QG,M, snowmelt and sublimation are derived from sensitivity
experiments (following Jakobs and others, 2019), the other uncer-
tainties are derived from measurement uncertainties (Table 1).
The large uncertainty in QG is a result of taking radiation pene-
tration into account; when it is accounted for, energy that
would have been provided to the surface by SW↓ is instead
absorbed in the subsurface, which is eventually provided to the
surface through QG.

The table shows that in general, stations on the eastern AP ice
shelves experience typically an order of magnitude more melt than
those in DML (Table 3), mainly driven by the difference in annual
average net radiation Rnet (≡ SWnet + LWnet). Although SW↓ is
slightly larger in the AP, the higher precipitation amounts increase
the surface albedo sufficiently to result in an SWnet similar to what
is observed in DML. However, the warmer air on the eastern AP ice
shelves increases LW↓, resulting in a larger Rnet. Subsequently, the
largerQG is a result of refreezing that occurs in the subsurface snow
layers. Refreezing raises the subsurface temperature, and keeps it
close to the melting point after melt events.

Figure 2 shows the seasonal cycles of monthly average 2 m
temperature, specific humidity and 10 m wind speed (top row),
the radiation balance (middle row) and the SEB components (bot-
tom row) for AWS 14, 5 and Neumayer. These three locations
were selected because of their relatively long observation period,

which demonstrates that they represent three distinct climate
regions: the eastern AP ice shelves (AWS 14, left column) and
for DML an inland and coastal ice-shelf location (AWS 5 and
Neumayer, centre and right). The shading in Figure 2 indicates
the standard deviations of the monthly means.

A comparison of the seasonal cycles shows that the highest
summer near-surface temperatures are observed in the eastern
AP, owing to its more northerly location and exposure to milder
maritime air masses. In winter, an interesting result is that AWS 5
and Neumayer, located in DML, experience higher temperatures
than the eastern AP. This is caused by stronger wintertime
winds at the DML stations, typically 8–10 m s−1 (Van den
Broeke and others, 2004b), compared to 4 m s−1 at AWS 14
(Kuipers Munneke and others, 2012b; King and others, 2015).
The climate of AWS 5, which is located in the escarpment
zone, is characterised by katabatic winds that efficiently mix rela-
tively warm air from aloft towards the surface, preventing the for-
mation of a strong surface-based temperature inversion and
leading to warming of the surface and near-surface air (Van
den Broeke and others, 1999; Van Wessem and others, 2014a).
At Neumayer, the ice-shelf surface is nearly flat and the resulting
katabatic forcing is weak. Here, the higher wind speeds are synop-
tic in nature, owing to the vicinity of the Atlantic climatological
low-pressure system and the associated passage of low-pressure
systems to the north of the station (Herman and others, 2013).
In contrast, AWS 14, also located on a flat ice shelf, is under
the influence of cold air that is transported by barrier winds
along the spine of the AP (Turner and others, 2002); in combin-
ation with the relatively low wind speeds, this enables the forma-
tion of a strong surface-based temperature inversion, which keeps
the climate of the Larsen C Ice Shelf relatively cold in winter
(Marshall and King, 1998).

The seasonal cycles of the radiation balance (Fig. 2, middle
row) show that the minimum in LW↓ is shifted by 1–2 months
with respect to SW↓. This is a result of the delay in atmospheric
heating in response to slow ambient warming. Net radiation is
strongly negative in winter and becomes weakly positive in sum-
mer, when in spite of the high surface albedo, absorbed shortwave
radiation exceeds the longwave energy loss. Furthermore, as a
result of the longer polar night at AWS 5 and Neumayer, the
net radiation flux is negative for a longer period than at AWS
14. As stated above, strong winds at AWS 5 and Neumayer
enhance QS, increasing the surface temperature and therewith
longwave radiation heat loss (Van den Broeke and others,
2010b; Jakobs and others, 2019). As a result, net radiation at
AWS 14 is ∼ 10 W m−2 higher in summer and ∼ 20 W m−2

higher in winter compared to AWS 5 and Neumayer. The result-
ing annual mean net radiation flux is almost zero at AWS 14,
while it is negative at AWS 5 and Neumayer station. At AWS
17, annual net radiation is positive. The reason for this is twofold:

Table 2. Overview of AWS used in this study: locations, elevations and period of operation (see also Fig. 1)

Station name Latitude (°S) Longitude (°E) Elevation (m a.s.l.) Time period Geographical location

Dronning Maud Land
Neumayer 70.63 −8.26 17 Apr 92–Jan 16 Ekström IS
AWS 4 72.75 −15.48 35 Dec 97–Dec 02 Riiser-Larsen IS
AWS 5 73.1 −13.17 ∼360 Feb 98–Feb 14 Aboa/Wasa stations
AWS 11 71.17 −6.8 ∼690 Jan 07–Jan 19 Halvfarryggen ice rise
AWS 19 70.95 26.27 ∼50 Dec 14–Feb 16 Roi Baudouin IS

Antarctic Peninsula
AWS 14 67.02 −61.5 ∼50 Jan 09–Jun 15 Larsen C IS
AWS 15 67.57 −62.15 ∼50 Jan 09–May 14 Larsen C IS
AWS 17 65.93 −61.85 ∼50 Feb 11–Mar 16 Larsen B IS (remnant)
AWS 18 66.4 −63.73 ∼70 Nov 14–Sep 18 Cabinet Inlet, Larsen C IS

Except for AWS 5 and 11, all stations are located on ice shelves (denoted by IS).
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at this site, regular melting decreases surface albedo; owing to the
dry climate, the albedo is not frequently reset by fresh snow, thus
increasing SWnet. Secondly, the absence of katabatic winds over
the flat ice shelf reduces turbulent heating of the surface, limiting
longwave heat losses.

The seasonal cycles of all SEB components (Fig. 2, bottom
row) show how the differences in surface climate impact surface

energy exchange and melt rate. In winter, the high wind speeds
at sites AWS 5 and Neumayer result in larger QS, heating the sur-
face and cooling the atmosphere. This results in additional long-
wave heat loss, leading to more negative wintertime net radiation
(Van den Broeke and others, 2010b; Jakobs and others, 2019).
This process is much weaker at AWS 14, where wind speeds are
low year-round. In summer at AWS 14, QS becomes negative,

Table 3. Annual (July–June) values of climatological variables and SEB components for AWS and Neumayer station

DML AP

Neumayer AWS 4 AWS 5 AWS 11 AWS 19a AWS 14 AWS 15 AWS 17 AWS 18
Variable 4/92–1/16 12/97–12/02 2/98–2/14 1/07–1/19 12/14–2/16 1/09–6/15 1/09–5/14 2/11–3/16 11/14–9/18

T2 m (K) 257.1 ± 0.1 254.4 ± 0.3 257.1 ± 0.3 256.0 ± 0.3 259.0 ± 0.3 257.6 ± 0.3 257.4 ± 0.3 258.8 ± 0.4 260.9 ± 0.3
q2 m (g kg−1) 1.1 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.2 ± 0.0 1.3 ± 0.0 1.3 ± 0.0 1.3 ± 0.0 1.5 ± 0.0
WS10 m (m s−1) 8.9 ± 0.6 6.4 ± 0.4 8.1 ± 0.4 9.6 ± 0.4 9.9 ± 0.4 4.5 ± 0.4 4.6 ± 0.4 4.8 ± 0.4 3.6 ± 0.4
SW↓ (W m−2) 128 ± 5 123 ± 27 130 ± 29 127 ± 28 140 ± 28 130 ± 29 128 ± 29 138 ± 31 134 ± 30
SW↑ (W m−2) −107 ± 5 −107 ± 24 −108 ± 24 −109 ± 25 −117 ± 25 −112 ± 25 −114 ± 25 −115 ± 26 −122 ± 27
SWnet (W m−2) 20.4 ± 0.4 16 ± 4 22 ± 5 18 ± 4 23 ± 4 19 ± 4 15 ± 3 24 ± 5 17 ± 4
LW↓ (W m−2) 218 ± 5 222 ± 15 205 ± 15 214 ± 15 214 ± 15 242 ± 15 240 ± 15 238 ± 15 240 ± 15
LW↑ (W m−2) −246 ± 5 −237 ± 15 −241 ± 15 −237 ± 15 −258 ± 15 −254 ± 15 −248 ± 15 −257 ± 15 −268 ± 153
LWnet (W m−2) −28 ± 4 −24 ± 10 −39 ± 10 −27 ± 10 −39 ± 10 −20 ± 10 −20 ± 10 −18 ± 10 −19 ± 10
Rnet (W m−2) −8 ± 3 −8 ± 14 −17 ± 15 −9 ± 14 −16 ± 14 −1 ± 14 −5 ± 13 6 ± 15 −2 ± 13
QS (W m−2) 14.2 ± 0.8 10 ± 1 21 ± 2 12.3 ± 0.7 20.4 ± 0.7 3.7 ± 0.1 7.6 ± 0.5 0.8 ± 0.6 10 ± 1
QL (W m−2) −6.4 ± 0.3 −2.1 ± 0.3 −5 ± 1 −3.9 ± 0.2 −5.3 ± 0.2 −3.0 ± 0.1 −2.6 ± 0.2 −6.9 ± 0.2 −7.2 ± 0.5
QG (W m−2) 1 ± 8 0 ± 7 0 ± 9 0 ± 6 3 ± 6 2 ± 7 2 ± 5 4 ± 7 4 ± 4
M (W m−2) −0.5 ± 0.1 −0.2 ± 0.4 −0.1 ± 0.1 −0.1 ± 0.0 −2.1 ± 0.2 −2 ± 3 −2 ± 2 −4 ± 4 −5 ± 4
Snowmelt (mm w.e. a−1) 50 ± 3 14 ± 6 34 ± 7 7 ± 2 196 ± 2 213 ± 13 139 ± 12 405 ± 9 451 ± 32
Sublimation (mm w.e. a−1) 71 ± 3 23 ± 4 50 ± 15 40 ± 2 59 ± 2 33.5 ± 0.9 29 ± 3 76 ± 3 81 ± 5

The top row indicates whether the station is located in DML or the AP, the third row indicates the period of observation (mm/yy–mm/yy). Uncertainties in QS, QL, QG, M, snowmelt and
sublimation are derived from sensitivity experiments (following Jakobs and others, 2019), the other uncertainties are derived from measurement uncertainties (Table 1). aThe values of AWS
19 are averages of January–December, as there is no full July–June period available for that station.

Fig. 2. Seasonal cycles (based on monthly means) of near-surface climate, surface radiation and SEB for AWS 14 (left column), AWS 5 (centre column) and
Neumayer (right column). The top panels show the seasonal cycles of 2 m temperature, 10 m wind speed and 2 m specific humidity. The middle panels show
the seasonal cycles of upward and downward broadband radiation fluxes, as well as net radiation, and the bottom panels show the seasonal cycles of the
SEB components. The shading indicates the standard deviations of the monthly means, based on the available period. December and January are repeated
for clarity. Note that these average seasonal cycles are derived using data from different time periods (see Table 2). Outputs for the same period from
RACMO2 are shown with dashed lines.
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indicating the presence of a (daytime) weakly convective bound-
ary layer (Kuipers Munneke and others, 2012b; Välisuo and
others, 2014; King and others, 2015). This is a result of the regular
occurrence of melt at this site: it lowers the albedo through wet
snow metamorphism, enhancing SWnet and creating negative
surface-to-air temperature gradients before melting starts.
Surface warming is further enhanced through QG, which increases
significantly in response to warming of the subsurface snow when
meltwater refreezes. As melt rates are small at AWS 5 and
Neumayer, these effects are weaker there. At all three stations,
sublimation (QL) becomes the largest source of heat loss in sum-
mer, when temperatures are sufficiently high to allow for signifi-
cant surface-to-air specific humidity gradients. At AWS 14, QL

becomes weakly positive in winter, indicating deposition of
atmospheric moisture (rime formation) at the surface (Kuipers
Munneke and others, 2012b; Välisuo and others, 2014; King
and others, 2015).

At all stations, average summer melt energy is typically small,
and all SEB components are important in determining its
magnitude. To look at the surface melt process in more detail,
the following section discusses two case studies, using the full
temporal resolution of the dataset.

Two case studies: meteorological drivers of surface melt

The high temporal resolution of the dataset provides an oppor-
tunity to investigate surface melt and its drivers more closely.
Figure 3 contrasts two melt events in DML (AWS 4 and AWS
5, 27–31 December 1998, left) and on the Larsen C Ice Shelf in
the eastern AP (AWS 14 and AWS 18, 7–13 April 2015, right).
Note that the AP AWS store data at hourly intervals, while
AWS 4 and 5 stored data at a 2-hourly time resolution. AWS 4
was situated on the flat Riiser-Larsen ice shelf and AWS 5
85 km to the ESE, just off the shelf on the grounded ice sheet,
but still close to sea level. At this small distance, they experience
similar daily cycles. In this relatively cold part of Antarctica, sur-
face melt is intermittent and only occurs during daytime in sum-
mer, when insolation is strong enough to raise the surface
temperature to the melting point.

The selected midsummer period (27–31 December 1998) for
AWS 4 and 5 represents a radiation-dominated melt event typical
for this location; these daily cycles during the midnight sun
are dominated by the net radiation flux being positive when
solar radiation is sufficiently large and negative otherwise
(Figs 3a, b). Melt occurs when net radiation becomes significantly
positive (∼50 W m−2) and surface heat sinks (convection, sublim-
ation, subsurface heat conduction) are not strong enough to pre-
vent the surface from reaching the melting point. While both
stations experience roughly similar meteorological conditions
(Figs 4a–d), melt does not necessarily occur simultaneously at
the two locations. For example, on 28 December 1998 melt
occurred at AWS 4 but not at AWS 5; on this day, a lower relative
humidity and a higher wind speed at AWS 5 enabled stronger
sublimation, removing sufficient energy from the surface to pre-
vent surface melt. Note that Rnet was similar at both stations:
the higher cloud cover at AWS 4 reduced SWnet but increased
LWnet, which effectively cancelled each other.

Conversely, 2 days later on 30 December 1998, melt occurred
at AWS 5 but not at AWS 4, with higher winds and surface cool-
ing by sublimation this time occurring over the ice shelf. We con-
clude that surface melt in coastal DML is the result of a delicate
balance between daytime surface heat sources and heat sinks,
and highly sensitive to differences in cloud cover, atmospheric
humidity and wind speed.

On the Larsen C Ice Shelf, surface melt also occurs in non-
summer months and even during the polar night. Under the

influence of strong circumpolar westerlies, föhn winds can
develop at the lee (eastern) side of the south-north oriented
spine of the AP (Elvidge and others, 2014; King and others,
2017; Kuipers Munneke and others, 2018). During these events,
warm and dry air reaches the ice shelf at the foot of the moun-
tains. Turton and others (2018) and Wiesenekker and
others (2018) show that föhn events at AWS 18 between
November 2014 and December 2016 occur 14% of the time.
Even in midwinter, 2 m air temperatures can reach values as
high as 10°C, while relative humidity decreases to values below
50%.

AWS 14 and 18 are both located on the Larsen C Ice Shelf in
the eastern AP (Fig. 1). AWS 18 is located in Cabinet Inlet, one of
the main contributing ice streams of the Larsen C Ice Shelf. AWS
14 is located ∼120 km SE of AWS 18, in the middle of the ice shelf
and significantly closer to the ice-shelf edge. The spine of the AP
causes the occurrence of frequent föhn events at AWS 18 (see e.g.
Kuipers Munneke and others, 2018; Wiesenekker and others,
2018); owing to its location farther from the mountain range,
these events are less frequent and less severe at AWS 14
(Turton and others, 2018).

Figures 3c, d and 4e–h show the SEB and near-surface climate
at AWS 14 and 18, for a 6-day period in April 2015. This event
was chosen because of the short overlap between the two stations’
observational record, resulting in this event as one of the few
events registered by both stations. During this period, a well-
developed and long-lasting föhn event was registered at AWS
18, with air temperatures as high as 8.5°C. Surface melt occurred
continuously for 60 h, from ∼8 April 10:00 until ∼10 April 21:00,
with a cumulative melted mass of 37 kg m−2. The most important
energy source was QS, reaching peak hourly averaged values of
150 W m−2, aided by the strong winds (11–12 m s−1) and the
large temperature gradient between the warm air and the melting
surface, which cannot adjust its temperature further upwards.
Relative humidity remained as low as 40%, characteristic of
föhn winds, leading to significant sublimation with peak hourly
average values of 75 W m−2. Without this heat sink, cumulative
melt would have been ∼44% higher. At AWS 14, owing to its loca-
tion farther from the AP spine, the föhn effect is significantly less
pronounced, with above-freezing air temperatures occurring only
towards the end of the episode and cumulative melt totalling
2 kg m−2, 5.4% of that at AWS 18. At AWS 14, the surface tem-
perature remained below freezing for most of the period, with
QG gradually increasing indicating warming of the snowpack by
QS and LWnet, resulting in some surface melt in the final hours
of the föhn event. This shows that AP föhn events and the asso-
ciated melt are spatially highly heterogeneous, and tend to peak in
intensity and duration at the foot of the AP mountains.

Evaluation of other surface melt products

Temperature–index models

Temperature–index models are used where radiation observations
are not available. By relating surface melt rates to air temperature,
an estimate of the former can be determined solely from tempera-
ture observations. Typically, these models relate period-total melt
amounts to the period-sum of daily T− Tc when T > Tc, where Tc

is a freely chosen threshold temperature (usually Tc = 0°C) and T
is the daily average air temperature (usually at 2 m) (see e.g.
Braithwaite, 1995; Hock, 2003; Van den Broeke and others,
2010a). The proportionality constant between daily average T−
Tc and daily melt amount is the degree day factor (DDF),
expressed in mm d−1 K−1. Commonly used values for DDF are
in the range 3–8 mm d−1 K−1 (Hock, 2003).
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Applying this method to all stations with Tc = 0°C yields DDFs
between 3.3 mm d−1 K−1 (AWS 18) and 55.6 mm d−1 K−1 (AWS
19). The results indicate that DDF is spatially highly variable, with
an average value of 26.6 mm d−1 K−1 for DML stations and
5.9 mm d−1 K−1 for eastern AP shelf stations. The very high

degree day factors for DML are caused by the intermittent nature
of the melt, giving rise to frequent melt days for which average
daily temperatures do not exceed 0°C (see also Fig. 4). The vari-
ability in the DDF over larger areas was also shown by Van den
Broeke and others (2010a) for the Greenland ice sheet. As T is

Fig. 3. High-resolution time series of SEB components for AWS 4 and 5 in DML (a and b, 27–31 December 1998, 2 h resolution) and AWS 14 and 18 in the AP (c and d,
7–13 April 2015, 1 h resolution). Note the different vertical axes (a and b compared to c and d).

Fig. 4. Time series of T2 m, TS, WS10 m and RH2 m for AWS 4 and 5 (a–d) and AWS 14 and 18 (e–h) for the same periods as in Figure 3.
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the daily average air temperature, melt days on which daily aver-
age T < 0°C are not recognised as melt days, which results in a sig-
nificant amount (72.5% in terms of total melt) of melt events not
being accounted for. This effect is most pronounced in DML,
where only 7.6% of the melt days have a daily average T > 0°C,
compared to 34.7% on eastern AP ice shelves.

By choosing Tc < 0°C, for example when Tc is set to − 10°C
(following Van den Broeke and others, 2010a), all melt events
are accounted for; however, the correlation coefficient between
predicted and observed daily melt R2 decreases from 0.36 to
0.33, further lowering the validity of this method. This simple
application of the in situ melt rate dataset shows that continent-
wide estimates for surface melt cannot be based solely on tem-
perature records and a positive-degree day method.

RACMO2

We compare the in situ surface melt rates to the output of the
polar version of the Regional Atmospheric Climate MOdel (cur-
rent version RACMO2.3p2, from now on RACMO2), which is
developed at IMAU in collaboration with the Royal Netherlands
Meteorological Institute (KNMI). The model combines the
dynamics of the regional model HIRLAM (Undén and others,
2002) with the physics parameterisations of ECMWF-IFS
(ECMWF, 2008), assuming hydrostatic balance and using 40 ver-
tical levels. It is interactively coupled to a multilayer snow model
that calculates melt, refreezing, percolation and runoff of melt-
water (Ettema and others, 2010). It furthermore includes a
snow albedo scheme based on snow grain size evolution
(Kuipers Munneke and others, 2011; Van Angelen and others,
2012) as well as a drifting snow scheme that simulates the redis-
tribution and sublimation of suspended snow particles (Lenaerts
and others, 2012). We refer the reader to Van Wessem and
others (2014a) and Van Wessem and others (2014b) for more
technical details of RACMO2. Here we use the latest gridded
27 km product spanning the period 1979–2017 and covering
the entire continent (Fig. 1). The model run is forced at the lateral
boundaries and in the upper atmosphere by the ERA-interim
reanalysis product (Dee and others, 2011). Previous studies
have evaluated RACMO2 for temperature, wind speed and SEB
components in Antarctica; Van Wessem and others (2018)
showed that RACMO2 reproduces surface temperatures and net
shortwave radiation with high accuracy (R2 > 0.9), and turbulent
fluxes, net longwave radiation and wind speed with fair accuracy
(R2 > 0.5). The RACMO2 melt product has not been compared to
in situ melt data but only to QuikSCAT data, which showed a cor-
relation of R2 = 0.81 and a bias of −15 Gt a−1 for the entire AIS
(∼13% of average annual snowmelt) (Van Wessem and others,
2018). Furthermore, RACMO2 has been evaluated in terms of
SEB components (King and others, 2015) and surface mass bal-
ance (Kuipers Munneke and others, 2017).

Here, we compare the RACMO2 surface melt rates to the in
situ melt rate dataset (Fig. 5). The RACMO2 error bars are empir-
ically determined by calculating the relative deviation from each
observation and taking the average; this average relative deviation
is then imposed on each model melt point. The errors of the in
situ melt values are derived from a parameter uncertainty study
with the SEB model (similar to Jakobs and others, 2019). The
result that deviates most from the baseline run is assumed to
represent the uncertainty. Figure 5 presents annual (July–June)
surface melt rates for (a) all stations and (b) DML stations only,
and shows good correlation (R2 = 0.83). On average RACMO2
somewhat underestimates melt (bias =−7.3 mm w.e. a−1). When
both regions are considered separately the correlation weakens,
with R2 = 0.59 for stations located on the ice shelves in the eastern
AP, and R2 = 0.51 for stations in DML.

Figure 6 presents time series of annual melt (1979–2017) from
QuikSCAT (green), discussed in the next section, RACMO2
(blue) and the in situ melt rates (dark orange) for the nine obser-
vational sites. The shading indicates the uncertainty based on the
SEB-model parameter uncertainty tests. The figure shows that
surface melt is extremely variable from year to year. We also
note that the interannual variability significantly exceeds the
uncertainty of the in situ melt rate. Although at some locations
the difference between the in situ surface melt and RACMO2 is
substantial (e.g. AWS 15), the average annual melt amount and
its interannual variability are similar ( p < 0.01 in Fig. 5a).
Elevation differences between the nearest grid point in

Fig. 5. In situ versus (a, b) RACMO2-modelled and (c) QuikSCAT-derived yearly (July–
June) melt. AWSs are indicated by station numbers and Neumayer by N. (a) shows all
stations and (b) focuses on DML stations for clarity. Correlation coefficients are (a)
0.83, (b) 0.51 and (c) 0.92. The error bars for RACMO2 (a, b) and QuikSCAT (c) are
empirically determined by calculating the relative deviation from each observation
and taking the average; this average relative deviation is then imposed on each
model melt point. The errors of the in situ melt values are derived from a parameter
uncertainty study with the SEB model (similar to Jakobs and others, 2019).
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RACMO2 and the actual station elevation do not explain these dif-
ferences: performing a linear regression of modelled melt on eleva-
tion does not significantly improve the overall result (not shown).

Figure 2 compares observed seasonal SEB cycles with
RACMO2 (dashed lines). Qualitatively, the modelled seasonal
cycles compare well to the observed ones. The lag in LWnet com-
pared to SWnet is represented well by the model, as well as average
and month-to-month variations in wind speed. As the fluxes are
generally small, minor differences in one flux can have large
implications for the total SEB. At AWS 14, modelled winter tem-
peratures are ∼ 4°C higher than observed. As a result, wintertime
QS and LW↓ are larger and LW↑ is more negative because of the
higher surface temperature. At AWS 5, modelled temperatures are
slightly lower than observed. Furthermore, modelled SW↑ is lar-
ger in summer, indicating a higher modelled surface albedo. As
a result, Rnet is lower throughout the summer season. LW↑ is
less negative, indicating a lower surface temperature, which
leads to a greater surface-to-air temperature gradient and larger
QS. At Neumayer, RACMO2 models higher winter temperatures,
leading to larger QS in winter. The modelled surface albedo is
higher in summer, as SW↑ is larger. As a result, modelled Rnet

is lower in summer, leading to slightly less surface melt. The pos-
sibility to perform such detailed SEB comparisons underlines the
usefulness of the in situ SEB and melt data.

QuikSCAT

As a final application we present a comparison of our melt dataset
with satellite-derived melt amounts. Trusel and others (2013)

present 1999–2009 annual (July–June) continent-wide maps of
cumulative surface melt on a 8–10 km effective resolution. It is
based on data from the SeaWinds radar scatterometer onboard
the QuikSCAT satellite. The detection of liquid water in the snow-
pack relies on the high dielectric constant of liquid water com-
pared to snow. As a result, radar backscatter is greatly reduced
in the presence of liquid water, which is detectable even at
small amounts in the snowpack. The method used by Trusel
and others (2013) calibrates seasonally summed reductions in
radar backscatter during melt with in situ melt products from
AWS across Antarctica. AWS 14, 15 and Neumayer are among
the stations that were used for the calibration, stations of which
the meteorological data are also part of this study.

Figure 5c compares annual surface melt rates from QuikSCAT
(1999–2009) with the in situ melt rates. Unfortunately, the overlap
in time period available for QuikSCAT and our dataset is limited,
resulting in data from only four stations available for the compari-
son. Data from Neumayer are dominating the comparison, which
shows a good correlation (R2 = 0.92). Note that since data from
Neumayer were used to calibrate QuikSCAT, these results are not
independent. If the Neumayer values are omitted from Figure 5c,
the correlation coefficient increases (R2 = 0.98) but the slope
becomes significantly smaller than one. Figure 5c furthermore
shows that all in situ surface melt rates for AWS 4, 5 and 11 are
higher than those from QuikSCAT. As melt is intermittent in
DML, it is possible that some melt events occur between consecu-
tive passes of the QuikSCAT satellite. As melt amounts are low at
AWS 4, 5 and 11, this affects the QuikSCAT signal more strongly at
those sites than at Neumayer.

Fig. 6. Time series of in situ melt rate (dark orange), RACMO2 (blue) and QuikSCAT (green). The two in situ melt values for AWS 19 (bottom right) cover only the
summer months December–February and November–January respectively, and therefore do not fully capture the melt seasons.
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The QuikSCAT surface melt estimates are displayed in green in
Figure 6, allowing for a direct comparison with the in situ and
RACMO2 annual melt rates. Unfortunately, there is little tem-
poral overlap between the QuikSCAT data and the in situ obser-
vations. Nevertheless, Figure 6 shows that the interannual
variability as observed and as modelled by RACMO2 are similar,
adding confidence to the long-term continent-wide melt estimates
of RACMO2.

Summary and conclusions

This paper presents a benchmark dataset of consistent, in situ
Antarctic SEB and surface melt rates at five locations in coastal
DML and four locations in the eastern AP, at high temporal reso-
lution (1–2 h).

Uncertainties in the in situ surface melt and energy-balance
calculations are based on SEB model parameter uncertainty
(Jakobs and others, 2019). The results show that DML and the
eastern AP have very different melt climates. In the relatively
cold climate of DML, melt is driven by absorption of solar radi-
ation, with melt occurrence and rate determined by a delicate bal-
ance between processes that add (absorption of shortwave
radiation) and remove (sublimation) heat from the surface. Melt
is more extensive in space and time on the ice shelves in the east-
ern AP, owing to their more northerly location and frequent föhn
events (e.g. Turton and others, 2018; Wiesenekker and others,
2018). These föhn events can lead to continuous melting for mul-
tiple days, even outside summer, but our analysis shows that con-
tinuous melt is confined to the foot of the AP mountains and
does not extend far onto the ice shelf.

Despite the relatively short timeseries of the in situ melt rates
and SEB, they are powerful tools to calibrate/validate/evaluate
other melt products such as temperature–index models, regional
climate models and satellite products. We show that temperature
index models are unsuitable to estimate melt rates in the intermit-
tent melt climate of coastal Antarctica. On the other hand, sea-
sonal melt rates from the QuikSCAT satellite (Trusel and
others, 2013) and the regional climate model RACMO2 (Van
Wessem and others, 2018) agree generally well with the in situ
data. Although at some locations surface melt is not reproduced
properly by RACMO2, for example at AWS 19 (Fig. 5), the correl-
ation with the entire dataset is very high (R2 = 0.83 in Fig. 5a),
providing confidence in the performance of these melt products.

These pilot applications demonstrate the value of consistently
derived in situ surface melt and energy-balance products from the
Antarctic ice sheet, and stress the urgent need for similar observa-
tions from other coastal Antarctic sites.
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