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USED IN PRACTICAL APPLICATIONS
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Abstract

In this paper, the authors re-examine the reduction of Maurer
and Wolf of the discrete logarithm problem to the Diffie–Hellman
problem. They give a precise estimate for the number of operations
required in the reduction, and then use this to estimate the exact
security of the elliptic curve variant of the Diffie–Hellman protocol
for various elliptic curves defined in standards.

1. Introduction

One of the oldest challenging problems in public key cryptography is to prove or disprove
that the discrete logarithm problem (DLP) and the Diffie–Hellman problem (DHP) are
computationally equivalent. The hard part of the equivalence is showing that we can solve
the DLP using a polynomial number of group operations and calls to a function that solves
the DHP.

Significant steps have already been made towards finding the solution, and the equiva-
lence has been proved for some groups. Intuitively, it makes sense to use such groups for
the Diffie–Hellman protocol (if, of course, no discrete logarithm algorithm is known for
them), so that breaking the Diffie–Hellman protocol is as hard as computing logarithms:
that is to say, secure.

For most of the groups in use in cryptography, it is believed that the DHP and the DLP
are equivalent in a complexity-theoretic sense; that is, there is a polynomial-time reduction
of one problem to the other, and vice versa. Examples of groups that have been proposed for
application in the Diffie–Hellman protocol are the multiplicative group of large finite fields
(prime fields or extension fields), the multiplicative group of residues modulo a composite
number, elliptic curves over finite fields, and the class group of imaginary quadratic fields.

Maurer and Wolf [4, 5, 6, 8] have proved that for every group G with prime order p,
the equivalence holds if we are able to find an elliptic curve over Fp with smooth order.
The aim of this paper is to show that for various elliptic curve groups recommended by
standards, such an elliptic curve exists. To this end, we will use the technique of complex
multiplication to construct elliptic curves with smooth order. The implementation of this
algorithm has been carried out using the software package Magma.

2. Notation and definitions

Formally, we define the DHP and DLP as follows.
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DHP and DLP

Definition 1. Let G be a finite cyclic group generated by g. The problem of computing
from h ∈ G an integer x such that gx = h is called the discrete logarithm problem (DLP)
with respect to g.

Definition 2. Let G be a finite cyclic group generated by g. The problem of computing
gab from ga and gb is called the Diffie–Hellman problem (DHP) with respect to g.

It is easy to see that if one can solve the DLP, one can solve the DHP. Let ga and gb be
in G. We compute a from ga , and then we compute (gb)a = gab. Hence DLP =⇒ DHP.
This paper focuses on the reverse reduction, namely DLP⇐= DHP.

The equivalence that we are interested in is a computational equivalence. Suppose that,
one day, the DHP turns out to be easy; that is, a given instance of this problem can be solved
in a reasonable time. We want to known if this implies that the DLP is easy as well; that
is, if there exists an effective algorithm for solving a given instance of the DLP by using a
‘small’ number of operations and of calls to a function that solves the DHP. Such a function
is called a DH-oracle.

Definition 3. A DH-oracle takes as input elements ga and gb and returns gab.

Now, what do we mean by a ‘small’ number of operations and a ‘small’ number of calls
to the DH-oracle? The answer is a polynomial in log p, where p is the order of the group.

Definition 4. Let G be a finite cyclic group with generator g, of order |G| = p. Given
h ∈ G, the DLP and the DHP are computationally equivalent if we are able to find the
unique x modulo p such that h = gx , by using only:

• O
(
(log p)O(1)

)
operations in G,

• O
(
(log p)O(1)

)
calls to the DH-oracle.

For given elliptic curves defined in various standards, we would like to show that the
number of group operations and DH-oracle calls required to reduce the DLP to the DHP
is small – that is, less than say 2n1 . This would imply that if we believe that no algorithm
can solve the DLP in such groups in less than 2n2 operations, then any future algorithm for
solving the DHP (and thus breaking the DHP protocol) would require 2n2−n1 operations.
Hence the smaller the value of n1, the tighter the security reduction.

3. Algorithm overview

We first give an overview of the method proposed by Maurer and Wolf [4], which we
shall use in our later calculations.

Let G be a cyclic group with generator g, and whose order is a prime p. If a is an integer
modulo p, then the value of ga is said to be the implicit representation of a. The idea of
the algorithm is to do computations in the implicit representation. For example, to compute
a + b in implicit form, we compute ga · gb, which costs only one multiplication in G;
likewise, to compute a − b in implicit form, we compute ga · (gb)−1, which costs only
one multiplication and an inversion in G. To compute a · b in implicit form, one call to the
DH-oracle is needed. To compute a−1 in implicit form, one uses the fact that ap−1 = 1, so
ap−2 = a−1. Hence one can perform any algebraic algorithm on the implicit representation.
Table 1 sums up computations in implicit representation, and their average complexities.
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Table 1: Computations in implicit representation, and their average complexities.

Explicit form Implicit form Complexity

a + b ga+b = ga · gb 1 multiplication in G

a − b ga−b = ga · (gb)−1 1 multiplication and 1 inversion in G

a · b DH(ga, gb) 1 call to the DH-oracle

a−1 ga−1 = gap−2
2 log p calls to the DH-oracle

The following result can be found in [4] and [8].

Theorem 1. Let G be a group. If each large prime factor p of |G| is single, and if for every
such p a cyclic elliptic curve over Fp is known with smooth order, then breaking the DHP
and breaking the DLP are equivalent for G.

Proof. For the sake of simplicity, let us assume that G = 〈g〉, with |G| = p prime. The
elliptic curve E = Ea,b(p) with parameters a and b in Fp is the set

{
(x, y) ∈ (Fp)2

∣∣ y2 = x3 + ax + b
} ∪ {O}.

By a theorem of Rück [10], we can always choose a curve E, of a given order, such that
E(Fp) is cyclic and generated by P .

We assume that we are given gx , and we are asked to compute x. First, the group element

gx3+ax+b

can be computed from gx by O(log a + log b) = O(log p) group operations and two calls
to the DH oracle for G. If z = x3+ax+b is a quadratic residue mod p (which can be tested
efficiently), then a group elementgy can be computed such thaty2 ≡ z ≡ x3+ax+b mod p,
using an implicit version of the Tonelli–Shanks algorithm [3].

If z is not a quadratic residue, gx can be replaced by gx+d for a random offset d until z

is a quadratic residue. Testing the quadratic residuosity of z modulo p can be achieved with
O(log p) applications to the DH-oracle, because z is a quadratic residue modulo p if and
only if z(p−1)/2 ≡ 1 mod p; that is, if and only if gz(p−1)/2 = g. To simplify the discussion,
we shall assume that z is a quadratic residue, and that (using the Tonelli–Shanks algorithm)
we have computed

(gx, gy) =
(
gx, g

√
x3+ax+b

)

with x, y ∈ Fp. The point Q = (x, y) is a point on the elliptic curve E. Since |E| is assumed
to be smooth, we can use an implicit version of the Pohlig–Hellman algorithm to compute
the discrete logarithm k of Q with respect to the generator P . Computing [k]P explicitly
finally gives us x, as the abscissa of the point [k]P .

For each prime factor q of |E|, we proceed as follows. From (gx, gy), we compute
(gu, gv) such that

(u, v) =
[ |E|

q

]
Q.
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From the generator P of E, the points

(ui, vi) =
[
i · |E|

q

]
P

are computed for i = 0, 1, . . . , q − 1, and from (ui, vi) we obtain the group elements
(gui , gvi ). Since the point (u, v) has order q and Q = [k]P , we conclude that

(gu, gv) = (gui , gvi ) ⇐⇒ k ≡ i (mod q).

Similarly, k can be computed modulo the prime powers of the factorisation of |E|, and
hence modulo |E|. From k, we compute [k]P = Q, and then x is simply the abscissa of the
point Q.

If |E| is B-smooth, then the rough complexity of this method is

• O
(
B · (log p)2) group operations in G and field operations in Fp,

• O
(
(log p)3) calls to the DH-oracle for G.

A more accurate estimate of the complexities will be given later.

4. How long it takes to solve a given instance of the DLP

In this section, we want to find a precise estimate of how long it takes to solve a given
instance of the DLP – in other words, how many calls to the DH-oracle and how many
multiplications are required, on average. We need to analyse precisely the method sketched
in Section 3.

Let G be a cyclic group with generator g and prime order p. Given h ∈ G, we want to
find the unique x modulo p such that h = gx . The generalization with a composite order is
possible (see Section 3), but is not necessarily of practical importance, since the orders of
all the groups recommended by standards are prime.

We assume that the parameters a and b of a cyclic elliptic curve Ea,b(Fp) with smooth
order are given. We assume that

|E| =
s∏

j=1

q
fj

j

with fj = 1 and qj < B for j = 1, . . . , s. Actually, the generalization with fj > 1 is
possible using the analogy with the Pohlig–Hellman algorithm, but is not useful because
in practice the multiple factors of |E| will always be small in comparison with the largest
prime factor |E|. Therefore, we assume that |E| =∏s

j=1 qj , where all qj are not necessarily
prime, but are all less than the smoothness bound B.

4.1. Algorithm overview

1. 1.1. Compute gx3+ax+b = gz.
1.2. [Test the quadratic residuosity of z mod p.]

Compute gz(p−1)/2
and g and compare them. On equality, go to Step 2, else

replace x by x + d for a random d and go to Step 1.1.

2. [Compute gy from gz = gy2
using the algorithm of Tonelli and Shanks.]

Write p − 1 = 2e · w with w odd.

2.1. [Initialize.] Set gs ← g, r ← e, gy ← gz(w−1)/2
, gb ← gzy2

, gy ← gzy .
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2.2. [Find exponent.] If gb ≡ 1 mod p, output gy and go to Step 3. Otherwise, find

the smallest m � 1 such that g(b2m
) ≡ 1 mod p.

2.3. [Reduce exponent.] Set gt ← g(s2r−m−1
), gs ← gt2

, r ← m, gy ← gyt ,
gb ← gbs and go to Step 2.2.

3. Note that Q := (x, y) is a point on E; however, we know only the implicit represen-
tation (gx, gy).
For j from 1 to s, do the following.

3.1. Compute (guj , gvj ) such that (uj , vj ) = (|E|/qj ) ·Q.
3.2. For i from 0 to qj − 1, do the following.

3.2.1. Compute (uji, vji) = i · (|E|/qj ) · P , where P is a generator of E.

3.2.2. Compute (guji , gvji ).

3.2.3. Compare (guji , gvji ) with (gui , gvi ). On equality, let kj := i and go to
the next iteration in j (or to Step 4 if j = s).

4. 4.1. Compute k mod |E| such that ∀j ∈ {1, . . . , s}, k ≡ kj mod qj .
4.2. Compute k · P = Q. Then x mod p is the first abscissa of Q.

The standard binary exponentiation algorithm requires log2 k squares and on average
1/2 · log2 k multiplications. We require this in two places.

• To compute gxk
, given gx . Then, on average 3/2 · log2 k calls to the DH-oracle are

needed.

• Given a point P on an elliptic curve, to compute kP = ∑t
i=0 ki(2iP ). Then, on

average 1/2 · log2 k additions of points and log2 k doublings are needed.

We now expand on the second of these subprocedures.

4.2. Explicit and implicit point multiplications

4.2.1. Doubling a point on an elliptic curve.
Let P = (x, y) and Q = 2P = (x′, y′). Then:



λ = 3x2 + a

2y
;

x′ = λ2 − 2x;
y′ = λ · (x − x′)− y.

In implicit representation, we know (gx, gy) and we want to compute (gx′ , gy′) such that
(x′, y′) = 2(x, y).


gλ = DH(DH(gx, gx) · gx2 · gx2 · ga, DHI(gy · gy));
gx′ = DH(gλ, gλ) · g−x · g−x;
gy′ = DH(gλ, gx · g−x′) · g−y.

Computing gλ requires 4+ 3/2 · log2 a multiplications, two calls to the DH-oracle and
one DH-inversion. (To compute g(z−1) from gz, we use the fact that g(z−1) = g(zp−2) in Fp.
It requires on average (approximately) 3/2 · log2 p calls to the DH-oracle. We call this a
DH-inversion (DHI), in contrast with an inversion: computing g−z from gz.) If gλ is known,
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computing gx′ and gy′ requires four multiplications and three inversions in Fp, and two calls
to the DH-oracle.

Finally, doubling a point on an elliptic curve requires the folowing numbers of operations.

In explicit form: four multiplications and one inversion in Fp.

In implicit form: 8 + 3/2 · log2 a multiplications and three inversions in Fp, four calls to
the DH-oracle and one DH-inversion.

4.2.2. Adding two points on an elliptic curve.
Let P = (x1, y1), Q = (x2, y2) and R = P +Q = (x3, y3). Then:



λ = y2 − y1

x2 − x1
;

x3 = −x1 − x2 + λ2;
y3 = λ · (x1 − x3)− y1.

In implicit representation, we know (gx1 , gy1) and (gx2 , gy2), and we want to compute
(gx3 , gy3) such that (x3, y3) = (x1, y1)+ (x2, y2).


gλ = DH(gy2 · g−y1 , DHI(gx2 · g−x1));
gx3 = g−x1 · g−x2 · DH(gλ, gλ);
gy3 = DH(gλ, gx1 · g−x3) · g−y1 .

Finally, adding two points on an elliptic curve requires the following numbers of operations.

In explicit form: three multiplications and one inversion in Fp.

In implicit form: six multiplications and four inversions in Fp, three calls to the DH-oracle
and one DH-inversion.

Combining the above analyses, we find that a scalar multiplication of a point on a curve
requires the following numbers of operations.

In explicit form. Given a point P on an elliptic curve, computing explicitly the point kP

requires on average:

• 11/2 · log2 k multiplications in Fp;
• 3/2 · log2 k inversions in Fp.

In implicit form. Given (gx, gy), computing (gu, gv) such that (u, v) = k · (x, y) requires
on average:

• 11 log2 k + 3/2 · log2 a multiplications in Fp (we compute ga only once);
• 5 log2 k inversions in Fp;
• 11/2 · log2 k calls to the DH-oracle;
• 3/2 · log2 k DH-inversions.

4.3. Complexity

We are now in a position to evaluate precisely the complexity of the algorithm for reducing
the DLP to the DHP.
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Step 1.

Step 1.1. We compute gx3+ax+b = gx3
(gx)agb. This requires two calls to the DH-oracle

and 2+ 3/2 · (log2 a + log2 b) multiplications.

Step 1.2. This step requires 3 log2 (|G|/p) multiplications and about

3

2
log2

(
p − 1

2

)
≈ 3

2
(log2 p − 1)

calls to the DH-oracle.

The field Fp contains (p + 1)/2 quadratic residues and (p − 1)/2 non-quadratic residues.
Let ν be the number of iterations for Step 1. The probability for having ν = k iterations is:

P(ν = k) =
(

p − 1

2p

)k−1

· p + 1

2p
.

The average number ν̄ of iterations for Step 1 is therefore:

ν̄ =
∞∑

k=1

k · P(ν = k) =
∞∑

k=1

k ·
(

p − 1

2p

)k−1

· p + 1

2p
= 2p

p + 1
≈ 2.

Hence Step 1 requires on average about:

• 4+3 log2 a+3/2·log2 b+9/2·log2 (|G|/p) multiplications (gb and gh are computed
only once);

• 1+ 3 log2 p calls to the DH-oracle.

Step 2.

Step 2.1 requires about 3/2 · (log2 w− 1)+ 3 = 3/2 · (log2 w+ 1) calls to the DH-oracle.
Steps 2.2 and 2.3 require r + 2 calls to the DH-oracle for one iteration, and at most e

iterations are expected. Since r is always smaller than e, Steps 2.2 and 2.3 need at most
e · (e+2) calls to the DH-oracle. We need to estimate e, the integer such that p−1 = 2e ·w
with w odd. It is easy to see that on average, since p is odd, that e ≈ 2. Hence, Step 2 needs
about

8+ 3

2

(
1+ log2

p

4

)
= 13

2
+ 3

2
log2 p

calls to the DH-oracle.

Step 3.

Let j be fixed.

Step 3.1. Using results of Section 4.2, Step 3.1 requires on average, for each value of j :

• 11 log2 (|E|/qj )+ 3/2 · log2 a multiplications in Fp;
• 5 log2 (|E|/qj ) inversions in Fp;
• 11/2 · log2 (|E|/qj ) calls to the DH-oracle;
• 3/2 · log2 (|E|/qj ) DH-inversions.

Step 3.2. First we compute (|E|/qj ) · P , before entering into the loop in i. This requires
on average (11/2) log2 (|E|/qj ) multiplications and (3/2) log2 (|E|/qj ) inversions
in Fp.

Step 3.2.1. We use the fact that (ui+1, vi+1) = (ui, vi) + (|E|/qj ) · P . The cost is
one addition on E; that is, three multiplications and one inversion in Fp.
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Step 3.2.2. This step needs 3/2 · (log2 ui + log2 vi) multiplications in Fp. If we
consider that ui and vi are p/2 on average, then 3 log2 p− 3 multiplications are
needed.

We can assume that, on average, there are qj /2 iterations in the loop in i : ki = qj /2.
Thus Step 3.2 requires on average, for one j :

• 11/2 · log2 (|E|/qj )+ 3qj /2 · log2 p multiplications in Fp.
• 3/2 · log2 (|E|/qj )+ qj /2 inversions in Fp.

Summing up for the whole of Stage 3, we have
s∑

j=1

log2
|E|
qj

= (s − 1) · log2 |E|.

Hence Step 3 requires, on average:

•
3

2
log2 a + 33(s − 1)

2
log2 |E| +

3 log2 p

2
·

s∑
j=1

qj multiplications in Fp.

•
13(s − 1)

2
log2 |E| +

1

2

s∑
j=1

qj inversions in Fp.

•
11(s − 1)

2
log2 |E| calls to the DH-oracle.

•
3(s − 1)

2
log2 |E| DH-inversions.

Step 4.

Step 4.1. We use the Chinese remainder theorem to compute k mod |E|, knowing that
k ≡ kj mod qj , for each j ∈ {1, . . . , s}. Using the Gauss algorithm,

k =
s∑

j=1

kj ·Qj · Rj (mod |E|)

with Qj = |E|/qj and Rj = Q−1
j mod qj . It requires 2s multiplications and

s inversions in (Fq1 , . . . , Fqs ).

Step 4.2. We can consider that on average, k mod |E| = |E|/2. Thus log2 (|E|/2)

doublings and 1/2 · log2 (|E|/2) additions on E are needed. Hence, Step 4.2 requires
on average:

• 11/2 · (log2 |E| − 1) multiplications in Fp;
• 3/2 · (log2 |E| − 1) inversions in Fp.

4.4. Conclusion

The algorithm needs on average:

• −3

2
+ 9

2
log2 a + 3

2
log2 b + 9

2
log2 |G| +

3

2
log2 p ·

( s∑
j=1

qj − 3

)

+ 11

(
3

2
s − 1

)
· log2 |E| multiplications in Fp;

• −3

2
+ 1

2

s∑
j=1

qj +
(

13

2
s − 5

)
· log2 |E| inversions in Fp;
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•
15

2
+ 9

2
log2 p + 11(s − 1)

2
log2 |E| calls to the DH-oracle;

•
3(s − 1)

2
log2 |E| DH-inversions.

We supposed that a > 0 and b > 0. If actually a < 0, we must add three inversions
in Fp; if b < 0, one inversion must be added. In the expressions above, many terms can
be neglected. Moreover, the approximation log2 |E| ≈ log2 p can be used without loss of
accuracy. We obtain the following:

•
3

2
log2 p ·

( s∑
j=1

qj

)
multiplications in Fp;

•
1

2

s∑
j=1

qj +
(

13

2
s − 5

)
· log2 p inversions in Fp;

•

(
11s

2
− 1

)
· log2 p calls to the DH-oracle;

•
3(s − 1)

2
log2 p DH-inversions.

Since an inversion can in general be computed in a field of large prime characteristic at a
cost of at most 10 multiplications, and since a DH-inversion needs on average (3/2) log2 p

calls to the DH-oracle, we conclude that the following theorem holds.

Theorem 2. Let G be a cyclic finite group of prime order p. Assume that an elliptic curve
E over Fp has been found, whose B-smooth order is

#E =
s∏

j=1

qj .

Solving a given instance of the DLP in G requires on average about:

(65s − 50) log2 p +
(

5+ 3

2
log2 p

) s∑
j=1

qj = O

(
B · log2 p

log B

)
multiplications in Fp

and (
11

2
s − 1+ 9

4
(s − 1) log2 p

)
· log2 p = O

(
log3 p

log B

)
calls to the DH-oracle.

Using the baby-step/giant-step method to find k, as opposed to the exhaustive search
method described above, both complexities can be replaced by

O
(√

B · (log p)3
)

.

5. Building a curve with appropriate order

We now turn to the problem of building a curve with a smooth group order over the field
of p elements. According to [2], the main techniques are as follows:

• generate random curves and compute their group orders, until an appropriate one is
found;

• generate curves with given group order using the theory of complexity multiplication
(CM).
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The genesis of the efficient general point-counting algorithms lies in the work of Schoof
[11]. The complexity of his algorithm is O(log8 p). To improve the computational efficiency
of the basic Schoof algorithm, several techniques have evolved, owing in large part to Atkin
and Elkies; see [2] for details. The improvements to the basic Schoof algorithm are generally
referred to as the Schoof–Elkies–Atkin (SEA) algorithm, whose running time is O(log6 p).

When the order of the random elliptic curve is known, it remains to check whether or
not it is smooth.

To speed up the computations, we preferred to use the CM method, since given a prime
p it is very easy to generate a large number of possible group orders. To this end, we give
a quick overview of the CM method for curve construction.

If E is an elliptic curve over Fp of order u, then

Z = 4p − (p + 1− u)2

is positive, by the Hasse bound. Thus there is a unique factorization:

Z = DV 2,

where D is squarefree. So for each non-supersingular elliptic curve over Fp, of order u,
there exists a unique squarefree integer D such that

4p = W 2 +DV 2 (1)

for some W and V . In this case, the group order is given by

u = p + 1±W.

It is said that E has complex multiplication by D. The value D is called a CM discriminant
for p. To find W and V in equation (1), one uses the algorithm of Cornacchia; see [2] for
details.

Once one has found values of W and V , and an associated CM discriminant D, we
can then build an elliptic curve with group order p + 1±W , using the theory of complex
multiplication. This last step can lead to problems, unless the value of D is sufficiently
small, since for large values of D we need to construct the Hilbert class polynomial that
has degree hD = O(

√
D), where hD is the class number of the order of discriminant −D.

Hence we need to find a small value of D for a given prime p such that one of p+1±W

is smooth, where W is the solution to equation (1). The main cost lies in searching for a
value of D such that p+ 1±W is smooth. Due to the size of the numbers involved, a naïve
smoothness test is not enough; essentially, one needs to perform a full factorization using
the ECM factorization method.

6. Security of the DLP

The traditional way to interpret the reduction of the DLP to the DHP is to use the result to
examine the security of the discrete logarithm problem in terms of oracle calls to the Diffie–
Hellman problem. In such a situation, one wishes to balance the number of group operations
and Diffie–Hellman oracle calls made in the reduction algorithm. As we mentioned above,
this can be done by the use of the baby-step/giant-step algorithm in Step 3 of the reduction
above. Doing so results in a complexity of O(

√
B · (log p)3) group operations and Diffie–

Hellman oracle calls.
Waterhouse [13] determined the possible values of #E(Fp), and showed that for all

integers d ∈ [p+1−2
√

p, p+1+2
√

p], there exists an elliptic curve over Fp of order d.
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Furthermore, a theorem of Rück [10] implies that the group structure can be assumed to
be cyclic. This implies the following non-uniform reduction of the DLP to the DHP. For a
number p, we define ν(p) to be the minimum of the set of the largest prime factors of the
integers d in the interval [p+1−2

√
p, p+1+2

√
p]. This leads to the following theorem.

Theorem 3. For every finite cyclic group G of order |G| =∏
p

ei

i and such that all multiple
prime factors pi of |G| are smaller than a polynomial in log |G|, there exists an algorithm
that makes calls to a DH oracle for G and computes discrete logarithms of elements of G

in √
max{ν(pi)} · (log |G|)O(1)

group operations and calls to the Diffie–Hellman oracle.

A plausible smoothness assumption (see [7, 8]) is that:

ν(n) is of order (log n)O(1). (2)

This assumption implies the existence of a (log n)O(1)-smooth cyclic elliptic curve over Fp

for each prime number p. Therefore, for every cyclic group G there exists a small piece
of information, which depends only on the order of G, that makes breaking the Diffie–
Hellman protocol and computing discrete logarithms polynomial-time equivalent in G.
This information is a string S, consisting of the prime factors pi of |G| and appropriate
elliptic curve parameters ai and bi for all pi .

Corollary 1. If the smoothness assumption (2) is true, then for every cyclic group G = 〈g〉
whose order contains no multiple prime factors greater than a polynomial in log |G|, there
exists a string S of length at most 3 log |G| such that when given S, solving the DHP is
polynomial-time equivalent to solving the DLP.

Using the specific properties of the elliptic curve groups defined in the various standards,
we now show the existence of an auxiliary elliptic curve that has very smooth order; that
is, the order is simply a power of two.

Suppose first that the elliptic curve E is defined over a finite field F2n ; then the theorem
of Hasse implies that #E ∈ [2n + 1 − 2n/2, 2n + 1 + 2n/2]. Furthermore, all the elliptic
curve groups in the standard have an order of the form #E = h ·p with p a large prime and
the cofactor h either 2 or 4. This implies that the prime p itself is contained in the interval[

2n−δ + 1/h− 2n/2−δ, 2n−δ + 1/h+ 2n/2−δ
]

(3)

with h = 2δ; that is, δ = 1, 2. The theorem given by Waterhouse shows that for each
d ∈ [p+ 1− 2

√
p, p+ 1+ 2

√
p] there exists an elliptic curve over Fp with group order d.

Since p is contained in the interval (3), an easy calculation shows that it is highly likely that
d = 2n−δ is contained in the Hasse-interval [p+1−2

√
p, p+1+2

√
p]. This implies that

there exists an auxiliary elliptic curve over Fp with group order 2n−δ . For all characteristic
two curves in the SECG list [12], we find that the value of d lies in the required interval.

For elliptic curve groups defined over a large prime finite field Fq , this reasoning no
longer holds. However, to speed up computations, the primes q in use in the standards are
of a special form; in particular, most q are very close to a power of 2. Since the co-factor h is
either 1 or 4, we conclude that #E = h ·p, with p close to 2n for some n. For all the curves
over large primes fields to be found in [12], we see that all of those of bit length greater
than (or equal to) 160, bar secp256r1 have the property that p is sufficiently close to 2n

for the reasoning to hold.
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Knowing the existence of an auxiliary elliptic curve group with very smooth order is,
however, not useful in practice, since it might require exponential time to construct this
elliptic curve. Hence it is of interest for a given group, proposed for use in a Diffie–Hellman
protocol, to present also the best known string S that produces the tightest possible reduction
between the DHP and the DLP.

7. Security of the DHP

We now examine what the reduction means for the security of the Diffie–Hellman pro-
tocol in the elliptic curve setting. We want to estimate the number of operations that an
adversary to the Diffie–Hellman protocol would require, under the assumption that the best
algorithm for solving the elliptic curve discrete logarithm problem will take

√
q operations.

In this case, we wish to minimize in the reduction the number of calls to the Diffie–
Hellman oracle, at the expense of increasing the number of group operations. Hence one uses
the naïve version of Step 3 in the reduction, rather than the baby-step/giant-step algorithm.
This allows us to obtain a tighter security reduction.

For each elliptic curve in the SECG standards [12], which includes all the curves in
the NIST [9] and the most used ones in the ANSI [1] standards, we searched for the best
values for:

• the discriminant D;

• the factorized order of the auxiliary elliptic curve (supposed to be smooth);

• the smoothness bound B;

• the parameters a and b of the elliptic curve;

• the number of group operations and the number of calls to the DH-oracle required,
using Theorem 2.

The various values for each curve are presented in Appendix A and Appendix B.
Tables 2 and 3 summarize the results. The value of B is the size of the largest prime

factor of the order of the auxiliary curve, M represents the number of field multiplications
required by the reduction algorithm, and DH is the number of Diffie–Hellman oracle calls.
The value T represents the tightness of the security reduction. We do not give any values
for the larger curves, since we were unable to find a suitable D, due to the difficulty of
factoring integers of this size.

To interpret what these tables mean, we illustrate with an example. Consider the curve
secp256r1: with current knowledge it is believed that to solve the DLP on this curve
requires on average 2128 computational steps. This would imply, given our auxiliary curve,
that the DHP could not be solved in 2108 steps; therefore, solving the DHP on this curve
is infeasible with today’s computing technology. Thus we can conclude that protocols
that depend on the DHP for their security can be safely deployed when using the curve
secp256r1.

To obtain a tightness of the security reduction, we need to look at two values. There is
the cost of field multiplications, represented in Tables 2 and 3 by log2 M . Furthermore, we
also need to look at

TDH ≈
√

#E

DH
.

If we assume the existence of an algorithm to solve the DLP on E that would take roughly√
#E steps, then the value of TDH gives the minimum number of operations that an algorithm
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to break the DHP would take, assuming that M < TDH. Hence it is the value of TDH that
gives the exact security result, given the witness curve that we have found. If one could find
a better witness elliptic curve, then one would obtain a tighter security reduction, and hence
a larger value of TDH.

Note that the value of DH is not really affected that much by the smoothness value. The
smoothness value mainly affects the number of group operations M . We now argue that it
is highly likely for auxiliary elliptic curves to exist, which would imply a tight reduction
for all elliptic curve Diffie–Hellman problems.

Firstly, note that since we are assuming an exponential algorithm for the discrete loga-
rithm problem, and we are trying to reduce the number of oracle calls, we do not mind if the
number of group operations is exponential, as long as it is less than the eventual estimated
number of operations in the Diffie–Hellman algorithm. Hence if #E factors as a product of
three primes of roughly the same order, then we would see that the reduction of Theorem 2
would require on average

145 log2 p + 3

(
5+ 3

2
log2 p

)
p1/3

group operations and
1

2

(
31+ 9 log2 p

)
log2 p

Diffie–Hellman oracle calls. In particular, this would imply that the following theorem
holds.

Table 2: Summary of results for curves of large prime characteristic

secp curve D log2 B log2 M log2 DH log2 TDH

secp112r1 49271 24 32 18 38

secp112r2 232 24 31 18 38

secp128r1 1147 34 41 18 46

secp128r2 1099 32 40 18 46

secp160k1 615 29 36 20 60

secp160r1 1687 33 41 18 62

secp160r2 2947 46 53 19 61

secp192k1 391443 37 44 20 76

secp192r1 334852 38 46 19 77

secp224k1 58531 53 62 19 93

secp224r1 41187 42 51 20 92

secp256k1 56296 56 65 20 108

secp256r1 41752 53 62 20 108

secp384r1 22312 83 91 22 170

secp521r1 - - - - -
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Theorem 4. Assuming, in the interval [p+ 1−√p, p+ 1+√p], that there is an integer
that is the product of three primes of roughly equal size, then there exists a string S that
implies that the best algorithm to solve the EC-DHP for an elliptic curve of order p takes
time at least

O
(√

p/(log2 p)2
)

operations.

All that remains is to estimate the probability that a number of size around p is a product
of three primes of roughly the same size. The number of primes of size around p1/3 is
roughly, by the prime number theorem, 3p1/3/ log p. Hence the number of integers of size
about p that are the product of three primes of roughly the same size is about

27p

(log p)3 .

Thus the probability is roughly 27/(log p)3. Since this is a polynomial-sized probability
on an exponentially sized interval, one can conclude that a string such as that given in the
above theorem must exist.

Table 3: Summary of results for curves of even characteristic

sect curve D log2 B log2 M log2 DH log2 TDH

sect113r1 36883 27 34 18 38

sect113r2 78859 22 30 18 38

sect131r1 1348 40 47 18 47

sect131r2 410107 32 40 18 47

sect163k1 7 47 55 19 62

sect163r1 384591 38 46 19 62

sect163r2 6107 34 42 19 62

sect193r1 7 48 57 19 77

sect193r2 11 47 55 19 77

sect233k1 7 41 50 20 96

sect233r1 2263 69 77 20 96

sect239k1 7 38 47 21 98

sect283k1 7 30 38 22 119

sect283r1 11768 61 69 20 121

sect409k1 7 81 90 22 182

sect409r1 - - - - -

sect571k1 - - - - -

sect571r1 - - - - -
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Appendix A. Elliptic curve domain parameters over Fp

Appendix A.1. secp112r1

Found an elliptic curve for D = 49271 of order r , for which the smoothness bound B

satisfies B < 224.

p 4451685225093714776491891542548933

a 3004369490124403223448210599048220

b 3673105177820870473395479313142990

r 4451685225093714803294692780292748

r = 22 · 3 · 23 · 163 · 1063 · 1226387 · 1356227 · 6294503 · 8891461.

Appendix A.2. secp112r2

Found an elliptic curve for D = 232 of order r , for which the smoothness bound B

satisfies B < 224.

p 1112921306273428674967732714786891

a 359905074524213046491509591844468

b 242752696076267039534173226322926

r 1112921306273428740027674877345678

r = 2 · 32 · 232 · 29311 · 140263 · 1231487 · 2081407 · 11091127.

Appendix A.3. secp128r1

Found an elliptic curve for D = 1147 of order r , for which the smoothness bound B

satisfies B < 241.

p 340282366762482138443322565580356624661

a 172790473223220633077385689780905158119

b 95197664303165298255467477011327989561

r 340282366762482138439330622080962487075

r = 52 · 37 · 892 · 937 · 116341 · 237781 · 182865533 · 9797974619.

Appendix A.4. secp128r2

Found an elliptic curve for D = 1099 of order r , for which the smoothness bound B

satisfies B < 232.

p 85070591690620534603955721926813660579

a 19079756378658212268578415722353658703

b 17286679956707251736290994162128614641

r 85070591690620534605542893917033437500

r = 22 · 57 · 103 · 325541 · 1901551 · 1497538799 · 2851021241.
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Appendix A.5. secp160k1

Found an elliptic curve for D = 615 of order r , for which the smoothness bound B

satisfies B < 229.

p 1461501637330902918203687197606826779884643492439

a 1461501637330902918203686915170869725397159163571

b 17903465558938225297050987194894647156975772976

r 1461501637330902918203684599257432351992987979840

r = 26 ·3 ·5 ·7 ·29 ·313 ·859 ·1693 ·1861 ·44371 ·227089 ·403681 ·7954649 ·273612893.

Appendix A.6. secp160r1

Found an elliptic curve for D = 1687 of order r , for which the smoothness bound B

satisfies B < 233.

p 1461501637330902918203687197606826779884643492439

a 718377688256110771217022131053884288216489138828

b 1238971813496228540776451419136332561991357802220

r 1461501637330902918203688424922129493127811783056

r = 24 · 321203 · 8923427 · 29516021 · 42625897 · 3481179073 · 7276295861.

Appendix A.7. secp160r2

Found an elliptic curve for D = 2047 of order r , for which the smoothness bound B

satisfies B < 246.

p 1461501637330902918203685083571792140653176136043

a 655062771545891081498390154252772734026497232152

b 1357472896926393615526429969353994153112175717483

r 1461501637330902918203687083877010067007102538697

r = 13 · 59 · 593 · 216259 · 33288527 · 61258009 · 177100211 · 41143243334041.

Appendix A.8. secp192k1

Found an elliptic curve for D = 391443 of order r , for which the smoothness bound B

satisfies B < 237.

p 6277101735386680763835789423061264271957123915200845512077

a 2891688927942385717662330176188476121706509164722098684885

b 3631279080780438745071960993655785924653694921708037763767

r 6277101735386680763835789422941247413016760975163307189017

r = 7 · 11 · 13 · 1051 · 6793 · 37549 · 43133 · 2271419 · 5200957 · 11660993 · 47366447 ·
83112406499.
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Appendix A.9. secp192r1

Found an elliptic curve for D = 334852 of order r , for which the smoothness bound B

satisfies B < 238.

p 6277101735386680763835789423176059013767194773182842284081

a 1481433377960133065432076431108995661271110021392435544043

b 2902118254460179386083821192003072328009361155076752304741

r 6277101735386680763835789423017727995705162516013110575168

r = 26 · 2131 · 2184989 · 18476453 · 33606343 · 4164787607 · 54362974597 ·
149834064623.

Appendix A.10. secp224r1

Found an elliptic curve for D = 41187 of order r , for which the smoothness bound B

satisfies B < 243.

p 2695994666715063979466701508701962594045780771442439172168272236

8061

a 2346008186582118130362471395822335760991794871154919372163889669

5929

b 3273417389998776218705144285430973820638637246093177637445286651

529

r 2695994666715063979466701508701963529966880763015049370281766405

9123

r = 33 ·149 ·599 ·857 ·38299 ·83101 ·3691603 ·7802849 ·7620458239 ·3019441906903 ·
6188589965407.

Appendix A.11. secp256k1

Found an elliptic curve for D = 56296 of order r , for which the smoothness bound B

satisfies B < 256.

p 1157920892373161954235709850086879078528375642790749043826051631

41518161494337

a 1015362109183172635308443156203564665724205157399505051118067906

86414677761558

b 9523204638813256006966516854028737171463745866906903495017398603

0825553082665

r 1157920892373161954235709850086879078521977921841951913680216461

46255312579200

r = 27 · 52 · 59 · 46499 · 93151 · 94204592001827 · 4214180265645761 ·
5538146513558221 · 64401523664207893.
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Appendix A.12. secp256r1

Found an elliptic curve for D = 41752 of order r , for which the smoothness bound B

satisfies B < 253.

p 1157920892103562487626974469494075735299969552241357603424222590

61068512044369

a 9570593245439767400553787783714695185846841060234040301136864782

9387908402942

b 3716676022000329468510218458731106244470537668936013453596789992

4412649482072

r 1157920892103562487626974469494075735293337467972563527979292961

62221692322308

r = 22 · 32 · 12256103 · 15612089137 · 7289979571159 · 149179734594697 ·
1983840344370161 · 7791482602842641.

Appendix A.13. secp384r1

Found an elliptic curve for D = 22312 of order r , for which the smoothness bound B

satisfies B < 283.

p 3940200619639447921227904010014361380507973927046544666794690527

9627659399113263569398956308152294913554433653942643

a 3495422476893511507764170933655197793772564054511972818307355261

2441088315258988909149521992373592603029088704011143

b 3268661575522837661036589866475303171469696409068184552089407303

3851417407607049334078498717401678595869535800502600

r 3940200619639447921227904010014361380507973927046544666793595219

3702934349926631776730637420557407670112513135662474

r = 2 · 139 · 19553 · 1717730921 · 9562711553 · 10066439953 · 298186652651 ·
2192234732221 · 8854959912191 · 1266378047297295563 ·
5980297858075074334711093.

Appendix B. Elliptic curve domain parameters over F2m

Appendix B.1. sect113r1

Found an elliptic curve for D = 36883 of order r , for which the smoothness bound B

satisfies B < 227.

p 5192296858534827689835882578830703

a 3474938539161152927043580292550591

b 1558057946307173711043091072669181

r 5192296858534827604473796497656972

r = 22 · 223 · 263 · 701 · 101161 · 205651 · 16978771 · 89386247.
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Appendix B.2. sect113r2

Found an elliptic curve for D = 78859 of order r , for which the smoothness bound B

satisfies B < 222.

p 5192296858534827702972497909952403

a 3041840610520282906862898200203228

b 3069042394742773008284442116800394

r 5192296858534827760603176992948165

r = 5 · 23 · 379 · 1193 · 4691 · 6317 · 455237 · 2263879 · 3269753.

Appendix B.3. sect131r1

Found an elliptic curve for D = 1348 of order r , for which the smoothness bound B

satisfies B < 240.

p 1361129467683753853893932755685365560653

a 452396322665554388252161689599402116416

b 706868321905334292241779518902735015058

r 1361129467683753853832674756442350922482

r = 2 · 11 · 95327 · 2175549221 · 43465878091 · 623951414393.

Appendix B.4. sect131r2

Found an elliptic curve for D = 410107 of order r , for which the smoothness bound B

satisfies B < 232.

p 1361129467683753853879535043412812867983

a 1140179019215365634862578195345768387972

b 67023528779017902874068420857795220826

r 1361129467683753853807176701419194246589

r = 7 · 13 · 17 · 124904441 · 674468357 · 3166793159 · 3297994789.

Appendix B.5. sect163k1

Found an elliptic curve for D = 7 of order r , for which the smoothness bound B satisfies
B < 247.

p 5846006549323611672814741753598448348329118574063

a 436666434877668258823803719348499160373586072970

b 2537677374898501979843125107803433313073823501906

r 5846006549323611672814737350185634603092193196584

r = 23 · 7 · 37 · 109 · 127 · 1632 · 1621 · 2377 · 108217 · 166456142911 · 110524002744079.
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Appendix B.6. sect163r1

Found an elliptic curve for D = 384591 of order r , for which the smoothness bound B

satisfies B < 238.

p 5846006549323611672814738465098798981304420411291

a 3598501456017062622843366105464281020697517386731

b 3794366797806473208539416266526735711914428597879

r 5846006549323611672814736357645947545594295623552

r = 27 · 3 · 11 · 73 · 83 · 11987 · 2436653 · 96400099 · 39366362213 · 187341845711.

Appendix B.7. sect163r2

Found an elliptic curve for D = 6107 of order r , for which the smoothness bound B

satisfies B < 234.

p 5846006549323611672814742442876390689256843201587

a 1971779764808594439938298597120083718882412855992

b 2919208698799468165458356085216747700266610486436

r 5846006549323611672814741176549674399533963167327

r = 3 · 7 · 11 · 73 · 2969 · 5253529 · 31696801 · 45160931 · 1142969071 · 13584708629.

Appendix B.8. sect193r1

Found an elliptic curve for D = 7 of order r , for which the smoothness bound B satisfies
B < 257.

p 6277101735386680763835789423269548053691575186051040197193

a 4214314953695281606317765669538470787451698106413109773246

b 5081199397163309482341515630009800876618472202695636568683

r 6277101735386680763835789423141002752577886153547101234964

r = 22 · 16493 · 20357 · 307267 · 507697 · 2708335079 · 32535336276871 ·
340022400028151.

Appendix B.9. sect193r2

Found an elliptic curve for D = 11 of order r , for which the smoothness bound B

satisfies B < 247.

p 6277101735386680763835789423314955362437298222279840143829

a 1682147688126917153631050709488859741134328492640033528607

b 264754754554262586709664461739324417205425201301983141038

r 6277101735386680763835789423274585688137975497386122403859

r = 3 ·991 ·4261 ·81349 ·2948267501 ·3798403579 ·5157510886093 ·105461115430301.
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Appendix B.10. sect233k1

Found an elliptic curve for D = 7 of order r , for which the smoothness bound B satisfies
B < 242.

p 3450873173395281893717377931138512760570940988862252126328087024

741343

a 2960715072569869853979448287313485194143356659529431958732372206

621038

b 3326135022600898528397930600960785714488324439782127540000056560

176002

r 3450873173395281893717377931138512772098228224648806713791596044

678224

r = 24 · 32 · 2332 · 6323 · 8353 · 11369 · 16067 · 42457 · 8282401 · 57838579969 ·
847443689801 · 2654592796909.

Appendix B.11. sect233r1

Found an elliptic curve for D = 2263 of order r , for which the smoothness bound B

satisfies B < 269.

p 6901746346790563787434755862277025555839812737345013555379383634

485463

a 1820580472413438819478596485548429166239797309078298630715158034

355885

b 5566028978147099146744423773839461465717298343414823787585395847

618317

r 6901746346790563787434755862277025656535329344094001426198225867

440096

r = 25 · 41 · 179 · 4421 · 12113 · 372709 · 5690131288087 · 684905249387674699 ·
377813292995836757497.

Appendix B.12. sect283k1

Found an elliptic curve for D = 7 of order r , for which the smoothness bound B satisfies
B < 230.

p 38853377844514581418389238136470378132848117337930613242958749975

29815829704422603873

a 70520703283217932184170826184835244812710662939658625745142527614

2497082742704087423

b 30473359959625905609761638006968804673610266633999617501689723576

43806457717015761693

r 38853377844514581418389238136470378132848092459699421970610175876

57671234911570097856

r = 26 · 32 · 112 · 292 · 712 · 2812 · 491 · 541 · 631 · 1051 · 2017 · 7393 · 13721 ·
25621 · 58321 · 263201 · 8160041 · 34727701 · 70155401 · 590927681.
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Appendix B.13. sect283r1

Found an elliptic curve for D = 11768 of order r , for which the smoothness bound B

satisfies B < 261.

p 7770675568902916283677847627294075626569625924376904889109196526

770044277787378692871

a 3422981077976423247239195216319872557284569707504901532042197958

683089247371980579520

b 6276574248286091477128707738969025423084065186293300973268585960

583153939014879333073

r 7770675568902916283677847627294075626569620569022047168760060447

800769935356398335566

r = 2 · 34 · 77017 · 20644333 · 18467891557 · 5900455542323 · 16487178989053 ·
11798339334074779 · 1423266460791026459.

Appendix B.14. sect409k1

Found an elliptic curve for D = 7 of order r , for which the smoothness bound B satisfies
B < 281.

p 3305279843951242994759576540163855199142023414821406096423243950

22880711289249191050673258457777458014096366590617731358671

a 1033680698937310341345940257123806820112490512095292504499979695

10593783321670819331640037071502449026324693899776335435165

b 1285642659106471269597807458659735928564548877028381746666103128

58466841394491249918527543345304621504772105000387535535964

r 3305279843951242994759576540163855199142023414821406096423243673

00908325422789012626692102789067380459577492473485499336944

r = 24 · 292 · 71 · 2843 · 5279 · 6323 · 8353 · 16067 · 42457 · 181281031 · 1159018351 ·
8896753517 · 37852407181 · 4860847115041 · 853621649145207671 ·
2179267320551430510798251.
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