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Abstract

We consider the problem of characterizing by abstract properties the rings which are isomorphic
to the endomorphism ring End(RF) of some free module F over a ring R in a given class
31 of rings. We solve this problem when 31 is any class of rings (by employing topological
notions) and when 31 is the class of all the left Kasch rings (in terms of algebraic properties
only).

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 16 A 65.

Introduction

As stated by Franzsen and Schultz in [3], the Characterization Problem is
the following: given a class 31 of rings and a class J[ of modules over the
rings in the class 32, describe in ring-theoretic terms the rings which are
isomorphic to endomorphism rings End(RM) for some R in 31 and M in
J[. Significant advances were made (for some particular classes 32 and J?)
by Wolfson [20] in the 50s; and by Metelli and Salce [14] and Liebert [11,
12, 13] in the 70s. A more general result in this connection was obtained by
Franzsen and Schultz [3, Theorem 3.2] in 1983: they provide a solution to the
Characterization Problem for the class J[ of all the (locally) free i?-modules
over rings R which satisfy the condition that each nonzero summand of a
(locally) free .R-module is indecomposable if and only if it is isomorphic
to RR.

This research received partial support from the D.G.I.C.Y.T. (PB87-O7O3).
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The goal of this paper is to give an answer to the Characterization Prob-
lem under more general hypotheses. To this end, two different techniques are
employed: first, the idea (which goes back to Liebert) of using both topolog-
ical and algebraic conditions in the characterization of these rings; second,
the consideration of categorical methods (and, in particular, category equiv-
alences) as a tool to find necessary and sufficient conditions on a ring E to
be isomorphic to the endomorphism ring End(^M) for a ring R and gen-
erator RM. It is well-known that, if this happens, then the category /?-mod
is equivalent to a certain quotient category of .E-mod. It turns out that this
quotient category may be viewed as the full subcategory .E0-mod of all the
unital and £0-torsion-free left modules over a certain dense "subrng" Eo of
E ("rng" means ring without a 1); namely, EQ is the rng consisting of all
the endomorphisms of M that factor through some free module Rn . Thus
we are naturally led to the question of finding also necessary conditions for
having such an equivalence between ^4-mod and -R-mod for a given rng A
and ring R. The answer to this question makes it possible to find the way to
solve the Characterization Problem for the class ^f of all the free modules
over any class 3? of rings, thus generalizing the corresponding results of [13]
and [3].

Specifically, we deal in Section 2 with the above stated problem of charac-
terizing the rngs A such that there exists a category equivalence between the
already mentioned category .4-mod and i?-mod for a ring R. The answer to
this question is related to some classical results about endomorphism rings of
vector spaces, so we explain this relationship in some corollaries in Section
2. Now, for a given endomorphism ring E — End(/?Af) let us denote by
fEnd(jjAf) = Eo, the subrng of E described in the previous paragraph. As
a step toward the solution of the Characterization Problem, we consider in
Section 3 the following special form of it: describe in ring-theoretic terms
the rag fEnd(jjAf) for all free modules M over any ring R. By means of
the results of Section 2, we are able to give an answer to this problem and
we subsequently study some particular cases in which R is assumed to be,
for example, left noetherian or a division ring.

The fourth section contains the main results. Theorem 4.2 gives the de-
scription of End^Af) for RM a free module and R a ring in an arbitrary
class 3? of rings: these are the rings A that satisfy the following four con-
ditions:

(i) A contains a family of orthogonal idempotents {et}i&1 such that the
left ideal of A generated by these idempotents is also a right ideal;

(ii) for any pair i, j e I one has Aet = Ae^ ;
(iii) eiAei is in the class 37 for any i € / ;
(iv) A is Hausdorff and complete in the topology which has the family of
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all the right annihilators of the idempotents et as a subbase of neighborhoods
ofO.

We again apply this to particular cases and obtain as consequences results
in [13] or [3]. Finally, we also generalize [20, Theorem 7.5] in which the ring
of the endomorphisms of a left vector space is characterized; Theorem 4.6
gives necessary and sufficient conditions for a ring A to be isomorphic to
End(/{F) for a free module F over a left Kasch ring R. These conditions
are (i) A contains a smallest dense ideal Ao; (ii) Ao = 0 7 Aet for a set
/ and a family of orthogonal idempotents {et} such that all the Aet are
isomorphic; (iii) if / is a left ideal of A which is maximal with respect to
the property of not being dense, then J has nonzero right annihilators; and
(iv) A is its own maximal left ring of quotients.

1. Terminology and preliminary results

Throughout the paper, rings will have an identity element 1, while rags are
supposed not to have any, in general. Module will mean left module, unless
stated otherwise. If A is a rng, a module AM is unital when AM = M,
that is, when M has a spanning set; and AM is finitely spanned, when it has
a finite spanning set. We call AM simple [4] when M is unital, nonzero,
and has no proper submodule other than 0. We call AM ,4-torsion-free in
case Ax = 0 implies x = 0 for any x e M; thus, A is ,4-torsion-free if
and only if A is non-degenerate, in the terminology of [17]. A-MOD will
denote the category of all the left ^-modules, while A-mo& will stand for
the full subcategory of A-MOD containing all the unital and ,4-torsion-free
left ,4-modules. \{ A is a rng, M is a left (respectively right) ^4-module and
X C M, then lA{X) (respectively, rA{X)) will denote the left (respectively
right) annihilator of X in A. The rng A is said to be left 5-unital [19]
when a € Aa for any a € A. If A is a rng and e is an idempotent of A,
then End(AAe) = eAe in a natural way.

On the other hand, a module AM is said to be intrinsically projective
[2] when for every epimorphism f:Mn^>L for L a submodule of M,
and every homomorphism g: M —• L, there exists h: M —> Mn such that
f°h = g.

It will be assumed that all categories appearing in this paper are addi-
tive categories and all functors (in particular, all equivalences) are additive
functors. When dealing with endomorphism rings, the endomorphisms are
supposed to act opposite scalars. For ring-theoretic terms not mentioned
above, we refer the reader to [1]; for notions on torsion theories, which ap-
pear occasionally in the text, we refer to [18] (in particular, when &~ is a left
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Gabriel topology on a ring R, the associated quotient category (R, J?")-mod
will be supposed to be the full subcategory of i?-mod consisting of all the &"-
torsion-free and j?"-injective modules); and, finally, [5] should be consulted
for the topological terms.

In this paper, we shall be frequently dealing with the following situation:
R is a ring, M is a left i?-module, E = End(RM) is the endomorphism ring
of M and Eo = fEnd(J?M) is the trace on E of the derived context of RM
(see [15]), that is, Eo consists of the endomorphisms of M which factor
through a free i?-module of finite type. Now Eo is a two-sided ideal of E
and, in some particular cases, (for example, if RM is a generator) Eo is
idempotent by [21, Lemma 2.3]). We will usually consider Eo as a rng in its
own right. In particular, if RM is a generator then Eo is a non-degenerate
and idempotent rng. Accordingly, Eo is an object of the subcategory Eo-
mod. If R is a ring and / is a set, RFMj(R) will stand for the ring of
all the row-finite I x I matrices over R, while FCj(R) will denote the
subrng of all those matrices that have finitely many nonzero columns (of
course, if RM = R^ , then the former is isomorphic to E, while the latter is
isomorphic to EQ). Also, the subrng of FCr{R) consisting of all the matrices
which have a finite number of nonzero entries will be written FMj(R). All
these notations will be employed without further reference.

We now state some useful facts which will be employed in the sequel.
First, we extend the usual definition of matric units (see, for example, [17,
Definition 1.1.2]).

DEFINITION 1.1. Let A be a rng, / a set. A family {eu} (i, j e I) of
elements of A is called a family of matric units for the rng A when

( a ) eijekh = Sjkeih ' f o r a I 1 i , j , k , h e l ,

(b) for each a e A, aeit = 0 for almost all i € I; and moreover,
a = E/**,-,••

It is an easy matter to prove, similarly to [10, Proposition 5, page 52], the
following result.

LEMMA 1.2. A rng A has a family of matric units {e^} (i, j s I) if and
only if A = @j Aut for some set of orthogonal idempotents {M,},€ / of A in
such a way that all the Au{ are isomorphic left ideals of A. Moreover, the u(

may be taken to be ut — eH.

Recall that a module R M is called locally free if each finite set of elements
of M is contained in a (finitely generated) free direct summand of M.
Plainly, a nonzero locally free module is a generator. On the other hand, a
subrng T of E = End^M) is said to be dense in E when for each finite set
xx, ... ,xn of elements of M and every s G E there is some t G T such
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that Xjt = XjS for all i = I,... , n . It is well-known that if M is a nonzero
locally free module, then EQ is a dense subrng of E. In fact, the following
density condition is easy to verify.

PROPOSITION 1.3. Let RM be a locally free module, A a subrng of E.
Then A is dense in E if and only if for every s eE0 we have that sE0 c sA.

PROOF. This is straightforward.

COROLLARY 1.4. Let M be locally free, and let A be a left ideal of E.
Then A is a dense subrng of E if and only if EQCA.

PROOF. If A is dense in E, then by Proposition 1.3 we have £ 0 = £0
2C

E0A c A, as A is a left ideal of E.

2. 4-dense subrngs of endomorphism rings

As we have just seen, if A is a dense subrng of E = End(/JM), RM being
a locally free module, then, by Proposition 1.3, we must have E0A = Eo,
since Eo is a two-sided ideal of E. This suggests the following definition.

DEFINITION 2.1. Let RM be a generator, E — End(^A/), Eo = fEnd^Af).
A subrng A of E will be called a ^-dense subrng of E whenever EQA = Eo.

Moreover, we shall say that A is a q-deme right ideal of Eo in case A
is a right ideal of Eo which is a ^-dense subrng of E.

REMARK 2.2. As pointed out above, if M is locally free and A is a dense
subrng of E, then A is #-dense in E. Thus, since it is well-known that
FMj(R) is a dense subrng of RFMj(R), and it is also a right ideal of
FCj{R), then FMj(R) is a ?-dense right ideal of FCr(R).

The converse is not true. For instance, let R be an arbitrary ring, M a
free left i?-module with an infinite countable basis, M = R^; for every
n e N , denote by vn the endomorphism of M induced on each component
Rm = R of M by the mapping r —• run , where {wn}neN is the canonical
basis of M. Let A = ^2nefi vnE0 which is a right ideal of Eo. Moreover,
if en is the canonical projection of M onto its n th component, we have
envn = en , from which it follows that Eo = E0A, that is, A is a #-dense
right ideal of Eo. But A is not a dense subrng of E, as is easily seen.

In order to obtain a characterization of <?-dense ideals in endomorphism
rings, we need the following lemma.
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LEMMA 2.3. Let S be a ring, A a faithful and idempotent right ideal of
S. Let & be the left Gabriel topology of S given by & = {I C SS\A c / } =
{/ c SS\SA c / } , and let (S, ^)-mod be the corresponding quotient category
considered as a full subcategory of 5-mod. Let L be the functor L: S-mod
—• ^-MOD given on objects by L{SX) = AX. Then L induces an equivalence
between the subcategories (S, ^)-mod and ,4-mod.

PROOF. It is easy to verify that if SX belongs to (S, ^)-mod, then AX
belongs to ^4-mod, since SX is ^-torsion-free. Thus L restricts to an ad-
ditive functor L': (S, ^)-mod —> ^4-mod, which is a faithful functor, be-
cause if a: X —• Y is a morphism in (S, ^)-mod and a(AX) = 0, then
Aa(X) = SAa(X) = 0 and a(X) is ^"-torsion, so a(X) = 0 and a = 0.
Now, let ft: AX —• AY be an ,4-homomorphism with X and Y in (S, 2?)-
mod. For each xeX, define fix: A -> AY by 0x(a) = 0{ax). Then fix is
an y4-homomorphism which can be extended to ax: SA^Y in the follow-
ing way: if s e S, a e A, put ax(sa) = sfix{a). Then ax is well-defined
because Y is ^-torsion-free; and it is in fact an 5-homomorphism. Then
ax may be extended to an 5-homomorphism from S to Y because Y is
^-injective and S/SA is ^"-torsion, and hence it follows that there is some
y = y(x) such that fix{a) = ay for each a G A. This shows that there exists
g:X^Y such that g{ax) = ag{x) = fi{ax), for all aeA, and all x € X.
But g is also an S-homomorphism because A is a right ideal of 5 and Y
is ^-torsion-free. Since g is an extension of ft, this proves that L' is a full
functor.

To complete the proof it only remains to show that for any ,4-module
X in ^-mod, X = AN for some sN in (S, ^)-mod. In fact, it suffices to
prove that this happens for some SN which is ^-torsion-free, because if SN
is ^-torsion-free and N1 is the localization of iV, then (SA)N = (SA)N'
and A(SA)N = AN = AN'. Now, given AX unital and ,4-torsion-free,
take X' = HomA(A, X). By identifying each element JC of X with right
multiplication by x, we may assume that X is a submodule of X' and,
since X is unital, AX' = X. On the other hand, each element s e S can be
interpreted as an ,4-endomorphism of A, as A is a faithful right ideal of S.
In this way, X' is a left S-module. Finally, X' is ^"-torsion-free because
X is y4-torsion-free and thus we are done.

The reason for our interest in Definition 2.1 lies in the next result (the
equivalence between (i) and (ii) appears already in [6, Theorems 4 and 5],
but we thought it better to give another proof below for the convenience of
the reader).

THEOREM 2.4. Let A be a non-degenerate and idempotent rng and R a
ring. The following conditions are equivalent.
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(i) There exists a generator RM of i?-mod such that A is isomorphic to
a q-dense right ideal T of the rng Eo := fEnd(RM).

(ii) There is an equivalence of categories F: R-mod —> A-mod.
(iii) There is a module AN such that N is finitely spanned, intrinsically

projective and generates A, and R = End(AN).

PROOF, (i) => (ii). Assume that RM is a generator of /?-mod with E =
End(/JAf), Eo = fEnd(J?Af) and T an idempotent right ideal of Eo such
that E0T = E0, T^A,so that TE0 = T. By the Gabriel-Popescu Theorem
[18, Theorem X.4.1], the functor HomR(M, - ) : .R-mod -> £-mod is full
and faithful and induces an equivalence of categories between .R-mod and
the smallest quotient category of 2s-mod which contains all modules of the
form HomR(M, X). By [9, Theorem 1.7 and Proposition 2.5], this category
is the quotient category of 2i-mod with respect to the Gabriel topology 3?
of the left ideals of E that contain Eo or, equivalently, T. Since ET is
a faithful right ideal of E (because EQ is clearly faithful), we may apply
Lemma 2.3 to T and (E, ^>mod, so that we get that (E, £>mod and
T-mod are equivalent categories. The isomorphism T = A gives then (ii).

(ii) =>• (i). Let F: R-mod —• A-mod be an equivalence and let us put
S = End(AA). Then As is a right ideal of S (because each a G A may be
considered as right multiplication by a, and A is non-degenerate) and in
fact As is faithful because A = A2 . Let %? be the left Gabriel topology of
S given by J = {/ C SS\SA C /} = {/ C SS\A c / } . Then (S, JT)-mod
and ,4-mod are equivalent categories by Lemma 2.3. By composing F with
this equivalence we obtain another equivalence U: i?-mod —> (5 , ^)-mod.
A direct computation shows that S = E n d ( ^ ) = End(SASA) = End(sSA),
so we deduce from [18, page 198] that S belongs to the quotient category
(S, ^) -mod. By applying now [9, Theorem 1.19] to the equivalence U we
see that there is a left /?-module M such that RM is a generator, S = E =
End(RM), the functor U is given, up to equivalence, by HomR(M, - ) ,
and, modulo the above isomorphism S = E, the topology %? is the left
topology 9 on E given by & = {I C £ £ | £ 0 c / } . This shows that the
isomorphism <f>: S —> E restricts to an isomorphism between SA and Eo

and hence 4>(A) = T is an idempotent right ideal of E contained in Eo,
satisfying E0T — Eo, TE0 = T.

(ii) => (iii). This is immediate, if we take iV = F(R), since then N is a
finitely generated projective generator in .4-mod and R = End{AN).

(iii) => (ii). By (iii), AN is a finitely generated generator of the category
,4-mod. Again by the Gabriel-Popescu Theorem we deduce that ^4-mod is
equivalent, by means of the functor Hom^(./V, - ) , to a certain quotient cat-
egory of R-mod, {R, y )-mod, in such a way that all the /?-modules of the
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form HomA(N, X) (and, in particular, RR) belong to (R, ^")-mod. Let
now / be a finitely generated left ideal of R, g: iV(/) —> N the induced
homomorphism and put L := Im g. From the facts that N is intrinsi-
cally projective and / is finitely generated we deduce by [2, Lemma 2] that
/ = HomA(N, L), and hence that / is also in (R, J^-mod. But R is a
finitely generated object of (R, ^")-mod because AN is finitely generated,
and thus & must have a basis of finitely generated left ideals [ 18, Proposition
XIII. 1.1]. This means that & is trivial, for / e & and / e (R, y ) -mod
imply I = R. Therefore (R, ^")-mod coincides with i?-mod and this proves
(ii).

Some facts which do not actually appear in the statement of Theorem 2.4
are nevertheless obtained in the course of the proof above. We include now
with a couple of useful results which will be used later.

COROLLARY 2.5. Let A be a non-degenerate and idempotent rng and R a
ring.

(a) If condition (i) in Theorem 2.4 holds, then the equivalence F of {ii) can
be chosen so that F(RM) = A. Therefore E = End(RM) s 5 = E n d ( ^ ) .
Moreover, this isomorphism extends the isomorphism in (i) between T and
A.

(b) If (ii) of Theorem 2.4 holds for a given equivalence F, then one can
choose RM satisfying (i) and such that there is an isomorphism between E =
End(RA/) and S = End(AA) which is an extension of the isomorphism in (i)
between T and A.

REMARK 2.6. The equivalence of (ii) and (iii) of Theorem 2.4 is very
similar to part of [4, Theorem 1.1], the only difference being that in [4] a
complete additive subcategory of ,4-MOD substitutes A-mod (but ,4-mod
need not be such, even if it satisfies the conditions in Theorem 2.4), while
here A is assumed to be idempotent and non-degenerate. On the other hand,
the conditions on the module AN are also slightly (and accordingly) different
in both cases.

Motivated by Theorem 2.4, our first approach to the Characterization
Problem will be as follows: for classes 31 and J[ as already stated, find
necessary and sufficient conditions for an abstract rng A to be isomorphic
to a #-dense right ideal of some fEnd^A/), with R e 31 and M e J!'.
More specifically, we consider the following case: 31 is the class of division
rings, J! that of all the nonzero modules over rings in 31 {32 could equally
well be taken to be the class of simple artinian rings). In order to solve this
problem, let us recall the following definition (which is due to Dieudonne).
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DEFINITION 2.7. A mg A is quasi-simple when AA is a direct sum of
isomorphic minimal left ideals.

PROPOSITION 2.8. Let A be a rng, A2 ^ 0. The following conditions are
equivalent.

(i) A is quasi-simple.
(ii) There is a division ring D and a left D-vector space V such that A

is isomorphic to a q-dense right ideal of fEnd(Z) V).
(iii) There is a division ring D and a left D-vector space V such that A

is isomorphic to a nonzero right ideal of fEnd(o V).

In particular, quasi-simple rngs A such that A2 ^ 0 are idempotent.

PROOF. We begin by establishing the final sentence of the proposition.
Let A be quasi-simple and A2 ^ 0. Assume that A = ® 7 St with all the
St isomorphic minimal left ideals of A. Then ASj ^ 0 for some j € / so

ASj = Sj and Sj is simple. Hence, so are all the S( and thus A2 = A. The
same argument shows that rA(A) = 0, so that A is non-degenerate.

(i) =>• (ii). We have just seen that A is idempotent and non-degenerate
and, on the other hand, each simple left ideal of A is a finitely spanned
(projective) generator of A-mod. By Schur's lemma and Theorem 2.4 there
is a division ring D and a nonzero left D-vector space V such that A is
isomorphic to a #-dense right ideal of Eo = fEnd(D V).

(ii) =*• (i). We may assume that A is a #-dense right ideal of EQ =
fEnd(o V) for some nonzero D-vector space V. It is clear that EQ is right
5-unital, from which it follows that AE0 = A. This implies that A is idem-
potent (since A = AEQ = A(E0A) = A2) and non-degenerate (because Eo

is non-degenerate as well). Therefore we may apply Theorem 2.4 to obtain
that ,4-mod is equivalent to D-mod and so A-mod has a simple generator.
Consequently, A is a direct sum of isomorphic simple /1-modules, that is,
A is quasi-simple.

(ii) =J> (iii) is obvious.
(iii) =• (ii). If A is a nonzero right ideal of EQ = fEnd(£)F), then E0A is

a nonzero two-sided ideal of Eo and, since EQ is a simple rng, EQA = Eo.
Thus A is a #-dense right ideal of Eo.

It is well-known that a quasi-simple rng need not be simple. Regarding
this, we can derive from Proposition 2.8, the following result.

PROPOSITION 2.9. Let A be a quasi-simple rng. Then A is simple if and
only if A V 0 and IA A) = 0.
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PROOF. If A is simple, then A2 ^ 0 by definition and lA(A) = 0, as it is
a proper ideal of A. To show the converse we may assume, by Proposition
2.8, that A is a nonzero idempotent right ideal of Eo = fEnd(/)F), for D
a division ring. If A has a nonzero two-sided ideal / , then IA ^ 0 by
the assumption lA(A) = 0. Then IA is a nonzero right ideal of EQ. Now,
E0(IA) ^ 0 (as Eo is non-degenerate) and so E0IA is a nonzero two-sided
ideal of the simple rag Eo, and hence E0IA = Eo. Then / D AIA =
AEQIA = AE0 = A, which shows that I = A and A is a simple rag.

It is clear that quasi-simple simple mgs are precisely the simple mgs with
minimal left ideals. In the older literature, these mgs are known to be exactly
the (left) primitive mgs which coincide with their (left) socle. But, in fact,
the condition lA{A) = 0 for a nonzero quasi-simple mg A means exactly
that each simple left ideal of A is faithful, that is, A is left primitive. On
the other hand, these same mgs are characterized in [10, page 74] as those
subrngs A of EQ = fEnd(£) V) (for some division ring D and vector space
V) such that there exists a submodule l! of the dual space V* satisfying
that L' annihilates only the 0 element of V, and A consists of all the
endomorphisms of V of the form J2"=i V^i > where cpi 6 l! and ki,: D —>
V. Now, it is easy to see that every nonzero right ideal A of Eo is obtained
from some submodule L1 of V* in the same way described above; then the
condition lA(A) = 0 is equivalent under this frame to the fact that the only
element of V annihilated by l! is zero.

3. The rng of the finite endomorphisms

We consider now the problem, for a given mg A , of when A is just isomor-
phic to fEnd(RM), that is, the finite endomorphism mg of some generator
M for a ring R. We have the following result.

THEOREM 3.1. Let A be a rng. The following conditions are equivalent.
(a) There is a ring R and a generator RM such that A is isomorphic to

(b)
(i) There exists a finitely spanned and intrinsically projective left

A-module N such that N generates A; and
(ii) A is a left ideal in its endomorphism ring.

Moreover, N and R can be chosen in either case so that R = End(^iV).
PROOF, (a) =• (b). Since, by (a), RM is a generator, we see that Eo is a

non-degenerate and idempotent mg and hence, by Theorem 2.4, the hypoth-
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esis implies already condition (i) with R = E n d ^ N ) . On the other hand, let
S = E n d ( ^ ) , E = End(RM). By Corollary 2.5, there is an isomorphism
(f>: E —> S such that (f>(E0) = A. Since Eo is an ideal of E, As is also a
two-sided ideal of 5", which proves (ii).

(b) => (a). Note first that condition (ii) implies that A is non-degenerate,
for if Ax — 0 for x e A, then the endomorphism of A consisting of right
multiplication by x is zero, whence x = 0. Then, let N be as stated in (i);
there exists an epimorphism p: N^ —• A and also AN = N, from which it
follows that AN{I) = {ANf] = N{1) and thus A = p(N{I]) = p(AN(I)) = A2,
so that A is also idempotent.

Therefore we can apply Theorem 2.4 with R = End(AN) to get that A
is isomorphic to a q-dense right ideal T of EQ = fEnd(J?Af), M being a
generator for i?-mod. Now, if we let S = E n d ( ^ ) we see, by Corollary 2.5,
that there is an isomorphism <f>: S —> E with <j)(A) = T. By (ii) A is a left
ideal of S and hence T is also a left ideal of E, from which it follows that
E0T = T and we are done.

As an application of the foregoing theorem we can consider the case of R
being a division ring.

COROLLARY 3.2. Let A be a rng. Then A is isomorphic to fEnd(oF)
for some nonzero vector space V over a division ring D if and only if the
following two conditions are satisfied:

(i) A is a nonzero quasi-simple rng;
(ii) A is a left ideal in its endomorphism ring.

PROOF. This a direct consequence of Theorems 2.4 and 3.1, along with
Proposition 2.8.

REMARK 3.3. In [20, Theorem 6.2], the rngs of Corollary 3.2 are charac-
terized as the simple rngs A with minimal right ideals such that every proper
left ideal of A has a nonzero right annihilator. We want to give a short proof
of this equivalence by means of our previous results. We have already seen
that the conditions in Corollary 3.2 as well as those in [20, Theorem 6.2] im-
ply in each case that A is a (tf-dense) right ideal of EQ := fEnd(oF), and,
through the equivalence D-mod = A-mod, End(Z)F) = E = S = E n d ( ^ ) .
Thus, all we have to show is that, under these hypotheses, (ii) of Corollary
3.2 is equivalent to the condition that rA(I) = 0 implies / = A, for any left
ideal I of A. First, if A = Eo and rA(I) = 0, then VI = V and by [8,
page 93], Eo = I. Conversely, if A ^ Eo let aEQ be a simple right ideal
of Eo satisfying aE0 n A — 0, and let J — lE (a) , a left ideal of Eo; it is
plain that rE (J) = aE0 and hence rE (J)f)A = rA(J) = 0, so rA(AJ) = 0
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(because rE (A) c rE (EQA) = 0) and AJ = A by the hypothesis. Therefore
Aa = 0 and a = 0, a contradiction.

In order to study the case when R M is a free module, we give the following
characterization.

PROPOSITION 3.4. Let A be a non-degenerate rng. Then A has a family
{eij} ('» J e I) ofmatric units if and only if there is a ring R such that A
is isomorphic to a q-dense right ideal T of the finite column matrix ring of
order I of R, FCj(R), and T contains all the matrices with a finite number
of nonzero entries.

Moreover, R can then be chosen so that R = End(AAeu) = eHAeH for any
iel.

PROOF. Let A be non-degenerate with a family {e^}, (i,j el) ofmatric
units. Put et := eu for any i e / and N = Ae, for some j . By Lemma 1.2,
A = 0 7 Aet and all the Aef are isomorphic, so N is plainly a generator of A-
mod. If one sets R = End(AN), then, by the Gabriel-Popescu Theorem, there
exists a category equivalence Hom^iV, - ) : A-mod —> (R, <^")-mod, for a
certain left Gabriel topology 9~ of R. In this equivalence N corresponds
to R and A corresponds to HomA(N, A) = R^ = F, a free module.
Therefore there is an induced isomorphism </>: S —* E, where S = E n d ( ^ ) ,
E = End(RF). Consider A, as usual, as a right ideal of S; then (/>(A) = B
is an idempotent right ideal of E. Since the elements of A correspond
to endomorphisms of A which factor through some Nk, we have that the
elements of B are endomorphisms of RF which factor through some Rk ,
that is, B C Eo = fEnd{RF). Moreover, each e{: A —* A is taken by the

equivalence to the projection ni of F = i?(/) onto its i th component. Then
Eo = 0 7 Eoni verifies E0B = Eo so B is a #-dense right ideal of Eo.
Finally, let BQ be the subrng of E consisting of all the endomorphisms a
of F such that nta = 0 for almost all i e l . Then Bo = ® 7 ntEQ c B.
Now, if we identify E with RFMj(R), then Eo corresponds to FCj(R),
and BQ corresponds to FMj(R), the subrng of all the matrices of order /
with a finite number of nonzero entries. Then, the subrng T corresponding
to B satisfies the statement of the proposition.

Conversely, let A = B, Bo c B c Eo with B a #-dense right ideal of Eo,
where we use the same notation as in the first part of the proof. Thus KJ e Bo

for any j e I. Since B is a right ideal of Eo we obtain that B D ® 7 Bnt;
on the other hand, for any a e Eo we have that a = £ c ani for some
finite subset C of / , and hence B c @IBni. Also, for any J, j e I we
have an ^-isomorphism between EQni and E07ij, which restricts to a B-
isomorphism Bni = Bnj . By Lemma 1.2, B has a family of matric units
and the isomorphism A = B completes the proof.
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COROLLARY 3.5. Let A be a rng. The following conditions are equivalent.

(a) There exist a ring R and a free left R-module F such that A is
isomorphic to fEaA{RF).

(b) A has a family ofmatric units and A is a left ideal in its endomor-
phism ring.

(c) A is a left ideal of its endomorphism ring and A = ($jAeit where
{e,},e / is a family of orthogonal idempotents of A satisfying Aet =
Aej for any i, j el.

Moreover, R and the ei can be chosen so that R = eiAei for any i el.

PROOF. The equivalence (b) <*• (c) is clear from Lemma 1.2. That (a) => (b)
is immediate from Proposition 3.4 and Theorem 3.1. Finally, (b) implies that
A is non-degenerate and hence it is isomorphic to a #-dense right ideal T of
Eo = fEnd^F) for some ring R and free module RF, also from Proposition
3.4. Since (b) implies also that A is idempotent, we may apply Theorem 2.4
(and Corollary 2.5) to T and obtain an isomorphism </>: E n d ( ^ ) = S ~*
E = Eni(RF) with <j>{A) = T. This shows that T is a left ideal of E, and
hence T = Eo because it is #-dense in Eo.

We now want to characterize rngs which are isomorphic to fEnd(RF) for a
free module F over a ring R such that RR is a direct sum of indecomposable
left ideals. Recall that an idempotent e of a ring R is said to be finite in
case it is the sum of finitely many orthogonal primitive idempotents. Then
we have

THEOREM 3.6. Let A be a rng. The following conditions are equivalent.

(a) A is isomorphic to fEnd^F) for a free left R-module F and a ring
R such that RR is a direct sum of indecomposable left ideals.

(b)
(i) A has a family ofmatric units {eij}i j€l such that each et := eu

is a finite idempotent; and
(ii) A is a left ideal in its endomorphism ring.

PROOF. We already know from Corollary 3.5 that (a) implies (i) and (ii)
except for the condition that the et are finite. But if iV = Aet for some
fixed i e I, then R = End(^iV) and the category equivalence .R-mod =
,4-mod gives us that, since RR has an indecomposable decomposition, so
has N and hence Aet = ©£= 1 Lk in such a way that et = ux+ ••• + uT

and the uk are orthogonal primitive idempotents. Conversely, Corollary 3.5
shows that (b) implies that A is isomorphic to fEnd^-F), where F is free
and R = End(^yle(); moreover, Ae{ corresponds to R in the equivalence
i?-mod = ,4-mod, so that the assumption that Aet is a finite direct sum of
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indecomposable v4-modules proves that RR satisfies the same, and hence (a)
holds.

We now consider a special case of the preceding theorem. Let us define,
for any rng A a transitive relation by setting a < b if and only if there is
t e A such that tb = a. We write a < b whenever a < b but not b < a.
An element s € A will be called noetherian when there is no infinite chain
flj < a2 < • • • < an < • • • of elements of A with an < s for each n. We
then have the following result.

COROLLARY 3.7. Let A be a rng. The following conditions are equivalent.

(a) There exists a left noetherian ring R and a non-finitely generated free
module RF such that A s fEnd^F) .

(b)
(i) A has an infinite family of matric units {etj} such that each

ei := eH is a noetherian idempotent; and
(ii) A is a left ideal in its endomorphism ring.

(c)
(i) A has an infinite family of matric units;

(ii) A is a left ideal in its endomorphism ring; and
(iii) A is left s-unital.

PROOF, (a) & (b). By Theorem 3.6, all that is left to do is to see that,
under the hypothesis that the equivalent conditions of Theorem 3.6 hold, R
is left noetherian if and only if et is a noetherian idempotent. Note that the
relation a < b for a, b G A C End(RF) means exactly that Ima c Imb
(where c is strict inclusion). Since Aet can be viewed as YiomR{F, R), we
see that if R is left noetherian, then et must be a noetherian idempotent.
Conversely, assume that R is not left noetherian and let

L , C L 2 C - - - C L I , C - "

be an infinite proper ascending chain of finitely generated left ideals of R.
We can obtain from this chain i?-homomorphisms ax, a2,... ,an,... of
Aet = Hom/j(F, R) in such a way that, for each n, an < ei and an <
an+l (simply by taking lman = Ln , which can be done since Ln is finitely
generated and F is not). This means that et is not a noetherian element.

(a) <» (c). This follows from Corollary 3.5 (or Theorem 3.6) along with [7,
Theorem 5], which states that for a rng of the form fEnd(/?/

r) and F not
finitely generated the property of being left s-unital is equivalent to R being
left noetherian.
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4. The characterization problem: Main results

We now consider the general Characterization Problem stated in the in-
troduction. First, we extend slightly our Definition 1.1.

DEFINITION 4.1. Let A be a ring. A family {e( } of elements of A will
be called a generalized family of matric units of A when

(i) eijekt = djkeit,

(ii) if a € A satisfies that aeH = 0 for almost all / E / , then we have

« = E/«*,-,-•
We shall write in this case et instead of eu. Consider now the family

of all the right ideals of A which are right annihilators of idempotents ei

(for i e / ) . This family is a subbase of neighborhoods of 0 for a certain
right linear topology over A. We shall denote this topology by T and we
call it the topology of the matric units of A (assuming that the family {e, }
is known). Also, we denote by Ao the left ideal of A generated by the ei,
that is, the left ideal of A which consists of all the elements a e A satisfying
the hypothesis in condition (ii) above. The following result characterizes the
rings which are endomorphism rings of free modules over a given ring R.

THEOREM 4.2. Let A be a ring, and 31 a class of rings. The following
conditions are equivalent.

(a) A = End(RF) for some ring R in the class 31 and some free left
R-module F.

(b)
(i) A has a generalized family {e^} (i, j e I) of matric units,

with associate topology T;
(ii) if Ao is the left ideal of A generated by the ei, then Ao is a

right ideal of A;
(iii) eiAei is isomorphic to some ring in the class M, for any i El;

and
(iv) A is Hausdorff and complete in the topology F .

Moreover, the family {etj} may be chosen so that R = End^e,) for any
I E / .

PROOF, (a) => (b). Conditions (i), (ii) and (iii) in (b) follow by taking
each etj to be the projection of the /th component of F = R^ onto its jth
component. This choice made, AQ coincides with fEnd(RF) c A. Now,
the condition that A is Hausdorff means that fK'U(*,•)!*' E /} = 0. But
if a e A satisfies eta = 0 for all i € I, then Aoa = 0 from which it
follows that a = 0, for A is plainly Ao-torsion-free. On the other hand,
let J be the family of all the finite subsets of / , and for each j e J, with
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; = {/,,..., i r } , let us put f. = et _ + • • • + eif, Uj = /•(/}) = /•(<?,_ , . . . , <?,.).
Order J by stating j l < j2 if and only if 'jx C j 2 , that is, if and only if
U; C V, , and let 0c,) lC, be a Cauchy net in A, that is, for each j e J
there is i e J such that if k > i, then xk - x,. e Uj. We are to see that
this net has a limit in order to prove that A is complete. Let (w,),€/ be the
canonical basis of F = i? ( / ) , and let t be any element of / . Take tQ := {/}
in J, so that / , = f0 = et and Ut = Uo = s(et). By hypothesis, there
is some i = i(t) such that xk - xt e Uo = s(et) for any k > i; that is,
er*fc = e^jc,. Therefore utetxk = utxk = utxt. Define then a € A as the
endomorphism of F given by uta = «,%,,. This is clearly unambiguous,
so it only remains to show that a = lim(x ) . Given any Uj, for j e / ,
take fj as above, that is, f. = ey + •• • + e^ , if ; = {; , , . . . , js} . Then
there exists some i € / such that for each k > i we have x. - x, G C/,.

K. I J

It follows that fjX. = / , x , , and hence eixlr = ei xt for any t, 1 < < < s;
J K J * Jl *• Ji I

then M, Jct = M,X, for these values of ?. If we now take an index in in /
Jl K Ji * ' J

which is greater than i, as well as greater than all the i(jt), then we will have
for each k > in, «,.x = M,X, , and M,a = u,x, , from which it follows

u h K h 'o Ji Ji '0

that Uj {xk - a) = 0 (for all / in {1, . . . , s}). Thus e; (xk — a) = 0 and
fj{xk - a) = 0 . So we get that xk - a € U,•, for fc > /„ . This completes the
proof of (iv).

(b)=^(a). Ao = Yli^ei = @i^ei is a non-degenerate rng in view of
(iv). Also, the family {et••} is a family of matric units of AQ, so we can
apply Proposition 3.4 to obtain that, if R = eiAei (for any / e / ) and F =
/? ( / ) , then Ao is isomorphic to a #-dense right ideal B of Eo = fEnd(RF).
Moreover, R belongs (up to isomorphism) to the class 31, by condition
(iii). By Corollary 2.5 we know that there is an isomorphism <j>: S —• E =
End(RF), where S is the endomorphism ring of Ao, which coincides with
End(^j40), by condition (ii); and this isomorphism <f> takes Ao to B. By
employing again condition (ii) we see that each element 4> takes Ao to B.
By employing again condition (ii) we see that each element of A can be
interpreted as an endomorphism of AQ, so that we have inclusions AQ c
ACS. Thus, all that is left to show is that any endomorphism of AQ can be
given by right multiplication by an element of A, so that A = S = End{RF).
To this end, let a e S and put x = f^a. for each j e J, where we keep
the notations of the first part of the proof. Then we claim that (x.) eJ is a
Cauchy net in A: let j e J and i > j ; then clearly f.ft = fi and hence
xi~xj = fia~fja satisfies f^-Xj) = fja-fja = 0 , from which it follows
that xt - Xj 6 Uj.

Now, condition (iv) in (b) implies that (Xj)j&J has a limit, say a e A.
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This entails that for any j € J there is i e J such that we have for any
k> i, xk-ae Uj, that is, L(xk — a) = 0, from which we get ffka = La.
But if we choose k greater than both / and j , we have Lfka = La = fa.
Therefore ep. = ep, for all j el, and thus the endomorphism a of Ao is
right multiplication by a. This shows that A = S and so we are done. The
final assertion is clear from the above proof.

As a first application of the theorem we again consider the case which was
mentioned in Theorem 3.6, namely that of R being a direct sum, as a left
i?-module, of directly indecomposable left ideals.

COROLLARY 4.3. Let A bearing. The following conditions are equivalent.
(a) A is isomorphic to En&{RF) for a ring R such that RR is a direct

sum of indecomposable left ideals, and a free R-module F.
(b)

(i) A has a generalized family ofmatric units {etj} such that each
e( is a finite idempotent;

(ii) If Ao is the left ideal of A generated by the et, then Ao is a
right ideal of A; and

(iii) A is Hausdorff and complete in the topology T of the matric
units of A, {etj}.

Moreover, the family {ef..} can be taken so that R = End(/le/) for any i € / .

PROOF, (a) =• (b). This follows from Theorem 4.2 and from the fact that
R is then isomorphic to EndiAe^ for any i € / , so that it is a direct sum of
finitely many indecomposable direct summands and hence each et is a finite
idempotent.

(b) => (a). Again by Theorem 4.2, (b) implies the existence of an isomor-
phism A = Endi{RF), with R = End(/te() through the equivalence .R-mod
= ^0-mod. Then the fact that Aei is a finite direct sum of indecomposable
modules, by the finiteness condition on ei, implies that the same happens to
R.

REMARK 4.4. In [3], a ring R is said to be an /F-ring when every non-
zero summand of a free .R-module is indecomposable if and only if it is
isomorphic to RR. Corollary 4.3 can be obviously applied to /F-rings: if R
is such, then one can choose the family {etJ} in the natural manner of the
proof of Theorem 4.2, and then F is the finite topology on A = End(RF),
AQ contains all the finite idempotents and each et is primitive. Thus it
is easy to obtain from this [13, Theorem 3.1], for if the conditions therein
hold, then the direct sum ®7.Ee, (in the notation of [13]) may be written
as © EUj for primitive idempotents M and hence one can see that (b) of
Corollary 4.3 also holds.
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As in Section 3, we also consider the particular case in which R is left
noetherian. We then have the following result.

COROLLARY 4.5. Let A bearing. The following conditions are equivalent.

(a) There is a left noetherian ring R and a non-finitely generated free left
R-module F such that A = End(RF).

(b)
(i) A has an infinite generalized family ofmatric units {etj} such

that each et is a noetherian idempotent;
(ii) / / Ao is the left ideal of A generated by the {et}, then AQ is a

right ideal of A; and
(iii) A is Hausdorff and complete in the topology T of the matric

units {et•}.
(c)

(i) A has an infinite generalized family of matric units {e^};
(ii) if AQ is the left ideal of A generated by the {et}, then Ao is a

right ideal of A which is left s-unital as a rng; and
(iii) A is Hausdorff and complete in the topology F of the matric

units {eu}.

PROOF. This is again a consequence of Theorem 4.2 along with Corollary
3.7.

It should be noted (as Liebert does in [13]) that the older result of Wolf son
[20, Theorem 7.5] about the characterization of the endomorphism rings of
(free) modules over division rings is not a corollary of Liebert's. However,
a modification (for a special case) of the categorical arguments given in the
proof of Theorem 4.2 allows us to include also Wolf son's result under a
more general frame. Recall that a ring R is said to be left Kasch when RR
cogenerates all the simple left /{-modules. Also, a left ideal / of a ring R is
said to be dense when the left ideal (/ : a) (where (I: a) = {r e R\ra € /})
has no nonzero right annihilators for any a e R. To obtain our next theorem
we need the following lemma, which is an easy consequence of Lemma 2.3
and Proposition 3.4.

LEMMA 4.6. Let A be a ring with a generalized family of matric units,
ieij} (« ' . ; '€ /) and assume that Ao = £ 7 Aet is a two-sided ideal of A and

A is AQ-torsion-free. Put R = End{AAet) for any i € / , RF = i?(/) and let
& be the left Gabriel topology of A given by fT = {I C AA\AQ C 7}. Then
there is an equivalence of categories between {A, ^")-mod and .R-mod and,
if Ag- is the localization of A in (A, ^")-mod, then A^- = End(RF).
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PROOF. Since A is y40-torsion-free (that is, Ao is a faithful right ideal of
A), Lemma 2.3 tells us that there is an equivalence L from {A, ^")-mod
to AQ-mod such that L(A^) = A0A^- = AQA = Ao. Now Ao satisfies the
hypothesis of Proposition 3.4 and hence AQ is isomorphic to a #-dense right
ideal of Eo = TEnd(RF), with R and RF as above. By Theorem 2.4, Ao-
mod is equivalent to i?-mod, with Ao corresponding to RF, by Corollary
2.5. Thus (A, J?")-mod is equivalent to .R-mod and A^ = End(yly-) =
End(RF).

THEOREM 4.7. Let A be a ring. The following conditions are equivalent.
(a) There is a left Kasch ring R and a free left R-module F such that

(b)
(i) A has a generalized family of matric units {e^};

(ii) if Ao is the left ideal generated by the {et}, then Ao is the
smallest dense left ideal of A;

(iii) / / / is a left ideal of A which is maximal with respect to the
property of not being dense, then sA{J) # 0; and

(iv) A is its own maximal left ring of quotients.

PROOF, (a) =s> (b). Take each ei as the canonical projection of RF = /?(/)

onto its / th component. Then, if we put A = End(RF), Ao = £ / Aet =
fEnd(/?F), we see that (i) holds. Assume that / is a left-ideal of A =
End(RF) such that sA(J) = 0 and put L = $3ff€/Im(T. Then the above
assumption implies that HomR(F/L, F) = 0 and it follows from the fact
that R is left Kasch that et(L) = Ime, for each i e I. Suppose now that
J is a dense left ideal and put K = K{i) = (J : et) for each i e / , so that
/•A{K) = 0. We have therefore that e^L^ = Ime ; , if Li = Y,a^KImcr an<*
hence e,(£,) = Ime(. for any / e / . But if s e K, then set e J, so that
efims) C L and et{Lt) = Ime, C L . Since ^ I m e , = F, we get L = F
and AQ C / , by [8, p. 93]. This proves that Ao is the smallest dense left
ideal.

To verify (iii), let / be maximal with respect to the property that J is not
dense, and put M = ^2aeJ Im a . Then M ^ F, because / does not contain
Ao; and / = HomR(F, M) with M a maximal submodule of F, because
of the maximality of / . Since R is left Kasch, HomR(F/M, F)^0, from
which we deduce that sA{J) ^ 0, proving (iii). Finally, the maximal left
ring of quotients of A is in this case, Ap = EndA(A0) = A by [18, Corollary
IX.2.9].

(b) => (a). Since Ao is the smallest dense left ideal of A, Ao must be a
two-sided ideal in A; also, the condition that Ao is dense implies that A is
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y40-torsion-free. Thus we obtain from Lemma 4.6 that Ay = End(jj-F) = E.
Since & is precisely the left Gabriel topology of A consisting of all the
dense left ideals [18, Proposition VI.6.4], condition (iv) implies that A = E.
To complete the proof we have to show that R is left Kasch: assume not,
and let F/L be a simple module such that HomR(F/L, F) = 0; then J =
HomR(F, L), viewed as a left ideal of A, satisfies sA{J) = 0 , while, obvi-
ously, every left ideal K of A properly containing / verifies £J€A-Im.s = F
and hence A0QK by [8, p. 93]. But this contradicts condition (iii) above.

The following special cases are particularly simple to state.

COROLLARY 4.8. Let A bearing. The following assertions are equivalent.

(a) A is isomorphic to End{RF) for some quasi-Frobenius ring R and
non-finitely generated free module F.

(b)
(i) A has an infinite generalized family ofmatric units, {etj};

(ii) if Ao is the left ideal of A generated by the {et}, then Ao is a
right ideal of A and A is A0-torsion-free; and

(iii) A is left self-injective.

PROOF, (a) => (b). Conditions (i) and (ii) are clear from Theorem 4.7,
while (iii) is well-known (see, for instance, [16, Proposition 4]).

(b) => (a). By using Lemma 4.6 we obtain from (i) and (ii) that Ay =
End(RF) for RF free and non-finitely generated. By (iii), A = Ay [18,
page 198], Again [16, Proposition 4] shows that R is quasi-Frobenius.

COROLLARY 4.9. Let A be a ring. The following conditions are equivalent.

(a) A is isomorphic to End(Z)F) for some division ring D and D-vector
space V.

(b)
(i) A has a smallest dense left ideal Ao;

(ii) Ao is a quasi-simple rng; and
(iii) A is its own maximal left ring of quotients.

PROOF, (a) => (b) is clear.
(b) =• (a). By (i), A is ^0-torsion-free and by (iii), A a End(^ 0 ) S

End(^0) (as an ^0-module), in view of [18, Corollary IX.2.9]. By Propo-
sition 2.8, condition (ii) implies that Ao is #-dense in some End(oF) .
Since Ao is idempotent by (i), Theorem 2.4 and Corollary 2.5 imply that

((0) (D)
REMARK 4.10. We point out that Corollary 4.9 can also be obtained as a

consequence of [18, Corollary XII. 1.5].

https://doi.org/10.1017/S1446788700032602 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032602


136 J. L. Garcia [21]

We return now to the question of how [20, Theorem 7.5] is related to our
theory, namely to Corollary 4.9. Essentially, [20, Theorem 7.5] states that if
AQ is fEnd(i)F), E = End(Z)F) and A is an intermediate subring, that is,
Ao C A c E, then A = E if and only if the sum of two left annihilators in A
is again a left annihilator. These hypotheses imply that A is left non-singular
(so that the dense topology 3 of A coincides with the Goldie topology)
and that E is the maximal left ring of quotients of A. By [18, Proposition
XII.4.7] and [20, Theorem 6.2] the essentially closed left ideals of A (which
are the ^-saturated left ideals) are exactly the left annihilators. So we want
to see that, under the above hypotheses, A coincides with E if and only if
the sum of ^-saturated left ideals of A is ^-saturated. If A = E, this
condition holds because E is left self-injective. For the converse, let e be
an idempotent of E, Xx=Ee, X2 = E(l - e), Yt = AnXr Then the Yt

are i^-saturated in A, whence Yx + Y2 is ^-saturated. But XJYi is 3-
torsion, so (Xl+X2)/(Yl + Y2) is ^-torsion and so is A/(Yl + Y2). Therefore
Yx + Y2 = A and hence each idempotent of E belongs to A. Since E is a
regular ring, we have that A = E.
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