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Lim.iting stress states in granular avalanches 
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ABSTRACT. The Savage- Hutter theory fo r granula r avalanches assumes that the 
g ranula r materia l is in either of two limiting stress sta tes, depending on whether the 
motion is convergent o r di ve rgent. At transitions be tween conve rgent and dive rgent 
regions, aj ump in stress occurs, which necessarily implies that there is a jump in the ava
lanche velocity and /or its thickness. In this paper, a regularization scheme is used, which 
smoothly switches from one stress sta te to the other, a nd avoids the genera tion of such 
singula r surfaces. The resulting algorithm is more stable than previous numerical meth
ods but shocks can still occur during rapid convergence in the run-out zone. Results a re 
presented from two-dimensional calcula tions on complex geometry which illustrate that 
some necking features obse rved in laboratory experiments can be explained by the regu
larized Savage- Hutter model. 

INTRODUCTION 

The materi al properties of dense-Ilow avalanches, of snow, 
ice or rocks, a re described by a simple Mohr- Coulomb 
criterion (Savage and Hutter, 1989, 1991). This provides suffi
cient information to determine the limiting normal pressures 
within the fl owing avalanche but provides no information 
about the transition between these limiting states or which 
limiting state is associated with a given deformation. In this 
paper, a regula rization p rocess is introduced which provides 
smooth well-defined transitions between the various states. 

GOVERNING EQUATIONS 

In the extended Savage- Hutter theory for g ranular free
surface flows over complex topography (e.g. G ray, in press), 
a slope-fitted curvilinear coordinate system Oxyz is gener
a ted by a riference surface that follows the "mean" down-slope 
chute topography. The x and y axes a re ori ented in the 
down-slope and cross-slope directions to the reference sur
face and the z axis is normal to it. The complex sha llow 
three-dimensional chute topography over which the ava
lanche flows is then defined by its elevation z = b(x, y) 
above the reference surface. 

To leading order, the depth-integrated mass balance 
reduces to 

dh h(au av) = 0 
dt + ox + ay (1) 

where h is the avalanche thickness, u and v a re the depth
averaged velocity components in the down-slope and cross
slope directions and the tota l derivative d / dt = a/at 
+ua/ax + va/ay. The leading-order depth-integrated mo
mentum balance components are 

du ( oh ab) 
dt = a,e - gcos( Kx ox + ox ' 
dv ( oh ab) -d = ay - 9 cos ( K 1j '" + !l t ' uy u y 

(2) 

where 9 is the gravitationa l acceleration, ( is the local slope-
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inclination angle, K x and K y a re the down- and cross-slope 
earth-pressure coefficients a nd ab/ox a nd ab/ay a re the 
basal-topography gradients. The gravity-acceleration and 
basal-drag terms are combined into net driving forces 

ax = gsin ( - (u/ lu l) tan b(gcos ( + K,U
2

), 

a y = -(v/lu l)tan 8(gcos(+ K,U2
), 

(3) 

in down- and cross-slope directions, respectively, where 
lu l = (u2 + V2)~ is the modulus of the velocity components, 
8 is the basal Coulomb dry-friction angle and K, is the local 
curvature of the reference surface. 

The earth-pressure coefficients K x and K y rela te the 
limiting in-plane stresses to the norma l stress within the ava
lanche. l"Or avalanches whose motion is predominantly in 
the down-slope direction, Hutter and others (1993) showed 
that 

where cp is the internal angle of friction in the M ohr-Cou-
10mb criterion. The subscripts act and pas denote active- and 
passive-stress states, respectively. Greve and others (1994) in
troduced the following ad hoc defini tions to decide which of 
the stress states should be associated with a given deforma
tion 

K - {Kx nd , 
au/ax > 0, 

(6) 
x - Kx ,,,,, , au/ ox < 0, 

{K:::: ' Bu/8x> 0, av/ay> 0, 
K Ip,., a /0 0 av/ay> 0, 

K y = Yll~.t' U x< , (7) 
K X

"" au/ax > 0 av/ay < 0, Ypa..~ , , 

K
X
'"'' au/ax < 0 av/ay < O. Ypas , , 

Active-stress states are associated with a dilation of the ma
terial, whilst passive-stress states are associated with a com
pression. In Figure I, the down- and cross-slope earth
pressure coeffi cients a re plotted as functions of the interna l 
angle of friction. 
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Fig. 1. The down-slope ( top panel) and cross-slope ( bottom 
panel) earth-pressure coifficients are plotted as af unction of 
the internal angle qffriction cP. The various active and passive 
states are indicated by diffe ring line styles. Note, that neither 
K J . nor K y are difinedjor cP < 8 = 30° 

REGULARIZATION OF THE THEORY 

The earth-pressure coeflicients jump from acti ve to passive 
sta tes when either 8u/8x = 0 or 8v/8y = O. It fo llows that 
there is a jump in the in-plane stress between convergent 
and divergent regions and that there must a lso be a corres
ponding j ump in the avalanche velocity, and/or the thick
ness, in order to balance the tractions on either side of the 
interface. Such transitions where the va riables jump a re 
called singular surfaces (e.g. Chadwick, 1976). 

A proper integration of the Savage- Hutter theory 
requires the solution of j ump conditions on multiple non-mate

ria l moving boundaries between evolving regions of conver-

KxACT ------------\---=--=-=-- - ---l 
o L-______________ ~ ______________ ~ 

Fig. 2. The down-slope earth pressure is regularized b)1 intro 
ducing a smooth!J varying monotonical!J decreasing fun ction 
of the down-slope divergence Dui Dx, which approaches the 
limiting values, K Xarl and K x,,,,.,,jor large divergence and con
vergence, respective!J. At 8u/8x = 0 the down-slope earth 
pressure equals K Ill" 
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gent a nd divergent motion. This is a tru ly formidable tas k. 

An alternative approach is to regularize the theory by intro

ducing a smooth transition between the various limiting 
stress sta tes. This is illustrated schematically in Figure 2 [or 
the down-slope earth-pressure coeflicient. For large down
slope convergence K ;c approaches K.T,,, , and for la rge 
down-slope divergence K .£ approaches Kt",.,. Between these 
two limiting states there is a smooth monotonically decreas
ing transition, which crosse the Dui Dx = 0 line at 

K :r = l <'clI" 
10 forma lize the regula ri zation of the Savage-Butter 

model, new down- and cross-slope earth-pressure coefli
cients a re introduced 

KT = (Kx." , + K,·"J/2 + F(K r,,,, - KxpJ/2, 
K y = (K Yat' + K y,,,J/2 + G(K y"" - K y",..)/ 2 

(8) 

where the functions F and G a re now dependent on the 
down- and cross-slope velocity g radients u~. = Dui Dx and 

Vy = Dv I Dy, respectively. The nature of these functions is 
somewhat subj ective. For the purposes of this paper F and 
G a re ass umed to be the monotonicall y decreasing functions 

F = (auI - u.ro)/{ l + (auJ , - UII) )2 } ~, 

G = (avy - vyJ/ {l + (avy - vy,f } ~ 
(9) 

where the parameter a determines the steepness of the 
transition. The constants u.co and vYo are chosen so that at 

the origin 1C·I", = 0 = I'C·" and K ylvlI=o = K yO' which implies 
tha t 

where 

uI " = - Fo/( l - F5/ /2
, 

vYIl = - Gal (1 - G6) l / 2 

Fa = (2 K xo - K I ." - K.r",J/(K .c,,,, - K.I:paJ, 

Go = (2KyU - K y,,,, - K y,,,J/(K y,,,,, - K Yp"J · 

(10) 

(11) 

The values at the origin a re an important feature of the reg
ula rized Savage- H utter model. A natural partitioning of 
the active- and passive-stress sta tes is achieved when the 
down- and cross-slope earth-pressure coeflicients cross the 
o rigin a t 

K nat = 1 y , (12) 

since K < K nat < K and K < J(IJat < K for a ll .ract - r - .rpa:-. Ynn - y - Ypfb 

values or the internal and basal friction angles. In genera l, 
other models a re possible and three situ ations a re consid
ered here 

(1). K .I'II = K:~aL, 

(2). K l 'lI = K xa" + C, 

(3). K Ill = K Ip", - C, 

]( UIl = ](~aL, 
K YII = K y,,,, + C, 

K YII = K y"" - C 

(13) 

where E is a small parameter that is introduced to ensure 
that the transition occurs close to the origin. The first of 
these models shall be referred to the natura lly regula rized 
model, the second as the active model and the third as the 

passive model. 

NUMERICAL CONSIDERATIONS 

It is appropriate at this point to d iscuss briefl y some of the 
finer points involved in a numerical algorithm to solve the 
two-dimensiona l regula r ized Savage- Hutter theo ry. I n 
many respects, the a lgorithm adopted here is similar to that 
Llsed in existing Lagrangian schemes to solve the standard 
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Savage-Hutter model (e.g. Koch and others, 1994). The 
important difference arises in the way in which the earth
pressure coefficients at a gridpoint a re calculated from the 
velocity gradients at a given time-step. 

In existing schemes, the velocity gradients are computed 
for a triangular gridcell and the appropriate earth-pressure 
values for that gridcell are determined from relations (6) 
and (7). Once this has been performed for a ll gridcells the 
earth-pressure coefficients at a grid point are determined 
by volumetric gridcell averages 

(K.")point = 2: (iT~eu Vcell (14) 
cell 

(15) 

where the summations a re performed over the set of adja
cent gridcells to the point and Vcell is the volume of the grid
cell. At gridpoints that li e close to singular surfaces, this 
scheme has the property that the volumetric mean earth 
pressure li es between the active and passive values. It follows 
that the earth-pressure coeffi cients a re implicitly smoothed 
by the a lgorithm. 

In the algorithm proposed here, the order of the opera

tions is interchanged. First the velocity gradients (u" )point 

and (Vy)point a re calculated by a volumetric average of 
(ux)cell and (vy)cell at adjacent griclccl ls and then the earth
pressure coefficients (K"')point and (Ky)point a re calculated 
directly. It follows that there is no implicit smoothing of the 
earth-pressure coefficients near a singular surface and this 
method is therefore appropriate for the regularized model. 

EXPERIMENTAL COMPARISON 

To test the regularized Savage- Hutter theory and the new 
numerical method, a comparison of the results is made with 
a carefully controll ed laboratory experiment, which has 
a lready been successfully modelled using the standard 
method (Gray, 1997). 

The chute geometry consists of a channel, inclined at 
( = 40° to the horizontal, which is connected to a horizontal 
plane run-out zone by a smooth transition. This is illustrated 
in Figure 3. The channel profile is parabolic with a radius of 
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Fig. 3. The basal-chute geometry consists if an the inclined 
section (white) with shaLLow jJarabolic cross-slope prifile, 
which opens out on to a horizontaL plane ( dark grey). A 
smooth transition region (light grey ) connects the two zones. 

curvature of 110 cm and the avalanche is released from a cap 
that has a spherical free surface and which is fitted to the 
basal chute topography. The cap radius is 32 cm and the 
maximum height of the cap above the free surface is 22 cm. 

The experimental data in this paper are taken from ex
periment V02 (e.g. Gray, 1997), which used quartz granules 
(mean diameter 2- 4 mm ) that are characterized by an 
internal angle of friction q; = 40° a nd a basal angle of fric
tion {) = 27- 30°. In numerical results presented in this 
paper, {) is assumed to equal 28° at the front of the avalanche 
and linear bed-friction angle reduction (Gray, 1997) is used 
to obtain the correct tail speed. 
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Fig. 4_ Avalanche-thickness contours computed using the reg
ularized Savag~Hutter modeL are plotted using slope fitted 
curvilinear coordinates at a sequence if time-steps and the 
thick Line shows the jJosition if the experimental avalanche 
boundary. The time is shown in seconds in each pLot and aLL 
sizes are in centimetres_ The solid lines at x = 175 and 
215 cm indicate the position if the transition zone and the 
y = 0 cm line corresponds to the centre if the channel. The 
avaLanche moves down-slopefrom lift to right. 

The predicted avalanche thickness and a comparison 
with the experimental avalanche boundary is shown at a se
quence of time-steps in Figure 4. The avalanche moves 
down-slope from left to right, starting on the inclined chan
nel in the top panel and coming to rest on the Oat run-out 
plane in the bottom panel. Initially, there is a strong cross
and down-slope expansion of the avalanche as the cap is 
raised but the cross-slope spreading is rapidly balanced by 
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t he cross-slope to pography gradients in the channel and 
spreading continues predominantly in the down-slope di
rection. As the ava lanche enters on to the run-out plane, 
the lateral confinement cease ' and the ava lanche develops 
a cha racteristic tad/lole form at t = 1.51 s, before coming to 
res t at t = 1.79 s. At each time-step, the predicted a nd 
observed bounda ri es are in very good agreement, confirm
ing that the regula rized Savage- Hutter theo ry is at least as 
good if not better than the standard model. 

In the laboratory experiment Y 02, a constriction or 
necking of the avalanche is observed in the transition zone 
at t = 1.21 s, as shown in Figure 5. That is, the maximum 
width of the avala nche is sma ll er in the transition zone 
than in either the channel sec tion or run-out plane. The 
reason for this behaviour is due to the complex interpl ay 
between the chute geometry and materi a l properti es of 
the avalanche as it moves from the channeli zed to uncon

fin ed Oow regimes. 

Fig. 5. Necking if the avalanche as observed in experiment 
V02. 

The necking problem provides an interesting tes t case 
for both the theory and the numerical methods. ro ur cases 
a re eonsidered here. The first model is the standard Savage
Hutter theory using the origina l numerical method, the sec
ond is the naturally regula rized Savage- Hutter theory and 
the third and fou rth models illustrate what happens with 
the standard Savage- Hutter theory when the new numeri
cal method is used. It should be noted that in the ad hoc 
earth-pressure coeffi cient defini tions, Equations (6) and (7), 
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the cases when either U,r = 0 or Vy = 0, a re not defined. Two 
possibili ties a re to define 

(a) U .r = 0, 
V y = 0, 

(16) 
(b) K ,l' = K .r ,,,,, , 

K y = [(VI"'" 

U,/, = 0, 
Vy = 0. 

The first of these cases is asymptotically simila r to the active 
regularized model fo r la rge 0' and small 10, and the second is 
asymptoticall y simila r to the passive regula ri zed model, 
both of which a re defin ed in Equations (13). These models 
shall therefore be termed the active-jumjl and passive-ju111p 
models, respec ti\·el y. 

In Figure 6 the results of the standard , natura ll y regu
la ri sed, act ive-jump and passive-jump models a re illus
tra ted, at time t = 1.21 s when necking in the transition 
zone is observed. Therc is no sign of a constriction in the 

transition zone with the standard Savage- Hutter model 
(top panel) but the natura ll y regula ri zed theory is able to 
reproduce thi s phenomenon (upper middle panel). This 
provides furth er evidence that the regula ri zation of the 
earth-pressure coefficients is at least qua litatively correct. 

.. , 
• • .. i ., '" 

. ... , , .. 
Fig. 6. A sequence if jour avalanche-thickness con touTS are 
shownJor the standard model ( toP), the naturalbl regulari<.ed 
model (upper middle), the active-:ju111p model ( lower 
middle) and the passive-jump model ( bottom) at 
t = 1.21 s. 

The standa rd Savage Hutter model res ults were pro

duced using the active-jump model (Equa ti ons (16)) and 
the old numerical method. When the passive-jump model 
is used instead, the results a re a lmost identical. H owever, 
when the nC'w numerical method is used, the results for the 
active-jump model (lower middle panel ) a re completely 
dilTerent to those obta ined with the passive-jump model 
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(bottom panel). Indeed, the results for the passive-jump 
case a re similar to experiments performed on unconfined 
chutes (Koch and others, 1994), where there is no cross-slope 
curvature. The reason for this is that for a la rge part of the 
avalanche motion the cross-slope basal-topography gradi
ents a re almost in exact balance with the cross-slope spread
ing terms in Equations (2) and that the cross-slope velocity 
and velocity gradients are zero to double precision accuracy. 
As a res ult 

K P ahP ~ ab 
Y ay-ay ' 

(17) 

where the superscript a and p a re used to denote active
jump a nd passive-jump models, respectively. It follows from 
this that 

aha ahP 
v'a ~ r/p 
H y ay - I'- y ay , (18) 

implying that the hori zontal thickness gradients in the 
active-jump model are la rger than those in the passive-jump 
model, since K; < Kf. The active-jump model therefore 
produces a much narrower avalanche than the passive-jump 
model in the channelized section of the chute. These results 
demonstrate the danger of using a jump function in numer
ica l methods that implicitly assumes the existence of smooth 
differentiable solutions, as small changes to the nature of the 
jump can have a large effect on the solution. 

CONCLUSIONS 

The regularized Savage-Rutter theory provides a well
defin ed method of switching from one limiting stress state 
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to another during the avalanche deform ation and elimi
nates the jumps present in the original theory. A compari
son of the model results with a carefully controlled 
laboratory experiment (V02) confirms the superiority of 
the method over previous schemes. 

ACKNOWLEDGEMENTS 

This research was supported by the DFG project SFB 298 
"D eform ation und Versagen bei metallischen und granula
ren Strukturen". 

REFERENCES 

Chad wick, P. 1976. Continuum mechanics: concise theory and problems. Norwich, 
George Alien and Unwin Ltd. 

Gray, J. M. N. T 1997. Granular avalanches on complex topography. In 
Fleck, N. , ed. IUTAA1 Symposium on A1echanics qfCranular and Porous A1ate
rials. Cambridge. Proceedings. Dordrecht, etc., Kluwer Academic Press, 
275- 286. 

Grcve, R. , T Koch and K. Hutter. 1994. Unconfined now of g ranular ava
lanches a long a partly curved surface. I. Theory. Proc. R. Soc. London, Ser. 
A, 445 (1924), 399- 413. 

Hutter, K. , M . Siegel, S. B. Savage and Y. Nohguchi. 1993. Two-dimensional 
spreading ora granula r ava lanche down an inclined plane. ParL I. The
ory. Acta Meck, 100 (1- 2), 37- 68. 

Koch, T , R. Greve and K. Huller. 1994. Unconfined now of granula r ava
lanches a long a partly cu rved surface. 2. Experiments and numerical 
computations. Proc. R. Soc. London, Ser. A, 445 (1924), 415-435. 

Savage, S. B. and K. Huller. 1989. The motion of a finite mass of granular 
material down a rough incline. ] Fluid A1ech. , 199, 177- 215. 

Savage, S. B. and K. Huller. 1991. The dynamics of ava lanches of granular 
materials from initiation to run-out. Pa rt I. Analysis. Acla A1ech. , 86 (1-4), 
201- 223. 

https://doi.org/10.3189/1998AoG26-1-272-276 Published online by Cambridge University Press

https://doi.org/10.3189/1998AoG26-1-272-276

