OPENNESS OF FID-LOCI

RYO TAKAHASHI

Department of Mathematics, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan email: takahasi@math.meiji.ac.jp

(Received 13 January 2006; revised 3 June, 2006; accepted 10 June, 2006)

Abstract. Let R be a commutative Noetherian ring and M a finite R-module. In this paper, we consider Zariski-openness of the FID-locus of M, namely, the subset of Spec R consisting of all prime ideals \mathfrak{p} such that $M_{\mathfrak{p}}$ has finite injective dimension as an $R_{\mathfrak{p}}$ -module. We prove that the FID-locus of M is an open subset of Spec R whenever R is excellent.

2000 Mathematics Subject Classification: 13D05, 13F40.

1. Introduction. Throughout the present paper, we assume that all rings are commutative and Noetherian.

Let \mathbb{P} be a property of local rings. The \mathbb{P} -locus of a ring R is the set of prime ideals \mathfrak{p} of R such that the local ring $R_{\mathfrak{p}}$ satisfies the property \mathbb{P} . It is a natural question to ask whether the \mathbb{P} -locus of R is an open subset of Spec R in the Zariski topology, and it has been considered for a long time. For example, it is known that the \mathbb{P} -locus of an excellent ring is open if \mathbb{P} is any of the regular property, the complete intersection property, the Gorenstein property, and the Cohen-Macaulay property. As to the details of openness of loci for properties of local rings, see [3], [4, §6–7], [6], [7, §24], [8], and [9].

On the other hand, let \mathbb{P} be a property of modules over a local ring. The \mathbb{P} locus of a module M over a ring R is defined to be the subset of Spec R consisting of all prime ideals \mathfrak{p} such that the $R_{\mathfrak{p}}$ -module $M_{\mathfrak{p}}$ satisfies \mathbb{P} . The locus of a finite module for the property of finite projective dimension is known to be an open subset [1, Corollary 9.4.7], and so is the locus of a finite module for the Gorenstein property if the base ring is acceptable, and therefore if it is excellent [5, Corollaries 4.6 and 4.7].

In this paper, we will consider openness of the locus of a finite module for the property of finite injective dimension, which we call the FID-locus. We shall prove that the FID-locus of a finite module satisfying certain conditions is an open subset. Using this result, we will show the following:

THEOREM. Let R be an excellent ring and M a finite R-module. Then the FID-locus

$$\operatorname{FID}_R(M) = \{\mathfrak{p} \in \operatorname{Spec} R \mid \operatorname{id}_{R_\mathfrak{p}} M_\mathfrak{p} < \infty\}$$

of M is an open subset of Spec R in the Zariski topology.

Of course, this theorem implies the result of Greco and Marinari [3, Corollary 1.5] asserting that the Gorenstein locus of an excellent ring is open.

RYO TAKAHASHI

2. The results. Throughout this section, let *R* be a commutative Noetherian ring. Recall that a subset *U* of Spec *R* is called *stable under generalization* provided that if $\mathfrak{p} \in U$ and $\mathfrak{q} \in \text{Spec } R$ with $\mathfrak{q} \subseteq \mathfrak{p}$ then $\mathfrak{q} \in U$. We begin by stating two lemmas. The former is called the "topological Nagata criterion"; it is a criterion for Zariski-openness which is due to Nagata.

LEMMA 2.1. [7, Theorem 24.2] *The following are equivalent for a subset U of* Spec *R*: (1) *U is an open subset of* Spec *R*;

(2) *U* is stable under generalization, and contains a nonempty open subset of $V(\mathfrak{p})$ for any $\mathfrak{p} \in U$.

LEMMA 2.2. [3, Lemma 1.1] Let \mathfrak{p} be a minimal prime of a finite *R*-module *M*. Then there exist an element $f \in R \setminus \mathfrak{p}$ and a chain

$$0 = N_0 \subsetneq N_1 \subsetneq \cdots \subsetneq N_n = M_f$$

of R_f -submodules of M_f such that $N_i/N_{i-1} \cong R_f/\mathfrak{p}R_f$ for $1 \le i \le n$.

Next, we study an easy lemma.

LEMMA 2.3. Let \mathfrak{p} be a prime ideal of R and M a finite R-module. If $M_{\mathfrak{p}} = 0$, then $M_f = 0$ for some $f \in R \setminus \mathfrak{p}$.

Proof. If $M_{\mathfrak{p}} = 0$, then \mathfrak{p} is not in the support of the *R*-module *M*, hence \mathfrak{p} does not contain the annihilator ideal Ann_{*R*} *M*. Therefore there is an element $f \in \operatorname{Ann}_{R} M \setminus \mathfrak{p}$. We easily obtain $M_{f} = 0$.

We define the *FID-locus* of an *R*-module *M* to be the set of prime ideals \mathfrak{p} of *R* such that the $R_{\mathfrak{p}}$ -module $M_{\mathfrak{p}}$ has finite injective dimension, and denote it by $FID_R(M)$. Now, we can prove the following proposition, which will play a key role in the proof of our main result.

PROPOSITION 2.4. Let M be a finite R-module, and let $\mathfrak{p} \in FID_R(M)$. Suppose that the FID-locus $FID_{R/\mathfrak{p}}(\operatorname{Ext}_R^j(R/\mathfrak{p}, M))$ contains a nonempty open subset of $\operatorname{Spec} R/\mathfrak{p}$ for each integer j with $0 \le j \le \operatorname{ht}\mathfrak{p}$. Then there exists an element $f \in R \setminus \mathfrak{p}$ such that the FID-locus $FID_R(M)$ contains $V(\mathfrak{p}) \cap D(f)$.

Proof. First of all, we note that to prove the proposition we can freely replace our ring R with its localization R_g for an element $g \in R \setminus \mathfrak{p}$. In fact, we have $\mathfrak{p}R_g \in$ FID_{R_g}(M_g) and ht $\mathfrak{p}R_g$ = ht \mathfrak{p} . Let U_j be a nonempty open subset of Spec R/\mathfrak{p} which is contained in FID_{R/\mathfrak{p}}(Ext^{*i*}_R(R/\mathfrak{p} , M)) for $0 \le j \le$ ht \mathfrak{p} . Write $U_j = D(I_j/\mathfrak{p})$ for some ideal I_j of R containing \mathfrak{p} , and we see that $D(I_jR_g/\mathfrak{p}R_g)$ is a nonempty open subset of Spec $R_g/\mathfrak{p}R_g$ which is contained in FID_{$R_g/\mathfrak{p}R_g$}(Ext^{*j*}_{R_g}($R_g/\mathfrak{p}R_g, M_g$)). If there exists an element $\frac{h}{g^n} \in R_g \setminus \mathfrak{p}R_g$ with $h \in R$ and $n \ge 0$ such that $V(\mathfrak{p}R_g) \cap D(\frac{h}{g^n})$ is contained in FID_{R_g}(M_g), then h is an element of $R \setminus \mathfrak{p}$ and $V(\mathfrak{p}) \cap D(gh)$ is contained in FID_{R(M)}.

Suppose that $M_p = 0$. Then we have $M_f = 0$ for some $f \in R \setminus p$ by Lemma 2.3. Hence the set D(f) is itself contained in the locus $FID_R(M)$, and there is nothing more to prove. Therefore in what follows we consider the case where $M_p \neq 0$. Since M_p is a finite R_p -module of finite injective dimension, R_p is a Cohen-Macaulay local ring by virtue of [2, Corollary 9.6.2, Remark 9.6.4(a)]. Put $n = \dim R_p$, and take a sequence $x = x_1, x_2, \ldots, x_n$ of elements in p which forms an R_p -regular sequence. Then, putting $H_i = (0 :_{R/(x_1, x_2, \ldots, x_{i-1})} x_i)$, we have $(H_i)_p = 0$ for $1 \le i \le n$. Hence Lemma 2.3 implies that $(H_i)_{f_i} = 0$ for some $f_i \in R \setminus p$. Setting $f = f_1 f_2 \cdots f_n$, we see that f is in $R \setminus p$ and that x is an R_f -regular sequence. Replacing R with R_f , we may assume that x is an R-regular sequence.

Set $\overline{R} = R/(x)$ and $\overline{\mathfrak{p}} = \mathfrak{p}/(x)$. Then $\overline{\mathfrak{p}}$ is a minimal prime of \overline{R} , hence is an associated prime of \overline{R} . Let $\mathfrak{P}_1 = \overline{\mathfrak{p}}, \mathfrak{P}_2, \ldots, \mathfrak{P}_s$ be the associated primes of \overline{R} . Taking an element of the set $\bigcap_{i=2}^{s} \mathfrak{P}_i \setminus \mathfrak{P}_1$, we easily see that there is an element $f \in R \setminus \mathfrak{p}$ such that Ass $\overline{R}_{\overline{f}} = \{\overline{\mathfrak{p}}, \overline{R}_{\overline{f}}\}$, where \overline{f} denotes the residue class of f in \overline{R} . Replacing R with R_f , we may assume that Ass $\overline{R} = \{\overline{\mathfrak{p}}\}$.

On the other hand, since $\mathrm{id}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} < \infty$, we have $\mathrm{id}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = n$ by [2, Theorem 3.1.17] and hence $\mathrm{Ext}_{R_{\mathfrak{p}}}^{n+1}(\kappa(\mathfrak{p}), M_{\mathfrak{p}}) = 0$, where $\kappa(\mathfrak{p})$ denotes the residue field of $R_{\mathfrak{p}}$. Therefore it follows from Lemma 2.3 that $\mathrm{Ext}_{R_{f}}^{n+1}(R_{f}/\mathfrak{p}R_{f}, M_{f}) = 0$ for some $f \in R \setminus \mathfrak{p}$. Replacing R with R_{f} , we may assume that

$$\operatorname{Ext}_{R}^{n+1}(R/\mathfrak{p}, M) = 0.$$
 (2.4.1)

Here, we establish a claim.

CLAIM. One may assume that $\operatorname{Ext}_{R}^{j}(R/\mathfrak{p}, M) = 0$ for all integers j > n.

Proof of Claim. If $\overline{\mathfrak{p}} = 0$, then $\mathfrak{p} = (\mathbf{x})$ and the *R*-module R/\mathfrak{p} has projective dimension *n* since \mathbf{x} is an *R*-regular sequence of length *n*. Hence $\operatorname{Ext}_{R}^{j}(R/\mathfrak{p}, M) = 0$ for j > n, as desired. Assume $\overline{\mathfrak{p}} \neq 0$. Then we have $\emptyset \neq \operatorname{Min}_{\overline{R}}(\overline{\mathfrak{p}}) \subseteq \operatorname{Ass}_{\overline{R}}(\overline{\mathfrak{p}}) \subseteq \operatorname{Ass}_{\overline{R}} = \{\overline{\mathfrak{p}}\}$, and therefore $\operatorname{Min}_{\overline{R}}(\overline{\mathfrak{p}}) = \{\overline{\mathfrak{p}}\}$. According to Lemma 2.2, for some element $f \in R \setminus \mathfrak{p}$ there is a chain

$$0 = N_0 \subsetneq N_1 \subsetneq \cdots \subsetneq N_l = \overline{\mathfrak{p}}\overline{R}_{\overline{f}}$$

of $\overline{R}_{\overline{f}}$ -modules such that $N_i/N_{i-1} \cong \overline{R}_{\overline{f}}/\overline{\mathfrak{p}}\overline{R}_{\overline{f}} \cong R_f/\mathfrak{p}R_f$ for any $1 \le i \le l$. Replacing R with R_f , we may assume that there is a chain $0 = N_0 \subsetneq N_1 \subsetneq \cdots \subsetneq N_l = \overline{\mathfrak{p}}$ of \overline{R} -modules such that each N_i/N_{i-1} is isomorphic to R/\mathfrak{p} .

We have obtained a series of exact sequences of R-modules

$$0 \to N_{i-1} \to N_i \to R/\mathfrak{p} \to 0 \quad (1 \le i \le l). \tag{2.4.2}$$

Using these sequences and 2.4.1, we can get $\operatorname{Ext}_{R}^{n+1}(\overline{\mathfrak{p}}, M) = 0$. The natural exact sequence $0 \to \overline{\mathfrak{p}} \to \overline{R} \to R/\mathfrak{p} \to 0$ induces an exact sequence of Ext modules: $0 = \operatorname{Ext}_{R}^{n+1}(\overline{\mathfrak{p}}, M) \to \operatorname{Ext}_{R}^{n+2}(R/\mathfrak{p}, M) \to \operatorname{Ext}_{R}^{n+2}(\overline{R}, M)$. Noting that \overline{R} has projective dimension n as an R-module, we have $\operatorname{Ext}_{R}^{i}(\overline{R}, M) = 0$ for every i > n, and $\operatorname{Ext}_{R}^{n+2}(R/\mathfrak{p}, M) = 0$. Using the sequences 2.4.2 again, we get $\operatorname{Ext}_{R}^{n+2}(\overline{\mathfrak{p}}, M) = 0$. Iterating this procedure shows the claim.

The assumption of the proposition yields a nonempty open subset U_j of Spec R/\mathfrak{p} contained in the locus $\operatorname{FID}_{R/\mathfrak{p}}(\operatorname{Ext}_R^j(R/\mathfrak{p}, M))$ for $0 \le j \le n$. We can write $U_j = D(I_j/\mathfrak{p})$ for some ideal I_j of R which strictly contains \mathfrak{p} . Hence there exists an element $f_j \in I_j \setminus \mathfrak{p}$, and setting $f = f_0f_1 \cdots f_n$, we see that the set D(f) is contained in $D(I_j)$ for any $0 \le j \le n$.

Fix a prime ideal $q \in V(\mathfrak{p}) \cap D(f)$. Then $\mathfrak{q}/\mathfrak{p}$ belongs to $D(I_j/\mathfrak{p}) = U_j$, which is contained in $\operatorname{FID}_{R/\mathfrak{p}}(\operatorname{Ext}_R^j(R/\mathfrak{p}, M))$ for $0 \le j \le n$. Hence $\operatorname{Ext}_{R_\mathfrak{q}}^j(R_\mathfrak{q}/\mathfrak{p}R_\mathfrak{q}, M_\mathfrak{q})$ has finite injective dimension as an $R_\mathfrak{q}/\mathfrak{p}R_\mathfrak{q}$ -module for any integer j with $0 \le j \le n$. Put $m = \max\{\operatorname{id}_{R_\mathfrak{q}}/\mathfrak{p}R_\mathfrak{q}(\operatorname{Ext}_{R_\mathfrak{q}}^j(R_\mathfrak{q}/\mathfrak{p}R_\mathfrak{q}, M_\mathfrak{q})) | 0 \le j \le n\}$. Consider the following spectral

RYO TAKAHASHI

sequence:

$$E_2^{i,j} = \operatorname{Ext}_{R_{\mathfrak{q}}/\mathfrak{p}R_{\mathfrak{q}}}^i(\kappa(\mathfrak{q}), \operatorname{Ext}_{R_{\mathfrak{q}}}^j(R_{\mathfrak{q}}/\mathfrak{p}R_{\mathfrak{q}}, M_{\mathfrak{q}})) \Longrightarrow \operatorname{Ext}_{R_{\mathfrak{q}}}^{i+j}(\kappa(\mathfrak{q}), M_{\mathfrak{q}}).$$

We have $E_2^{i,j} = 0$ if i > m, and the above claim shows that $E_2^{i,j} = 0$ if j > n. From this spectral sequence, we see that $\operatorname{Ext}_{R_q}^i(\kappa(\mathfrak{q}), M_\mathfrak{q}) = 0$ for i > m + n. This implies that the $R_\mathfrak{q}$ -module $M_\mathfrak{q}$ has finite injective dimension (cf. [2, Proposition 3.1.14]), that is $\mathfrak{q} \in \operatorname{FID}_R(M)$. It follows that $V(\mathfrak{p}) \cap D(f)$ is contained in $\operatorname{FID}_R(M)$, which completes the proof of the proposition.

Now we state and prove our main result of this paper.

THEOREM 2.5. Let M be a finite R-module. Suppose that $FID_{R/\mathfrak{p}}(Ext_R^j(R/\mathfrak{p}, M))$ contains a nonempty open subset of Spec R/\mathfrak{p} for any prime ideal $\mathfrak{p} \in FID_R(M)$ and any integer $0 \le j \le ht \mathfrak{p}$. Then $FID_R(M)$ is an open subset of Spec R.

Proof. Proposition 2.4 shows that for any $\mathfrak{p} \in FID_R(M)$ there exists $f \in R \setminus \mathfrak{p}$ such that $FID_R(M)$ contains $V(\mathfrak{p}) \cap D(f)$. Note that $V(\mathfrak{p}) \cap D(f)$ is not an empty set since \mathfrak{p} belongs to it. On the other hand, it is easy to see from [2, Proposition 3.1.9] that $FID_R(M)$ is stable under generalization. Thus the theorem follows from Lemma 2.1.

We denote by Reg(R) the *regular locus* of *R*, namely, the set of prime ideals \mathfrak{p} of *R* such that the local ring $R_{\mathfrak{p}}$ is regular. The following result can be obtained from the above theorem.

COROLLARY 2.6. Let R be an excellent ring. Then $FID_R(M)$ is an open subset of Spec R for any finite R-module M.

Proof. Fix a prime ideal $\mathfrak{p} \in FID_R(M)$ and an integer j with $0 \le j \le ht \mathfrak{p}$. By the definition of an excellent ring, the regular locus $\operatorname{Reg}(R/\mathfrak{p})$ is an open subset of Spec R/\mathfrak{p} . The zero ideal of R/\mathfrak{p} belongs to $\operatorname{Reg}(R/\mathfrak{p})$, hence it is nonempty. Noting that any module over a regular local ring has finite injective dimension, we see that $\operatorname{Reg}(R/\mathfrak{p})$ is contained in the locus $FID_{R/\mathfrak{p}}(\operatorname{Ext}_R^j(R/\mathfrak{p}, M))$. Thus all the assumptions of Theorem 2.5 are satisfied, and it follows that $FID_R(M)$ is open in Spec R.

We denote by Gor(R) the Gorenstein locus of R, that is, the subset of Spec R consisting of all prime ideals \mathfrak{p} of R such that $R_{\mathfrak{p}}$ is a Gorenstein local ring. Since Gor(R) coincides with FID_R(R), the above corollary yields a result of Greco and Marinari [3, Corollary 1.5]:

COROLLARY 2.7 (Greco-Marinari). Let R be an excellent ring. Then the Gorenstein locus Gor(R) is open in Spec R.

REFERENCES

1. M. P. Brodmann and R. Y. Sharp, *Local cohomology: an algebraic introduction with geometric applications*, Cambridge Studies in Advanced Mathematics **60** (Cambridge University Press, 1998).

2. W. Bruns and J. Herzog, *Cohen-Macaulay rings*, revised edition. Cambridge Studies in Advanced Mathematics **39** (Cambridge University Press, 1998).

3. S. Greco and M. G. Marinari, Nagata's criterion and openness of loci for Gorenstein and complete intersection, *Math. Z.* **160** (1978), no. 3, 207–216.

434

4. A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, *Inst. Hautes Études Sci. Publ. Math.* No. 24, 1965.

5. G. J. Leuschke, Gorenstein modules, finite index, and finite Cohen-Macaulay type, *Comm. Algebra* **30** (2002), no. 4, 2023–2035.

6. C. Massaza and P. Valabrega, Sull'apertura di luoghi in uno schema localmente noetheriano, *Boll. Un. Mat. Ital. A (5)* 14 (1977), no. 3, 564–574.

7. H. Matsumura, *Commutative ring theory*. Translated from the Japanese by M. Reid. Cambridge Studies in Advanced Mathematics, **8** (Cambridge University Press, 1989).

8. M. Nagata, On the closedness of singular loci, *Inst. Hautes Études Sci. Publ. Math.* 1959 1959 29–36.

9. R. Y. Sharp, Acceptable rings and homomorphic images of Gorenstein rings, *J. Algebra* **44** (1977), no. 1, 246–261.