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Abstract. Let R be a commutative Noetherian ring and M a finite R-module. In
this paper, we consider Zariski-openness of the FID-locus of M, namely, the subset of
Spec R consisting of all prime ideals p such that Mp has finite injective dimension as an
Rp-module. We prove that the FID-locus of M is an open subset of Spec R whenever
R is excellent.
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1. Introduction. Throughout the present paper, we assume that all rings are
commutative and Noetherian.

Let � be a property of local rings. The �-locus of a ring R is the set of prime ideals
p of R such that the local ring Rp satisfies the property �. It is a natural question to
ask whether the �-locus of R is an open subset of Spec R in the Zariski topology, and
it has been considered for a long time. For example, it is known that the �-locus of
an excellent ring is open if � is any of the regular property, the complete intersection
property, the Gorenstein property, and the Cohen-Macaulay property. As to the details
of openness of loci for properties of local rings, see [3], [4, §6–7], [6], [7, §24], [8],
and [9].

On the other hand, let � be a property of modules over a local ring. The �-
locus of a module M over a ring R is defined to be the subset of Spec R consisting
of all prime ideals p such that the Rp-module Mp satisfies �. The locus of a finite
module for the property of finite projective dimension is known to be an open subset
[1, Corollary 9.4.7], and so is the locus of a finite module for the Gorenstein property
if the base ring is acceptable, and therefore if it is excellent [5, Corollaries 4.6 and 4.7].

In this paper, we will consider openness of the locus of a finite module for the
property of finite injective dimension, which we call the FID-locus. We shall prove that
the FID-locus of a finite module satisfying certain conditions is an open subset. Using
this result, we will show the following:

THEOREM. Let R be an excellent ring and M a finite R-module. Then the FID-locus

FIDR(M) = {p ∈ Spec R
∣
∣ idRp

Mp < ∞}

of M is an open subset of Spec R in the Zariski topology.

Of course, this theorem implies the result of Greco and Marinari [3, Corollary 1.5]
asserting that the Gorenstein locus of an excellent ring is open.
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2. The results. Throughout this section, let R be a commutative Noetherian ring.
Recall that a subset U of Spec R is called stable under generalization provided that if
p ∈ U and q ∈ Spec R with q ⊆ p then q ∈ U . We begin by stating two lemmas. The
former is called the “topological Nagata criterion”; it is a criterion for Zariski-openness
which is due to Nagata.

LEMMA 2.1. [7, Theorem 24.2] The following are equivalent for a subset U of Spec R:
(1) U is an open subset of Spec R;
(2) U is stable under generalization, and contains a nonempty open subset of V (p)

for any p ∈ U.

LEMMA 2.2. [3, Lemma 1.1] Let p be a minimal prime of a finite R-module M. Then
there exist an element f ∈ R \ p and a chain

0 = N0 � N1 � · · · � Nn = Mf

of Rf -submodules of Mf such that Ni/Ni−1
∼= Rf /pRf for 1 ≤ i ≤ n.

Next, we study an easy lemma.

LEMMA 2.3. Let p be a prime ideal of R and M a finite R-module. If Mp = 0, then
Mf = 0 for some f ∈ R \ p.

Proof. If Mp = 0, then p is not in the support of the R-module M, hence p does not
contain the annihilator ideal AnnR M. Therefore there is an element f ∈ AnnR M \ p.
We easily obtain Mf = 0. �

We define the FID-locus of an R-module M to be the set of prime ideals p of R
such that the Rp-module Mp has finite injective dimension, and denote it by FIDR(M).
Now, we can prove the following proposition, which will play a key role in the proof
of our main result.

PROPOSITION 2.4. Let M be a finite R-module, and let p ∈ FIDR(M). Suppose that
the FID-locus FIDR/p(Extj

R(R/p, M)) contains a nonempty open subset of Spec R/p for
each integer j with 0 ≤ j ≤ ht p. Then there exists an element f ∈ R \ p such that the
FID-locus FIDR(M) contains V (p) ∩ D(f ).

Proof. First of all, we note that to prove the proposition we can freely replace
our ring R with its localization Rg for an element g ∈ R \ p. In fact, we have pRg ∈
FIDRg (Mg) and ht pRg = ht p. Let Uj be a nonempty open subset of Spec R/p which

is contained in FIDR/p(Extj
R(R/p, M)) for 0 ≤ j ≤ ht p. Write Uj = D(Ij/p) for some

ideal Ij of R containing p, and we see that D(IjRg/pRg) is a nonempty open subset of
Spec Rg/pRg which is contained in FIDRg/pRg (Extj

Rg
(Rg/pRg, Mg)). If there exists an

element h
gn ∈ Rg \ pRg with h ∈ R and n ≥ 0 such that V (pRg) ∩ D( h

gn ) is contained in
FIDRg (Mg), then h is an element of R \ p and V (p) ∩ D(gh) is contained in FIDR(M).

Suppose that Mp = 0. Then we have Mf = 0 for some f ∈ R \ p by Lemma 2.3.
Hence the set D(f ) is itself contained in the locus FIDR(M), and there is nothing more
to prove. Therefore in what follows we consider the case where Mp 	= 0. Since Mp is a
finite Rp-module of finite injective dimension, Rp is a Cohen-Macaulay local ring by
virtue of [2, Corollary 9.6.2, Remark 9.6.4(a)]. Put n = dim Rp, and take a sequence
x = x1, x2, . . . , xn of elements in p which forms an Rp-regular sequence. Then, putting
Hi = (0 :R/(x1,x2,...,xi−1) xi), we have (Hi)p = 0 for 1 ≤ i ≤ n. Hence Lemma 2.3 implies
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that (Hi)fi = 0 for some fi ∈ R \ p. Setting f = f1f2 · · · fn, we see that f is in R \ p and
that x is an Rf -regular sequence. Replacing R with Rf , we may assume that x is an
R-regular sequence.

Set R = R/(x) and p = p/(x). Then p is a minimal prime of R, hence is an
associated prime of R. Let P1 = p,P2, . . . ,Ps be the associated primes of R. Taking
an element of the set

⋂s
i=2 Pi \ P1, we easily see that there is an element f ∈ R \ p such

that Ass Rf = { p Rf }, where f denotes the residue class of f in R. Replacing R with
Rf , we may assume that Ass R = { p }.

On the other hand, since idRp
Mp < ∞, we have idRp

Mp = n by [2,
Theorem 3.1.17] and hence Extn+1

Rp
(κ(p), Mp) = 0, where κ(p) denotes the residue field

of Rp. Therefore it follows from Lemma 2.3 that Extn+1
Rf

(Rf /pRf , Mf ) = 0 for some
f ∈ R \ p. Replacing R with Rf , we may assume that

Extn+1
R (R/p, M) = 0. (2.4.1)

Here, we establish a claim.

CLAIM. One may assume that Extj
R(R/p, M) = 0 for all integers j > n.

Proof of Claim. If p = 0, then p = (x) and the R-module R/p has projective
dimension n since x is an R-regular sequence of length n. Hence Extj

R(R/p, M) = 0 for
j > n, as desired. Assume p 	= 0. Then we have ∅ 	= MinR(p) ⊆ AssR(p) ⊆ Ass R = { p },
and therefore MinR(p) = { p }. According to Lemma 2.2, for some element f ∈ R \ p

there is a chain

0 = N0 � N1 � · · · � Nl = pRf

of Rf -modules such that Ni/Ni−1
∼= Rf /pRf

∼= Rf /pRf for any 1 ≤ i ≤ l. Replacing
R with Rf , we may assume that there is a chain 0 = N0 � N1 � · · · � Nl = p of R-
modules such that each Ni/Ni−1 is isomorphic to R/p.

We have obtained a series of exact sequences of R-modules

0 → Ni−1 → Ni → R/p → 0 (1 ≤ i ≤ l). (2.4.2)

Using these sequences and 2.4.1, we can get Extn+1
R (p, M) = 0. The natural exact

sequence 0 → p → R → R/p → 0 induces an exact sequence of Ext modules:
0 = Extn+1

R (p, M) → Extn+2
R (R/p, M) → Extn+2

R (R, M). Noting that R has projective
dimension n as an R-module, we have Exti

R(R, M) = 0 for every i > n, and
Extn+2

R (R/p, M) = 0. Using the sequences 2.4.2 again, we get Extn+2
R (p, M) = 0.

Iterating this procedure shows the claim. �

The assumption of the proposition yields a nonempty open subset Uj of Spec R/p

contained in the locus FIDR/p(Extj
R(R/p, M)) for 0 ≤ j ≤ n. We can write Uj = D(Ij/p)

for some ideal Ij of R which strictly contains p. Hence there exists an element fj ∈ Ij \ p,
and setting f = f0f1 · · · fn, we see that the set D(f ) is contained in D(Ij) for any 0 ≤ j ≤ n.

Fix a prime ideal q ∈ V (p) ∩ D(f ). Then q/p belongs to D(Ij/p) = Uj, which is
contained in FIDR/p(Extj

R(R/p, M)) for 0 ≤ j ≤ n. Hence Extj
Rq

(Rq/pRq, Mq) has
finite injective dimension as an Rq/pRq-module for any integer j with 0 ≤ j ≤ n. Put
m = max{ idRq/pRq

(Extj
Rq

(Rq/pRq, Mq)) | 0 ≤ j ≤ n }. Consider the following spectral
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sequence:

Ei,j
2 = Exti

Rq/pRq
(κ(q), Extj

Rq
(Rq/pRq, Mq)) =⇒ Exti+j

Rq
(κ(q), Mq).

We have Ei,j
2 = 0 if i > m, and the above claim shows that Ei,j

2 = 0 if j > n. From this
spectral sequence, we see that Exti

Rq
(κ(q), Mq) = 0 for i > m + n. This implies that

the Rq-module Mq has finite injective dimension (cf. [2, Proposition 3.1.14]), that is
q ∈ FIDR(M). It follows that V (p) ∩ D(f ) is contained in FIDR(M), which completes
the proof of the proposition. �

Now we state and prove our main result of this paper.

THEOREM 2.5. Let M be a finite R-module. Suppose that FIDR/p(Extj
R(R/p, M))

contains a nonempty open subset of Spec R/p for any prime ideal p ∈ FIDR(M) and any
integer 0 ≤ j ≤ ht p. Then FIDR(M) is an open subset of Spec R.

Proof. Proposition 2.4 shows that for any p ∈ FIDR(M) there exists f ∈ R \ p

such that FIDR(M) contains V (p) ∩ D(f ). Note that V (p) ∩ D(f ) is not an empty
set since p belongs to it. On the other hand, it is easy to see from [2, Proposition
3.1.9] that FIDR(M) is stable under generalization. Thus the theorem follows from
Lemma 2.1. �

We denote by Reg(R) the regular locus of R, namely, the set of prime ideals p of
R such that the local ring Rp is regular. The following result can be obtained from the
above theorem.

COROLLARY 2.6. Let R be an excellent ring. Then FIDR(M) is an open subset of
Spec R for any finite R-module M.

Proof. Fix a prime ideal p ∈ FIDR(M) and an integer j with 0 ≤ j ≤ ht p. By
the definition of an excellent ring, the regular locus Reg(R/p) is an open subset of
Spec R/p. The zero ideal of R/p belongs to Reg(R/p), hence it is nonempty. Noting
that any module over a regular local ring has finite injective dimension, we see that
Reg(R/p) is contained in the locus FIDR/p(Extj

R(R/p, M)). Thus all the assumptions
of Theorem 2.5 are satisfied, and it follows that FIDR(M) is open in Spec R. �

We denote by Gor(R) the Gorenstein locus of R, that is, the subset of Spec R
consisting of all prime ideals p of R such that Rp is a Gorenstein local ring. Since
Gor(R) coincides with FIDR(R), the above corollary yields a result of Greco and
Marinari [3, Corollary 1.5]:

COROLLARY 2.7 (Greco-Marinari). Let R be an excellent ring. Then the Gorenstein
locus Gor(R) is open in Spec R.
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