ON THE DIMENSION OF AN IRREDUCIBLE TENSOR REPRESENTATION OF THE GENERAL LINEAR GROUP GL(d)

BY

J. A. J. MATTHEWS AND G. DE B. ROBINSON

1. As has long been known, the irreducible tensor representations of GL(d) of rank *n* may be labeled by means of the irreducible representations of S_n , i.e., by means of the Young diagrams $[\lambda]$, where $\lambda_1 + \lambda_2 + \cdots + \lambda_r = n$. We denote such a tensor representation by $\langle \lambda \rangle$. Using Young's raising operator R_{ij} we can write [1, p. 42]

(1.1)
$$[\lambda] = \prod (1-R_{ij})[\lambda]_1 \cdot [\lambda_2] \cdot \cdots \cdot [\lambda_r] = |[\lambda_i - i + j]|$$

where the dot denotes the inducing process. For example, [3] \cdot [2] is that representation of S_5 induced by the identity representation of its subgroup $S_3 \times S_2$. Analogously, we may write [1, p. 59]

(1.2)
$$\langle \lambda \rangle = |\langle \lambda_i - i + j \rangle|^{\times}$$

where the components of the determinant are multiplied to yield Kronecker product representations of GL(d).

The dimension f^{λ} of $[\lambda]$ is easily calculated from (1.1) if we observe that the dimension of $[\lambda_1] \cdot [\lambda_2] \cdot \cdots \cdot [\lambda_r]$ is $n!/\lambda_1! \lambda_2! \ldots \lambda_r!$ so that

(1.3)
$$f^{\lambda} = n! \left| \frac{1}{(\lambda_i - i + j)!} \right| = n! / H^{\lambda}$$

where H^{λ} is the product of the hook lengths of $[\lambda]$. The purpose of the present note is to show how an exactly analogous procedure leads to the expression $G^{\lambda}(d)/H^{\lambda}$ for the dimension $\delta^{\lambda}(d)$ of $\langle \lambda \rangle$. Incidentally, we suppose that $d \geq n$.

2. To begin with, we observe that the dimension of the symmetric tensor representation of GL(d) denoted by $\langle \lambda_t \rangle$ is

(2.1)
$$d(d+1)(d+2)\cdots(d+\lambda_i-1)/\lambda_i!$$

which is just the number of ways of choosing λ_i things from d, with repetitions allowed [2, p. 46] so that

(2.2)
$$\delta^{\lambda}(d) = \left| \frac{\left((d-1) + (\lambda_i - i + j) \right)!}{(d-1)! \left(\lambda_i - i + j \right)!} \right|.$$

Proceeding as in the case of f^{λ} , let us factor out the *denominators* $(d-1)! (\lambda_i - i + r)!$ in the last column (j=r) of the determinant, and the *numerators* in the first column (j=1) to yield the expression

(2.3)
$$\delta^{\lambda}(d) = \left[\frac{\prod_{i=1}^{r} (d+\lambda_{i}-i)!}{((d-1)!)^{r} \prod_{i=1}^{r} (\lambda_{i}-i+r)!}\right] \Delta$$
389

where each term of the determinant Δ contains r-1 factors in the numerator with denominator 1.

EXAMPLE. Let us suppose that $[\lambda] = [3, 2]$ so that

$$\delta^{3,2}(d) = \begin{vmatrix} \frac{(d+2)!}{(d-1)! \ 3!} & \frac{(d+3)!}{(d-1)! \ 4!} \\ \frac{d!}{(d-1)! \ 1!} & \frac{(d+1)!}{(d-1)! \ 2!} \end{vmatrix}$$
$$= \left[\frac{(d+2)! \ d!}{((d-1)!)^{2} \ 4! \ 2!} \right] \begin{vmatrix} 4 & d+3 \\ 2 & d+1 \end{vmatrix}$$

after dividing out as described above. If we subtract the first from the second column of the modified determinant we obtain a common factor (d-1) which is to be divided out, and then subtract the second row from the first so that

$$\delta^{3,2}(d) = \frac{d(d+1)(d+2) \cdot d}{4! \, 2!} \begin{vmatrix} 4 & d-1 \\ 2 & d-1 \end{vmatrix}$$
$$= \frac{d(d+1)(d+2) \cdot (d-1)d}{4 \cdot 3 \cdot 2} \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix}$$
$$= G^{3,2}(d)/H^{3,2}$$

where we have written $G^{\lambda}(d) = \prod_{i,j} (d+j-i)$.

It is important to see what is going on in the above example. By subtracting *columns* of Δ we have obtained common factors which can be divided out from the columns to yield the factors of $G^{\lambda}(d)$ associated with the (i, j)-nodes of $[\lambda]$ for which i > j, leaving the determinant Δ' . By subtracting rows of Δ' we have then obtained factors which can be divided out from the rows to yield the *missing* hooks [1, p. 44] in $[\lambda]$, which, cancelling the corresponding factors of $\prod_{i=1}^{r} (\lambda_i - i + r)!$ in the denominator, yield H^{λ} . Thus we have

$$\delta^{\lambda} = G^{\lambda}(d)/H^{\lambda}.$$

It should be noted that the procedure for factoring the determinant (2.2) so far as the denominators are concerned, applies also to (1.3). The added complication in the case of δ^{λ} arises via the numerators to which we have applied a similar procedure.

References

1. G. de B. Robinson, Representation theory of the symmetric group, Toronto, 1961.

2. W. A. Whitworth, Choice and Chance, Cambridge, 1896.

UNIVERSITY OF TORONTO, TORONTO, ONTARIO

390