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ON JV-FLAT MODULES OVER A COMMUTATIVE RING

DAVID E. DOBBS

Let R be a commutative ring with unit, T an it-module, and n a positive integer.
It is proved that T is n-flat over R if B®RT is B-torsionfree for each n-generated
commutative it-algebra B. The converse holds if T is n-generated, in which case
T is actually flat over R. Several other instances of the converse are established,
but it is shown that the converse fails in general, even for R an integral domain,
T an ideal of R, and n = 1.

1. INTRODUCTION

Let R be a commutative ring with unit. Motivated by [3, Corollary 1, p.27], we
say that an .R-module T is n-flat (over R), where n is a positive integer, in case
each relation riti + ... + rntn = 0 (with each r,- £ R, U € T) is induced by suitable
fj € T(l < j < m) and ry £ R (1 < * < n; 1 < j ; ^ m) satisfying U = Y^riifi f°r e a c n

i and ^nTij = 0 for each j . According to the cited result, T is .R-flat if and only if
T is n-flat for each positive integer n. Since characterisations of finitely generated flat
modules have been of considerable interest (see [7] and the references listed there), it
seems natural to ask for conditions under which n-flatness implies flatness. One such
is given in Corollary 2.3 where it is shown, among others, that T is flat if it is n-flat
and n-generated.

To explain the rest of Corollary 2.3, we need to study the connection between
flatness and torsionfreeness. If T is -R-flat, then T is i?-torsionfree. The converse is
false; indeed, if R is an integral domain such that each torsionfree .R-module is flat,
then R is a Priifer domain (see [10], [4, Theorem 4.2], [13, Theorem 4], [5, Theorem]).
One fundamental difference between flatness and torsionfreeness is that flatness is a
universal property. It follows that if T is ii-flat, then B®RT is i?-torsionfree for each
commutative .R-algebra B. Lazarus [12] has recently established the converse of this
result; in particular, an .R-module is flat if and only if it is "universally torsionfree".
Moreover, it follows from the proof of [12, Theoreme 3.1] that if B®RT is 5-torsionfree
for each (n + 2)-generated commutative .R-algebra B, then T is n-flat. Our main
result, Theorem 2.2, succeeds in replacing "n -f 2" with n. In other words, if B ®R T
is J5-torsionfree for each n-generated commutative .R-algebra B, then T is n-flat over
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R. If, in addition, T is n-generated as an iZ-module, then T is actually flat over R:
this is part of the "rest" of Corollary 2.3 that was mentioned above. Also noteworthy in
Section 2 are a new torsionfree-theoretic characterisation of Priifer domains (Corollary
2.4); and a characterisation of n-flatness in terms of tensor product (Proposition 2.1),
extending a result established in [2].

Section 3 is devoted to studying the converse of Theorem 2.2. In other words, if
T is n-flat over R, must B ®R T be B-torsionfree for each n-generated commutative
i2-algebra Bl As the above references indicate, such questions are classically best
understood for integral domains; so, we suppose R is an integral domain and T a
torsionfree iE-module, typically an integral domain containing R or an ideal of R.
Then T is automatically 1-flat. Moreover, for n ^ 2, n-flatness implies 2-flatness; and
2-flatness is equivalent to £CAf-stability (in the sense of [9, 8]). It is known that if T
is a finitely generated ideal or an overling of an integral domain R, then T is J?-flat if
(and only if) T is JDCM-stable over R (see [1], [2, Theorem 3.5], [15, Proposition 1.7]).
Accordingly, in Section 3, we focus further on the case n = 1. In a surprising number
of cases (Propositions 3.1 and 3.2 and Remark 3.3(b)), it turns out that B ®R T is B-
torsionfree for a particular 1-generated commutative JE-algebra B. However, Example
3.4 provides a negative answer; namely the converse of Theorem 2.2 is false even if R
is an integral domain, T an ideal of R, and n = 1. The construction in Example
3.4 involves a pseudo-valuation domain (in the sense of [11]) and is motivated by a
dichotomy involving flatness that was noted in [6, Theorem 2.3].

Our attention was first drawn to [12] in the course of trying to make sense of a
"universally XCAf-stable" concept. (Preservation of the XCM-stable property under
polynomial base changes has received considerable attention: see [15, Corollary 3.7],
[14, Theorem 5], [16, Theorem 11]). In this vein, we show in Corollary 2.5 that for
each positive integer n, flatness is equivalent to "universally n-flat." This leads to the
result (Remark 3.6) that 2-flatness is not a universal property.

Throughout, all rings and algebras are assumed commutative, with unit. Un-
adorned ® means ®R. For convenience, "n-generated" means "having a generating
set of cardinality at most n."

2. n-UNIVERSALLY TORSIONFREE MODULES ARE n-FLAT

The modules referred to in this section's title are studied in Theorem 2.2. First,
we give a characterisation of n-flatness in terms of tensor product. Note that the
implication (2) => (1) in Proposition 2.1 was obtained in case R is an integral domain
in [2, Proposition 3.1]; and that (1) => (2) was obtained in case R is an integral domain,
T is an ideal of R, and n = 2 as part of [2, Theorem 3.5].

PROPOSITION 2 . 1 . Let R be a ring, T an R-module and n a positive integer.
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Then the following conditions are equivalent:

(1) Tie canonical homomorphism g: I®T —» T is a monomorphism for each
n-generated ideal I of R;

(2) T is n-flat over R.

PROOF: One may show that (2) => (1) exactly as in the proof of [2, Proposition
3.1]. For the converse, assume (1). We must show that if riti + ... + rntn = 0 (with
Ti e R, U G T), then there exist /,- G T and rt;- G R (1 < j ^ m; 1 < i < n) such
that U = 52r*jfi f°r e a c n * ^ d £r» r«i = 0 f°r e a c ^ J- P u t ^ = X)^r» anc^ consider
t = E r < ® *< i n / ® T- Since flr(O = ^uU = 0, it follows from (1) that £ = 0. An
application of [3, Lemma 10, p.25] now produces fj, r,-j with the desired properties, to
complete the proof. D

We next give our main result. As explained in the introduction, it sharpens a result
of Lazarus [12, Theoreme 3.1].

THEOREM 2 . 2 . Let R be a ring, T an R-module and n a positive integer. Then
T is n-flat over R under each of the following conditions:

(i) B ® T is B-torsionfree for each n-generated R-algebra B;
(ii) B ® T is B-torsionfree for each R-algebra B which is integral over R;

(iii) B ® T is B-torsionfree for each R-algebra B which is torsionfree and
(n + l)-generated as an R-module.

PROOF: Consider a relation rtfi + . . . + rntn — 0, with n e R, U e T. Put
B = i?[rjX, . . . , rnX, X2, X3)/(X2, X3) . Then B satisfies (i), (ii), and (iii) since

B = R[rlX, ..., rnx] = R + RrlX + ... + Rrnx

where r<x denotes r{X + {X2, Xs) and satisfies (r,-x) = 0. In particular, D = B ®T
is 2?-torsionfree.

Put £ = Y,rix ® U G D. Since r{ • (r;x) = r^jX + (X2, X3) = r;- • (r,x), the
canonically induced 27-module structure on D satisfies

Tj-t = '52 Tj • (rtx) ® ti = ^2 Ti • (.TJX) ®U= TjX <g) ^2 TiU = TjX ® 0 = 0.

Without loss of generality, rj ^ 0 for some j . Then rj is a non-zerodivisor in B and,

since D is .B-torsionfree, we conclude £ = 0.

Since B is generated as an .R-module by T\X, ..., rnx and 1, an application of

[3, Lemma 10, p.25] yields elements /,• £ T , r,y G fl (for l < * < n + l ; l < j < m )

such that

+liifj = 0; and

+ . . . + r n j r n x + r n + X i y • 1 = 0 G B for 1 < j ! ^ m.
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Since {1, X, X2, ...} forms a basis of the free .R-module R[X], it follows easily that
53r«;r» = 0 — rn+i,j for all j . The assembled equations include those needed to show
that T is n-flat, and so the proof is complete. D

One can regard Theorem 2.2 as a response to the question of "how much" tor-
sionfree behaviour is needed in order to ensure n-flatness. Similarly, Corollary 2.3
determines "how much" n-flatness is needed to ensure that a finitely generated module
is flat. Note that the equivalence of (1) and (5) was obtained in [2, Corollary 3.3] in case
R is an integral domain and T is an ideal of R; it is interesting that only Proposition
2.1 is needed for the proof that (1) and (5) are equivalent.

COROLLARY 2 . 3 . Let R be a ring, n a positive integer, and T an n-generated
R-module. Then the following conditions are equivalent:

(1) T is n-flat over R;
(2) B ® T is B-torsiontree for each n-generated R-algebra B;

(3) B ® T is B-torsiontree {or each R-algebra B which is integral over R;

(4) B ® T is B-torsionfree for each R-algebra B which is torsionfree and
(n + l)-generated as an R-module;

(5) T is R-flat.

PROOF: By earlier comments, (5) implies each of (2), (3), and (4). Moreover, by
Theorem 2.2, (2), (3) and (4) each imply (1). Thus it suffices to show that (1) =* (5).

It is enough to show that the canonical homomorphism g: / ® T —> T is a monomor-
phismfor each ideal / of R (see [3, Proposition 1, p.12]). Consider £ £ bei(g). Writing
T = RU + ... + Rtn, we have ( = £>< ® U for suitable r< G I. Put J = £ Rri and
fi — ^2 *"«" ® U £ / ® T . Let / denote the homomorphism J ® T —» / ® T induced by
the inclusion of J in / . Since /(/x) = ( , w e have (<?/)(/*) = g(() = 0. But gf is the
canonical homomorphism J®T —• T. Thus, assuming (1), we have via Proposition 2.1
that fj. = 0. Hence £ = / (0) = 0, completing the proof. D

It is well known (see the first paragraph of [7]) that an integral domain R is a
Priifer domain if and only if each 2-generated ideal of R is ii-flat. This is but one of
several torsionfree-theoretic characterisations of Prtifer domains (some of which were
referenced in the second paragraph of this paper's introduction). In the next result, we
offer one more such characterisation. In view of the preceding comment, the proof of
Corollary 2.4 is immediate from the proof of Corollary 2.3.

COROLLARY 2 . 4 . An integral domain R is a Prufer domain if (and only if) B®I

is B-torsionfree for each 2-generated ideal I of R and each 2-generated R-algebra B

which is torsionfree and 3-generated as an R-module.

We next show that "universally n-flat" characterises flatness.
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COROLLARY 2 . 5 . Let R be a ring, T an R-modtde, and n a positive integer.
Then the following conditions are equivalent:

(1) B®T is n-Sat over B for each R-algebra B;

(2) T is R-Sat.

PROOF: (2) =>• (1) since flatness is a universal property that implies n-flatness.
Conversely, suppose that (1) holds. Recall that n-flat implies 1-flat; and 1-flat is
equivalent to torsionfree (see [8, Theorem 3.3(a)]). It follows that B®T is B-torsionfree
for each i?-algebra B. By Theorem 2.2, T is m-flat over R for each positive integer
m, and so T is ii-flat. (The preceding sentence can be replaced by an appeal to [12,
Theoreme 3.1].) The proof is complete. D

REMARK 2.6. Corollary 2.5 was motivated by Lazarus's characterisation of flat as
"universally torsionfree" or, equivalently, as "universally 1-flat." Another upshot of
Lazarus's result is that 1-flat is not a universal property. We close this section by
recording the fact that 2-flat is also not a universal property. Indeed, consider the
example of Uda [15, Example 4.8] of an extension R C T of integral domains where
T is ICM-stable over R but not .R-flat. By [8, Theorem 3.3(b)], T is 2-flat over R;
but, by Corollary 2.5, T is not universally 2-flat over R.

3. ARE n-FLAT MODULES n-UNIVERSALLY TORSIONFREE?

In this section, we consider the converse of Theorem 2.2. The comments in the
third paragraph of the introduction serve to sharpen our focus, as follows. We assume
that R is an integral domain, T is a torsionfree iZ-module and n = 1; of course, T is
1-flat over R. We ask whether B ® T is 5-torsionfree for each 1-generated i?-algebra
B which is torsionfree and 2-generated as an iZ-module. Proposition 3.1 records an
affirmative answer in the simplest case, in which B is the algebra of dual numbers over
R.

PROPOSITION 3 . 1 . Let R be an integral domain and T a torsionfree R-

module. Put B = R[X]/(X2). Then B®T is B-torsionfree.

PROOF: B = R@R6, where S = X+ (X2) satisfies 62 = 0. Let D denote T@T
as an abelian group, with 2?-module structure given by

(ri +T26)- («,, t2) = (n t i , ri*2 +r2<!)

for ri £ R, tf E T. It is straightforward to verify that B ® T is isomorphic to D

as a 5-module. Indeed, consider the additive homomorphism B ® T —» D sending
(n + »"2̂ ) ® t to (rit, r2t). This is a ^-module isomorphism, with inverse given by

+6®t2- Since T is torsionfree over R and {ri +r26 : ri ^ 0} is the set
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of non-zerodivisors of B, an easy calculation shows that D is a torsionfree JB-module.
Hence B ® T is torsionfree over B, completing the proof. D

The ring B in Proposition 3.1 is not an integral domain. We remove this obstacle
in Proposition 3.2, and nevertheless find another case in which the riding question has
an affirmative answer.

PROPOSITION 3 . 2 . Let R be an integral domain of characteristic ̂  2 and let

T be a torsiontree R-module. Let B — R + Rx be an integral domain which contains

R and is not an overring of R. Then B ® T is B-torsionfree.

PROOF: Since B is a ring, x2 = aa -f a2x for suitable oi, a2 € R. Moreover, the
a,- are uniquely determined. Indeed, the hypothesis that B is not an overring of R,

that is that x does not belong to the quotient field of R, ensures that B — R® Rx.

If the assertion fails, then 6 • £ = 0 for some nonzero elements b £ B, ^ 6 5 0 T .
Write 6 = n + r2x and £ = 1 <g> tx + x ® t2 for suitable r,- £ R, Ue T. Now

0 = b • £ = 1 <g> (rj*! + r2a\t2) + x ® (r2ti + [n + r2a2]t2).

By [3, Lemma 10, p.25], there exist r1;-, r2j £ R and /,• € T (1 < j ^ m) such that

*"ij + »"2ja: — 0 for each j and

[rx +r2a2]t2 =

Since x is not in the quotient field of .R, we have rij = r2j = 0 for each j .

The last-displayed equations are thus a homogeneous linear system in the "unknowns"
ti, t2. By Cramer's Rule, the coefficient matrix has vanishing determinant; that is,
T\ + Tir2<i2 — i"!0! = 0- Hence, y = T\/T2 is a root of the polynomial X2 4- a2X — a\.

By the quadratic formula,

Also by the quadratic formula,

Thus, 2y + a2 = ±(2i — a2). It follows that x is in the quotient field of R, the desired
contradiction. The proof is complete. D

REMARK 3.3. (a) Many of the proofs in this paper use the criterion of Bourbaki [3,
Lemma 10, p.25] for a tensor to vanish. It is possible to fashion an alternate proof
of Proposition 3.1 along these lines. Moreover, by using standard tensor product tech-
niques, one can discover the module structure and isomorphisms developed in the earlier
proof of Proposition 3.1. We leave the details to the interested reader.
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(b) In the above vein, one could ask whether B ® T is B-torsionfree when T is

an overling of an integral domain R and B is an -R-algebra. Since tensor product

commutes with direct limit, T may be assumed of finite type over R. Consider the

simplest case, T — R[l/r] = Rr for some nonzero r 6 R. Then B ®T = Br. An easy

calculation shows that if 6 is a non-zerodivisor in B, then 6/1 is a non-zerodivisor in

Br. Hence, B ® T is J?-torsionfree.

It is time for a final sharpening of focus. Since Proposition 3.2 did not produce

the anticipated counterexample, let us take B to be an overling of R. What should

the "decisive" T be? It should be, in some sense, "well-connected" to both R and B.

An obvious candidate from this point of view is to take R to be a pseudo-valuation

domain (PVD), in the sense of [11]. In other words, R will be a quasilocal integral

domain having the same maximal ideal, M, as some valuation overling V; and T will

be taken to be M. In any counterexample, T = M is not .R-flat. For a PVD, this

is characterised by M2 ^ M [6, Theorem 2.3(a)]; this condition holds, by Nakayama's

Lemma, if V is Noetherian, that is, a DVR. Since B is generated by an element

satisfying a quadratic equation over i t , it is natural to arrange B — R[i], where t2 —

— 1 . With these comments, the plausible shape of the most natural counterexample is

now clear. It is presented as our final result.

EXAMPLE 3.4: Consider the Noetherian integral domain R = R + ATC[[X]], its

overring B — C[[X]], and their common maximal ideal T = XB. Of course, T is a

torsionfree .R-module; and B = R[i] = R+ Ri is a 1-generated .R-algebra which is

torsionfree and 2-generated as an iZ-module. Moreover, B ® T is not B-torsionfree.

PROOF: Consider 6 = iX 6 B and f = 1® J + i ® » X £ 5 ® T . Then

b • £ = iX ® X + i2X ® tX = (iX) • 1 ® X - 1 (8 iX

= 1 <g> {iX)X - 1 ® X(iX) = 0.

It suffices to show that £ ^ 0. Suppose not. Since T = RX + RiX, an appeal to [3,

Lemma 10 p.25] yields elements t\j, V2j £ R and /j £ T (1 ^ j ' ^ m) such that

rijX + r2jiX =0, 1 = 53rii-^» a n d * = X

There are now several ways to derive a contradiction. Here is perhaps the fastest. The

second (respectively, third) of the displayed equations ensures that 1 (respectively, i)

lies in (the R-module) T, the desired contradiction. The proof is complete. U
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