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SUMMARY

The present paper develops a mixture regression model that allows for distributional flexibility in modelling the
likelihood of a semi-continuous outcome that takes on zero value with positive probability while continuous on
the positive half of the real line. A multivariate extension is also developed that builds on past multivariate models
by systematically capturing the relationship between continuous and semi-continuous variables, while allowing
for the semi-continuous variable to be characterized by amixturemodel. The flexibility associated with this model
provides potential applications in many production system studies. The empirical model is shown to provide a
more accurate measure of mortality rates in cattle feedlots, both independently and within a system including
other performance and health factors.

INTRODUCTION

Semi-continuous dependent variables have long been
a challenging modelling problem associated with
disaggregated data sets. The most common occur-
rences are found in consumption and production data.
Regarding consumption, households typically do not
purchase all the goods being evaluated in every time
period, resulting in observed zero values with positive
probability. Similarly, a study evaluating the number of
defects in a given production process is likely to have
outcomes with no defects, leading to a high proportion
of observed zeros. In both cases, ordinary least squares
parameter estimates will be biased when applied to
these types of data (Amemiya 1984).
Tobin (1958) was the first to recognize this bias and

offered a solution that is still quite popular today.
However, the assumption of normality of the under-
lying latent variable has made the Tobit model in-
flexible to data generating processes outside of that
major distribution (Bera et al. 1984). Additionally,
Arabmazar & Schmidt (1982) demonstrated that ran-
dom variables modelled by the Tobit model contain
substantial bias when the true underlying distribution

is non-normal and has a high degree of censoring. The
Tobit model has been generalized to allow variables to
influence the probability of a non-zero value and the
non-zero value itself as two separate processes (Cragg
1971; Jones 1989), which are commonly referred to as
the Hurdle and double-Hurdle models, respectively
(another model that allows for decisions or production
output processes to be characterized as a two-step
process is the zero-inflated class of models).

The univariate Tobit model is extended, under a set
of mild assumptions, to include multivariate settings
(Amemiya 1974; Lee 1993). While empirical applica-
tions in univariate settings are discussed by Amemiya
(1984), multivariate applications are becoming
more frequent (Cornick et al. 1994; Chavas & Kim
2004; Eiswerth & Shonkwiler 2006; Belasco et al.
2009a). Shonkwiler & Yen (1999) provide a more
general procedure to consistently estimate a system of
equations under fewer restrictions than the multi-
variate Tobit model. However, in their proposed
model, parameter estimates and standard errors are
not systematically estimated, nor are cross-correlation
between equations or heteroskedasticity explicitly
modelled. An alternative that allows for more distribu-
tional flexibility was first derived by Duan et al. (1983)
who, in an evaluation of medical expenses, assumed a
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two-step process where a decision is first made
regarding positive expenses, followed by a second
decision about how much to spend, conditional on a
positive amount of expenses.

The present study considers the use of a mixture
model that extends Duan et al. (1983) to characterize
semi-continuous dependent variables, in univariate
and multivariate situations. This model will be shown
to nest the Tobit model, while major advantages
include the flexibility in distributional assumptions and
an increased efficiency in situations involving a high
proportion of zero values. Additionally, the multi-
variate version allows for an explicit characterization
of the dependence between the semi-continuous and
continuous dependent variables. For the empirical
study, a semi-continuous log-normal mixture (SLNM)
regressionmodel is derived from a generalizedmixture
regression model. A comprehensive dataset is used
that includes proprietary cost and production data
from five cattle feedlots in Kansas and Nebraska,
amounting to 11397 pens of cattle during a 10-year
period. Cattle mortality rates (MORT) on a feedlot
provide valuable insights into the profitability and
performance of cattle on feed. Additionally, it is
hypothesized that cattle MORT are more accurately
characterized with an SLNM regression model that
takes into account the positive skewness of MORT,
as well as allowing observations from discrete and
continuous portions of the semi-continuous distri-
bution to be modelled separately. In both univariate
and multivariate situations, the proposed SLNM
regression model more efficiently characterizes the
observed features of the data. The objective of the
present research is to develop an alternative strategy
to modelling semi-continuous data that can more
effectively characterize cattle MORT alone as part of a
system of equations that includes indicators of cattle
productivity.

Section 2 develops a generalized mixture regression
model that is specified with a log–normal distribution
and is used for estimation in the present research.
The univariate model precedes the development of a
multivariate model. Repeated simulations are used to
evaluate the penalty, in terms of in-sample and out-
of-sample model fit, of assuming the wrong model.
Next, the proposed model is applied to evaluate
data from commercial cattle feedlots in Kansas and
Nebraska. Comparisons between the Tobit and mix-
ture regression model are assessed through model fit,
prediction power and parameter estimates using both
univariate and multivariate models using simulated

and empirical data. The final section provides the
implications of the study and avenues for future
research.

MATERIALS AND METHODS

A semi-continuous variable Y is assumed that can take
on the value of zero with a positive probability or a
positive value and is conditional on variables con-
tained in X. Shonkwiler & Yen (1999) assume the
following set of equations:

Yi = Wi × (G(Xi, β) + εi) (1)
Wi = I(H(Xi, γ) + νi > 0) (2)
where the residual errors εi’s and νi’s are distributed
according to a bivariate normal. The binary-valued
variables Wi’s measure the probability of zero or
positive outcomes, which are commonly character-
ized in the literature using a Bernoulli variable.
Then, the positive outcomes are modelled separately
as realizations of positive valued random variables Vi.
The regression parameters β and γ are vectors that
include marginal impacts to both Wi and Vi, respect-
ively. Duan et al. (1983) make a slight modification to
Eqn (1) to make it a conditional regression with a
logged dependent variable in order to account for
positive skewness. This flexibility comes from the
fact that the likelihood function is multiplicatively
separable and ε and ν do not rely on independence or
distributional assumptions. Since Shonkwiler & Yen
(1999) use an unconditional response in the second
step, the residuals in Eqns (1) and (2) are assumed to be
from a bivariate normal distribution.

A major difference between the mixture and Tobit
model is that the parameters of the distribution of
the unobservable censored observations are modelled
separately. The probability density function of the
semi-continuous random variable Y can be expressed
as follows:

f (y|θ) = 1− ρ(θ), if y = 0

= ρ(θ)g(y|θ), if y > 0
(3)

where g(y|θ) is a probability density function satisfying�1
0 g(y|θ) dy = 1 and ρ(θ)∈[0, 1]∀θ. This is equivalent
to the fact that W*Ber(ρ(θ)) and V*g(y|θ), where
W and V are assumed to be independent and Y=WV.
This formulation includes the standard univariate Tobit
model when θ=(μ, σ), ρ(θ)=Φ(μ/σ), and

g(y|θ) = 1/σ
( )

ϕ (y − μ)/σ( )
Φ μ/σ
( ) I(y > 0)
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where ϕ(·) and Φ(·), respectively, denote the density
and distribution functions of a standard normal
distribution. Note that in the log–normal specification
to follow, ρ is modelled separately, using a set of
parameters that may or may not be used to parameter-
ize themean and variance of V, making it more flexible
than the Tobit model. The above formulation includes
the models proposed by Shonkwiler & Yen (1999) and
that of Duan et al. (1983), if dependence between W
and V is allowed. Their models have been extended in
the present paper by allowing the residual errors to
depend on the predictors Xi’s to capture the possible
heteroskadasticity.
Next, a univariate mixture regression model is

developed that includes predictor variables, which
then can be extended to allow for multivariate cases.
Since only the positive outcomes were modelled
through the second component, the natural log of the
dependent variable was used. In most cases, taking
the natural log of this variable works to make the
dependent variable that was originally positively
skewed approximately symmetrical, in addition to
approximately stabilizing the variance. Using a log–
normal distribution for the random variable V and
allowing ρ to vary based on the conditioning variables,
the basic mixture regressionmodel can be transformed
into the following form that can be generalized
to include continuous distributions. First, the normal
distribution is derived to model the logarithm of
the positive-valued dependent variable outcomes,
also known as the log–normal distribution, of the
following form:

f (yi|β, α, γ) = 1− ρi(γ), if yi = 0

= ρi(γ)
1

yiσi(α) ϕ
log(yi) − xiβ

σi(α)
( )

, if yi > 0

(4)
where ϕ(·) denotes the probability density function of
a standard normal distribution with mean zero and
variance unity; β, α and γ are (Kx1) vectors of regression
coefficients; xi is a (1×K) vector of predictor variables;
ρi(γ)=1/(1+exp(xiγ)) is the logit link function and
σi
2(α)=exp(xiα) is the conditional variance that

guarantees σi
2>0 and ρi∈(0, 1)∀i. K is equal to the

number of conditioning predictor variables or co-
variates. Note that this specification is nested within
the generalized version in Eqn (3), where g(y|θ) is a
log–normal distribution and θ=(γ, β, α). This model
will be denoted by SLNM (ρ, μ, σ2), where ρ denotes
the link function (e.g. logit, probit, etc.), μ denotes the
mean function on the logarithmic scale and σ2 denotes

the variance function on the logarithmic scale of the
positive part of the dependent variable. Other candi-
date distributions for V’s were also assessed, including
the Gamma and normal distributions, but were found
to be inferior in terms of model fit and prediction
accuracy for the present datasets.

Tomodel multiple dependent variables in away that
captures the cross-correlation between the response
variables, the well-known relationship between the
joint and conditional marginal densities was used.
More specifically, the well-known decomposition of a
joint density function was used as the product of con-
ditional and marginal densities; f (y1, y2)= f (y1|y2)×
f (y2) (Casella & Berger 2001) to capture the depen-
dence between Y1 and Y2, where Y1 is a semi-
continuous variable that has a positive probability of
taking on the value of 0 and Y2 contains the remaining
vectors of continuous dependent variables. In this
case, f (y1, y2) denotes the joint density function of
(Y1, Y2), f (y1|y2) is the conditional density of Y1, given
Y2, and f (y2) is the marginal (joint) density of the
random vector Y2. However, this model restricts Y1 to
be one dimensional under its current formulation. As a
possible extension of the proposed univariate model
for the semi-continuous variable Y, the model can
be represented as Y1=V(Y2)W, where W is a binary
random variable and V(Y2) is a continuous positive-
valued random variable, whose distribution depends
on Y2. Finally, each vector in Y2 assumes a con-
ditionally specified distribution.

Firstly, Z2i=log(Y2i) (where the natural logarithm is
takenwith respect to each component of the vector Y2i)
is parameterized, which will be distributed as a multi-
variate normal, with mean vector, xiB

(2) and variance
matrix, Σ22i, allowing the model to be heteroskedastic.
B(2) is (K×( J−C )) and Σ22i is ( J−C )× ( J−C ), where J is
equal to the number of dependent variables in the
multivariate model and C is the number of semi-
continuous dependent variables each taking the value
0 with positive probability. The assumption of log–
normality is often made due to the ease with which a
multivariate log–normal can be computed and its
ability to account for skewness. This distribution can
be expressed as Z2i*N(xiB

(2), Σ22i), where Z2i is a
(( J−C )×1)-dimensional vector of outcomes. This
formulation, similar to the univariate case, allows for
the use of separate parameters for the binary variables
and positive-valued continuous part in addition to
capturing the heteroskadasticity.

The conditional probability of Y1 given Y2 is
modelled through a mixture of modelling mechanisms

Modelling semi-continuous data 111

https://doi.org/10.1017/S0021859611000608 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859611000608


that take into account the realizations from Y2
such that Y1i|Y2i=y2i*SLNM(ρi, μi(y2i), σi

2 145 (y2i)),
where SLNM is as defined earlier. More specifi-
cally, μi(y2i) = xiB(1) +∑

12i
∑ −1

22i y2i − xiB(2)( )
and

σ2i y2i
( ) = ∑

11i −
∑

12i
∑ −1

22i
∑

21i, where B(1) is
(K×C). The covariance matrix Σi can be divided into
the following components, where Σ11i refers to the
covariance matrix of semi-continuous variables, Σ22i
refers to the covariancematrix of continuous variables,
while Σ12i and Σ21i measure the cross-covariances
between the two components, at observation i. (One
must be careful in specifying the submatrices within
Σi to make sure that for any observed value of the
predictors Xi’s the full J× Jmatrix Σi is a positive-definite
(p.d.) matrix for each i)

Σi = Σ11i Σ12i

Σ21i Σ22i

( )
(5)

When C=1, this leads to the following conditional
probability density function for Y1i given Y2i=y2i:

f (y1i|y2i)
= 1− ρi(γ), if y1i = 0

= ρi(γ)
1

y1iσi(y2i) ϕ
log(y1i) − μi(y2i)��������

σ2i (y2i)
√

( )
, if y1i > 0

(6)
Ghosh et al. (2006) demonstrate through simulation
studies that similar models have better finite sample
performancewith tighter interval estimates when using
Bayesian procedures instead of classical maximum
likelihood methods. Due to these advantages, the
previously developed models will use recently devel-
oped Bayesian techniques. In order to develop a
Bayesian model, the sampling distribution is weighted
by prior distributions. The likelihood function L(·) is
proportional to the sampling density f (·), where the
proportionality constant is allowed to be a function of
the observed data, such that L(θ, y)∝f (y|θ), where θ
represents the collection of all parameters, which for
the present purposes will include θ=(β, α, γ) in the case
of a univariate response variable. While prior assump-
tions can have some effects in small samples, this
influence is known to diminish with larger sample
sizes (by the use of well-known Bernstein–von Mises
theorem). Additionally, prior assumptions can be
uninformative in order to minimize any effects in
small samples (Kaas & Wasserman 1996). For each
parameter in the model, the following vague normal
prior is assumed, where θ*N(0,Λ) such that
θ={(βkj, αkj, γkc) for k=1, . . ., K, j=1, . . ., J, and

c=1, . . ., C} and Λ is a known matrix of dimension
m×m, where m=K(2J+C ). The given formulation
applies to univariate versions when J=1 and C=1.
Additionally, the diagonal elements of Λ can be
chosen large enough to make the prior relatively
uninformative.

Given the preceding specifications of a sampling
density and prior distributions, a full hierarchical
Bayesian model can be easily developed in principle.
However, due to the difficulty in deriving the posterior
distribution of the high-dimensional parameter θ
analytically, Markov Chain Monte Carlo (MCMC)
methods are used to obtain samples from the posterior
distribution of θ using the WinBUGS programming
software. MCMC methods allow for the computation
of posterior estimates of parameters through the use
of MC simulation based on Markov chains from a
posterior distribution with the posterior distribution
as its stationary distribution. The draws arise from a
Markov chain since each draw depends only on the
last draw, which satisfies the Markov property. As the
posterior density being the stationary distribution of
such a chain, the samples obtained from the chain are
approximately generated from the posterior distri-
bution following a burn-in of initial draws, i.e. samples
are retained after discarding few initial samples with
the assumption that the latter samples are drawn from
the stationary distribution of the Markov chain.

Bayesian point and interval estimates are computed
by using the empirical summaries of the MCMC
samples generated from the posterior distribution. In
a Bayesian framework, interval estimates are typically
computed using the highest posterior density region,
which will be different from a classical confidence
interval when posterior distributions are bi-modal
or asymmetric. As long as posterior estimates do not
show bi-modal attributes, the interval between the 2·5
and 97·5 percentiles can be taken to test whether the
variable is significantly different from zero. Since
multiple chains are usually used in Bayesian analysis,
the potential scale reduction factor, or R̂, measure
developed in Brooks & Gelman (1998) is popularly
used tomonitor convergence. This measure essentially
uses scaled ratios between pooled and within var-
iances of themultiple chains so that when R̂ ≈ 1, it can
be concluded that all chains have mixed well despite
different multiple starting values and have been
generated from the same target distribution.

It should be noted that the well-known identifiability
problem of mixture models due to label switching of
the indexes of the mixture components does not occur

112 E. J. Belasco and S. K. Ghosh

https://doi.org/10.1017/S0021859611000608 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859611000608


for the proposed models as Y is a mixture of a {0, 1}
valued random variable (W ) and a continuous random
variable (V ). In fact, the parameter vector γ can easily
be estimated (and hence identified) using the observed
indicators Wi= I(Yi>0) and the predictor variables (xi)
using a logistic regression model. Further, the remain-
ing components of vector θ (excluding γ) can be
estimated by creating a subset of data Yi=ViWi using
only those observation i’s for which Yi>0. Thus, the
parameters γ and remaining components of θ can be
estimated using a sequence of logistic model and a
likelihood based on Vi’s as defined above.
Predictive values within a Bayesian framework arise

from the posterior predictive distributions, which is
distinctly different from classical theory that uses a
conditional predictive density obtained by plugging
in the estimated parameter in the sampling density
and thus ignoring the uncertainty of the conditional
density. A Bayesian posterior predictive density,
however, is obtained by integrating out the sampling
density (i.e. the conditional density of data given the
parameters) with respect to the posterior density. In the
SLNM model, predicted values will be the product of
two posterior mean estimates. MCMC methods allow
sampling from the posterior density function that
combines both the prior distributional information
and the sampling distribution (likelihood function).
Formally, prediction in the SLNM model is charac-
terized by ŷi = viwi, where vi and wi are generated
from their predictive distributions. log(vi) is from a
normal distribution with mean μi = x′iβ̂

( )
and variance

σ2i = exp(x′iα̂)
( )

, while wi is from a Bernoulli distri-
bution with parameter ρi(γ̂), where β̂, α̂ and γ̂ are
MCMC draws from their posterior distributions, where
xi represents a vector of predictor variables at which
prediction values are desired. Since many draws from
a Bernoulli distribution will result in 0 and 1 outcomes,
the mean will lie between zero and unity. To allow
for prediction of both zero and positive values, the
median of the Bernoulli draws was used for prediction.
This allows for observations to fully take on the
continuous random variable if more than half of the
time it was modelled to do so, while those that
are more likely to take on zero values, as indicated by
the Bernoulli outcomes, take on a zero value.
In order to assess the predictive performance of the

model, a randomly selected two-thirds of the observed
data set is used for estimation, while the remaining
one-third is used for prediction, allowing both model
fit measures and out-of-sample predictive power
performance to be tested. In the present study,

estimations based on a Tobit regression also incor-
porate Bayesian estimation techniques. To compare
in-sample measures of model fit, the deviance
information criteria (DIC) (Spiegelhalter et al. 2002),
which is similar to its frequentist counterpart, Akaike’s
Information Criteria (Akaike 1974) in which smaller
values indicate improved model fit, is used.

To measure the out-of-sample predictive power
within a modelling strategy, the mean squared predic-
tion error (MSPE) associated with the final third of
randomly selected data is computed. MSPE is for-
mulated as MSPE = (1/M)∑M

i=1 ŷi − yi
( )2

,whereM is
some proportion of the full data sample, such that
M=[n/b]. For the present purposes b=3, which allows
for prediction on the remaining third, based on
estimates from the first two-thirds. This allows for a
sufficient amount of observations available for esti-
mation and prediction. MSPE is then decomposed into
error due to central tendency (ECT), error due to
regression (ER) and error due to disturbances (ED),
based on Bibby & Toutenburg (1977). The parameters
are estimated based on the simulated dataset, given
the above specifications. MCMC sampling is used for
Bayesian estimation with a burn-in of 1000 iterations
for the SLNM model and 20000 for the Tobit model.
After discarding the burn-in samples, another 10000
iterations are used with a thin rate of 15 for univariate
estimation with three parallel Markov chains. Multi-
variate simulations make use of 6000 samples on a
single Markov chain. The numbers of burn-in and
sample iterations were selected based on closely

monitoring R̂, based on Brooks & Gelman (1998).
The burn-in ratewas substantially higher with the Tobit
model than the SLNM model, as a few parameter
estimates took particularly long to converge.

A SIMULATION STUDY COMPARING
MODELLING PERFORMANCES

This section focuses on simulating data in order to
compare the goodness-of-fit for the two previously
specified models. The major advantage of evaluating
model performances using a simulated set 245 of data
is that the true form of the data generation process is
known, which is generally not possible with real data
sets. Various goodness-of-fit criteria are evaluated to
compare the performance of a given models when the
data are generated either from the same model (e.g.
Tobit) or from another model (e.g. SLNM). These
simulated data scenarios allow evaluation of the extent
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of bias induced by fitting a model to a data set that is
generated from possibly a different model.

In simulating data, there are three key characteristics
that align the simulated data set with the cattle
production data set to be used in the empirical study,
which include heteroskedastic errors (Belasco et al.
2009a), a degree of censoring around 0·50 and posi-
tive skewness. Data are repeatedly simulated based on
samples sizes of 200, 500 and 1000. The first simu-
lated model will be a heteroskedastic Tobit model,
which fundamentally assumes a normally distributed
latent variable, y* such that, yi*=β0+β1x1i+ εi and the
dependent variable yi=max(yi*, 0) can be observed.
In order to account for heteroskedasticity, εi*N(0, σi

2)
is assumed, where σi

2=exp(α0+α1x1i).
In this scenario, the censored and uncensored

variables (or continuous and discrete portions of the
semi-continuous distribution) come from the same
data generation process. Simulated values are based
on (β0, β1)= (−3·0, 1·0) and (α0, α1)= (2·0, 0·2) where
starting seeds are set in order to replicate results.
For each sample size, values for xi are generated
randomly based on a uniform distribution bounded at
1 and 5. For the above set of selected values of the
parameters, the percentage of observed zeros these
simulated data sets ranged from 0·45 to 0·55. In order
to compute the sampling variation of the estimates
over 10 repetitions, Monte Carlo standard errors
(MCSEs) are reported. More precisely, the sampling

variation of an estimator θ̂ can be measured by

MCSEθ̂ =
��������������������������������
[1/N(N− 1)]∑N

j=1(θ̂j − θ̂)2
√

, where θ̂j is

the estimate obtained from the jth repetition and
N denotes the number of MC repetitions. For all
data generation scenarios, we performed N=10 MC
repetitions.

As an alternative to the preceding simulation
scenario, data were also generated from an SLNM
model. The major distinctions between this simulation
and the previously developed Tobit-based data set are
that the probability of a censored outcome is modelled
separately and that the latent variable is positively
skewed. For this SLNM model, the following values
of the parameters were selected: (β0, β1)= (−1·5, 0·5),
(γ0, γ1)= (−5·0, 1·7) and (α0, α1)= (2·0, 0·2). The pro-
portion of observed zeros in this second scenario also
ranged from 0·45 to 0·55, similar to the first scenario.

Results from simulations based on a Tobit regression
and an SLNM regression are reported in Table 1. As
expected, the performance of a correctly specified
model is better than that of the wrong model. Lower
MSPE indicates that the prediction of the out-of-sample
portion of the data set favours that of the true model at
all sample levels. MSPE penalizes observations with
large residuals that tend to be more prevalent as the
dependent variable value increases. Gurmu & Trivedi
(1996) point out that mixture models tend to over-fit
data. By over-fitting the data, model fit tests might
improve while prediction remains less accurate. The
Tobit model could outperform the SLNM due to the
lack of positive skewness or the loss in degrees of
freedom from irrelevant variables as part of the two-
step process. However, a semi-continuous normal
mixture model was also used and while the perform-
ance was superior to the SLNM, it still did not
outperform the Tobit.

When data are generated from an SLNM model, the
results indicate a superior model fit with the assumed
model, relative to the Tobit model and a substantially
lower MSPE, indicating better out-of-sample predic-
tion performance, partially due to its ability to account
for positive skewness.When the sample size is n=500,

Table 1. Model comparison based on data simulated from univariate Tobit and SLNM models (n=10)

n Est. model

Data simulated from

Tobit model SLNM model

MSPE DIC MSPE DIC

200 Tobit 0·34 (0·024) 214 (6·1) 9 (4·8) 267 (20·9)
SLNM 0·44 (0·070) 230 (5·2) 8 (4·7) 105 (12·8)

500 Tobit 0·29 (0·015) 512 (9·5) 5 (2·7) 747 (43·9)
SLNM 0·35 (0·020) 586 (9·4) 5 (2·6) 244 (21·8)

1000 Tobit 0·28 (0·010) 1000 (10·0) 3 (1·4) 200 (385·7)
SLNM 0·32 (0·013) 1148 (16·4) 3 (1·4) 354 (31·3)

Note: MCSEs are reported in parentheses.
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the relative loss (in terms of having lower DIC) by fitting
an SLNM to data sets generated by a Tobit model is
c. 0·14 ((586·331−512·361)/512·361) only, whereas
the relative loss of fitting a Tobit model to data
sets generated from an SLNM is 2·06 ((747·034−
244·106)/244·106). However, the relative loss (in
terms of having lower MSPE) was about the same for
each incorrectly assumed model. Thus, although by
fitting an SLNM to Tobit-generated data sets DIC might
be reduced there is a much larger loss in model fit
when a Tobit is incorrectly assumed.
While univariate censored data are widely used in

empirical studies, multivariate censored data are not as
widely utilized, despite having many applications
in production and agricultural economics. For this
reason, it is important to simulate a multivariate data
set that comes from both a Tobit and a multivariate
version of the SLNM model. The Tobit model is
constructed by first generating latent vectors (Y*1i, Y*2i)
from a bivariate normal distribution with mean vector
(β11+β12xi, β21+β22xi) and logarithm of the variance
vector (α11+α12xi, α21+α22xi) and a fixed covariance of
0·6 for all i=1, . . ., n. The dependent variables are
generated by setting Y1i=Y*1i for all i and Y2i=max
(0, Y*2i), and thus only Y2 values are censored at zero
whereas Y1 has a continuous distribution. The true
value of the parameters were set at β=(0·0, 4·0;
−1·5, 0·5), α=(1·5, 0·5; 2·0, 0·2), and covariance off-
diagonal element, t12=0·6. As in the univariate case, a
second scenario was also generated which consisted
of generating data from the multivariate extension of
the SLNM, and the same parameter values were used
as in the bivariate Tobit model with the additional
parameter set at γ=(−5·0, 1·7). As in the bivariate

Tobit model, Y1 was set as a fully continuous variable,
while Y2 was semi-continuous with censoring in nearly
half of its observations.

The results based on generating data from a bivariate
Tobit model are shown in Table 2. It is not surprising to
note that correct model specification matters in terms
of within-sample fit, as DIC is lower when the assumed
model matches the simulated model. The SLNM
demonstrates an improved advantage (in terms of
lower MSPE) when using the multivariate model and
the assumedmodel is correct. This is probably because
the ability to predict Y2 is improved substantially in
the SLNM from the use of a conditional distribution.
Given the present hypothesis that cattle MORT are
more accurately characterized from an SLNM model,
it might be assumed that within-sample fit might be
stronger thanwith the Tobit, while prediction improves
marginally.

AN APPLICATION TO CATTLE
PRODUCTION YIELDS

This section applies the preceding models to cattle
production risk variables. The proposed SLNM reg-
ression model is hypothesized to characterize semi-
continuous cattle MORT better than the Tobit model
because of the flexibility of modelling the two
components of the MORT distribution using a separate
set of parameters. In the previous section, repeated
simulations were used to mimic this type of data,
which is characterized by heteroskedastic errors, a
high degree of censoring and a system with cross-
equation correlation. Results from such MC simu-
lations demonstrate the power of the proposed SLNM

Table 2. Model comparison based on data simulated from multivariate Tobit and SLNM models (n=10)

n Est. model

Data simulated from

Tobit model SLNM model

MSPE

DIC

MSPE

DICY1 Y2 Y1 Y2

200 Tobit 0·75 (0·067) 0·27 (0·044) 554 (11·7) 0·99 (0·081) 0·82 (0·262) 577 (10·5)
SLNM 0·75 (0·068) 0·44 (0·066) 600 (10·4) 1·00 (0·083) 0·56 (0·226) 422 (9·0)

500 Tobit 0·97 (0·089) 0·29 (0·031) 1416 (30·1) 1·00 (0·026) 0·66 (0·036) 1481 (24·5)
SLNM 0·97 (0·090) 0·34 (0·030) 1499 (27·2) 1·00 (0·027) 0·22 (0·030) 1051 (15·1)

1000 Tobit 0·87 (0·034) 0·28 (0·022) 2826 (24·5) 0·96 (0·031) 1·10 (0·203) 3022 (61·7)
SLNM 0·87 (0·034) 0·34 (0·020) 3013 (22·2) 0·96 (0·030) 0·56 (0·138) 2056 (20·7)

Note: MCSEs are reported in parentheses.
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model to fit data generated based on itself and the
Tobit model as well, in both univariate and multi-
variate situations.

Past research has focused on modelling agricultural
yields, while research dealing specifically with semi-
continuous valued yields is limited. The main reason
for the lack of research into censored yields is because
crop yields are not typically censored at upper or lower
bounds. However, with the emergence of new live-
stock insurance products, new yield measures must be
quantified in order for risks to be properly identified.
In contrast to crop yield densities, yield measures
for cattle health possess positive skewness, such as
the MORT and veterinary costs. Crop yield densities
typically possess a degree of negative skewness as
plants are biologically limited upward by a maximum
yield, but can be negatively influenced by adverse
weather, such as drought. Variables such as mortality
have a lower limit of zero, but can rise quickly in times
of adverseweather, such as prolongedwinter storms or
disease.

Cattle MORT are hypothesized to follow a two-step
process because pens tend to come from the same, or
nearby, producers and are relatively homogeneous.
Therefore, a single mortality can be seen as a sign that
a pen is more prone to sickness or disease and may
distinguish a ‘healthy’ pen from an ‘unhealthy’ pen.
Additionally, airborne illnesses are contagious and can
be spread rather quickly throughout the pen. Other
variables that describe cattle production performance
are introduced and evaluated using the previously
developed multivariate framework. These variables
include dry matter feed conversion (DMFC), which is
measured as the average kg of feed a pen of cattle
require to add 1 kg of weight gain; average daily gain
(ADG), which is the average daily weight gain (kg) per
head of cattle; and veterinary costs per head (VCPH),
which is the amount of VCPH that are incurred over the
feedlot stay.

Cattle MORT from commercial feedlots are of
particular interest due to their importance in cattle
feeding profits. Typically, MORT are zero or small, but
can rise significantly during adverse weather, illness
or disease. The data used in the present study consist
of five commercial feedlots residing in Kansas and
Nebraska, and include entry and exit characteristics of
11397 pens of cattle at these feedlots from 1996 to
2005. Of the five feedlots, two are closely located to
one another in Kansas, while the remaining are located
in close proximity to each other within Nebraska.
Preliminary analysis suggested the use of aggregating

feedlots into two clusters that are distinguished by
state. The data did not exhibit any time trends or
structural breaks in dependent variables (ADG, DMFC,
MORT and VCPH) over the 10 years. Independent
variables are also included that are hypothesized to
impact on the mean and variance of the dependent
variables. Independent variables included in the
present study include entry weight (InWt) and categ-
orical variables to indicate gender (steers, heifers and
mixed); whether the pen was placed in a Kansas
feedlot (Kansas) as opposed to a feedlot in Nebraska;
and season of placement in order to indicate whether
the pen was placed on a feedlot between December–
February (Winter), March–May (Spring), June–August
(Summer) or September–November (Autumn). Table 3
presents a summary of characteristics for different
levels of MORT, including no mortalities.

Particular attention will be placed on whether zero
or positive MORT can be strongly determined based
on the data at hand. The degree of censoring in this
sample is 0·46, implying that almost half of the obser-
vations contain no mortality losses. There is strong
evidence that MORT are related to the previously
mentioned conditioning variables, but whether cen-
sored mortality observations are systematically differ-
ent from observed positive values must be determined.
Positive MORT may be a sign of poor genetics coming
from a particular breeder or sickness picked up within
the herd. The assumption is that the cattle within the
pen are quite homogeneous. Homogeneity within the
herd is desirable as it allows for easier transport,
uniform feeding rations, medical attention and the
amount of time on feed. If homogeneity within the
herd holds, then pens that have mortalities can be
defined as a distinct type that is separate from those
with no mortalities.

However, mortalities may also occur without warn-
ing and for unknown reasons. Glock & DeGroot
(1998) report that 0·40 of all cattle mortalities in a
Nebraska feedlot study were directly caused by
sudden death syndrome. Glock & DeGroot (1998)
loosely define sudden death as any case where feedlot
cattle are found dead unexpectedly, but they also point
out that these deaths were without warning, which
could be due to a ‘sudden death’ or lack of observation
by the feedlot workers. Smith (1998) also reports that
respiratory disease and digestive disorders are respon-
sible for c. 0·44 and 0·25 of all mortalities, respect-
ively. The high degree of correlation between
dependent variables certainly indicates that lower
MORT can be associatedwith different performance in
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the pen. However, the question in the present study
will be whether positive MORT significantly alter the
performance. For this reason, additional parameters
were estimated to examine the likelihood of a positive
mortality outcome in the mixture regression model.
A recent study by Belasco et al. (2009b) found

that the mean and variance of MORT in cattle feedlots
are influenced by entry-level characteristics such as
location of the feedlot, placement weight, season of
placement and gender, all of which are used in the
present study. The influence of these parameters will
be estimated using the previously formulated models,
based on two-thirds of the randomly selected data set
where n=7598. The remaining portion of the data set,
m=3799, will be used to test out-of-sample prediction
accuracy. Predictive accuracy is important in existing
crop insurance programmes, where past performance
is used to derive predictive density functions for
current contracts.

ESTIMATION RESULTS

The results from using a univariate Bayesian Tobit
model with heteroskedastic errors to model cattle
MORT are shown in Table 4. Tobit estimates for β
measure the marginal impact of changes in the con-
ditional variables on the latent MORT (Y*). Tomeasure
the approximate marginal impact on the observed

MORT (Y ), the following relationship from Greene
(2008) is used, where dE[yi|xi]/dxki=βk×Pr(yi*>0). For
example, the coefficient corresponding to in-weight
states that a one-unit increase in logarithm of the
entry weight decreases the observed MORT by 1·7%
(=3·9%×0·54). The estimates for α measure the
relative impact on the variance, since αk=(dσi

2/dxk)
(1/σi

2). For example, the estimated coefficient corre-
sponding to autumn implies that a pen placed in the
autumn months is associated with a variance that is
40·7% lower than pens placed in summer months.

Next, the same set of data is estimated using the
previously developed SLNM model in order to test the
hypothesis that they will have a better fit. Results from
the SLNMmodel are also shown in Table 4. Parameter
estimates in the SLNM model refer to two distinct
processes. The first process includes the likelihood of
a zero outcome or one described by a log-normal
distribution. Based on this formulation, the parameter
estimates for γ can be expressed as the negative of the
marginal impact of the conditional variable k on the
probability for individual i of a positive outcome,
relative to the variance of the Bernoulli component:

γk = − ∂ρi
∂xki

· 1
ρi
· 1+ exp x′iγ

( )
exp x′iγ

( )
[ ]

= − ∂ρi
∂xki

· 1
ρi(1− ρi)

(7)

Table 3. Mean comparison of pens using average values of both dependent and predictor variables with
differing mortality losses

Variable Units

MORT (%)*

0 0·01–1 1–2 2–3 3–4 >4

No. of observations 5161 2415 2327 744 305 445
DMFC kg (gain/feed) 6·05 (0·63) 6·27 (0·65) 6·21 (0·67) 6·34 (0·72) 6·42 (0·69) 6·85 (1·38)
ADG kg/head day 1·59 (0·21) 1·52 (0·20) 1·48 (0·20) 1·41 (0·19) 1·39 (0·17) 1·28 (0·21)
VCPH US$/ head 10·18 (3·79) 10·08 (3·81) 12·46 (5·79) 15·67 (7·09) 17·89 (8·40) 26·57 (11·45)
InWt kg 342·13 (36·61) 340·89 (37·84) 326·46 (38·89) 311·32 (38·94) 317·06 (42·32) 304·98 (43·73)

Proportion of sample
Steers 0·53 0·56 0·49 0·43 0·42 0·35
Mixed 0·10 0·07 0·14 0·20 0·20 0·32
Heifers 0·36 0·37 0·37 0·36 0·38 0·33
Kansas 0·82 0·76 0·82 0·77 0·79 0·82
Nebraska 0·18 0·24 0·18 0·23 0·21 0·18
Winter 0·24 0·27 0·26 0·29 0·29 0·21
Autumn 0·23 0·23 0·27 0·30 0·30 0·39
Spring 0·26 0·24 0·21 0·16 0·17 0·10
Summer 0·27 0·26 0·26 0·25 0·24 0·30

* Note: A MORT that results in a whole number is placed into the higher bins (i.e. 3·00% is placed in 3–4 bin). Standard errors
are in parentheses.
DMFC, dry matter feed conversion; ADG, average daily gain; VCPH, veterinary costs per head.
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where the variance is shown as ρi(1−ρi). For example,
entry weight largely and negatively influences the
likelihood of positive MORT, as indicated by the
positive parameter estimate (γ5=2·901). This is not
surprising given that more mature pens are better
equipped to survive adverse conditions, whereas
younger pens tend to be more likely to result in
mortalities. Alternatively, mixed pens (mixed) have a
negative γ coefficient (γ3=−0·289) which implies that
there is a positive relationship, relative to heifer pens.
Estimates for steers and mixed indicate the difference

in probability of a positive mortality, relative to a heifer
pen. Therefore, if a pen is mixed, it has a higher
probability of incurring positive mortality realizations
that can be modelled with a log-normal distribution.

In the SLNM results, when γ coefficients are
negatively related to β coefficients it implies that
covariates impact on the mean of positive and
observed values in the same direction as the likelihood
of a positive value. For example, increases to entry
weight shift the mean of MORT downward (β5=
−1·434) and also decrease the probability of a positive

Table 4. Estimates of fed cattle mortality parameters based on a univariate Tobit and SLNM models

Variables

Tobit SLNM

Est. P S.D.* Est. P S.D.

Mean effects (β)
Intercept 25·9 <0·05 1·04 9·5 <0·05 0·76
Steers 0·22 <0·05 0·061 0·04 NS 0·024
Mixed 0·47 <0·05 0·125 0·38 <0·05 0·036
Kansas −0·07 NS 0·064 0·13 <0·05 0·026
Log (InWt) −3·9 <0·05 0·16 −1·4 <0·05 0·12
Winter 0·03 NS 0·073 −0·03 NS 0·028
Autumn 0·03 NS 0·081 0·06 NS 0·030
Spring −0·12 NS 0·072 −0·09 <0·05 0·029

Variance effects (α)
Intercept −10·5 <0·05 0·97 −2·4 <0·05 0·81
Steers 0·12 <0·05 0·053 0·12 <0·05 0·049
Mixed −0·82 <0·05 0·075 −0·20 <0·05 0·069
Kansas –0·23 <0·05 0·060 0·10 NS 0·053
Log (InWt) 1·41 <0·05 0·15 0·47 <0·05 0·13
Winter 0·02 NS 0·065 0·06 NS 0·062
Autumn −0·41 <0·05 0·066 −0·14 <0·05 0·062
Spring 0·32 <0·05 0·070 0·24 <0·05 0·064

Probability limit effect (γ)
Intercept –19·3 <0·05 1·78
Steers –0·14 <0·05 0·056
Mixed –0·29 <0·05 0·079
Kansas 0·10 NS 0·061
Log (InWt) 2·9 <0·05 0·27
Winter –0·07 NS 0·065
Autumn –0·09 NS 0·065
Spring 0·17 <0·05 0·066
DIC 23020 20752
MSPE† 2·461 2·612
ECT 0·350 (0·014)‡ 0·084 (0·032)‡
ER 1·204 (0·489)‡ 0·316 (0·121)‡
ED 0·907 (0·368)‡ 2·212 (0·847)‡

* Standard deviations (S.D.) are reported for continuous variables, while standard error differences (S.E.D.) are used for all
categorical variables.
† MSPE is decomposed into ECT, ER and ED (Bibby & Toutenburg 1977).
‡ Proportion of error.
NS: not significant at P<0·05.
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outcome (γ5=2·901). This does not necessarily mean
that the two processes work identically, as is assumed
with the Tobit model, but rather tend to generally work
in the same direction.
Parameter estimates for β refer to the marginal

impact that the conditioning variables have on the
positive realizations of MORT. Interpretations for
these parameters refer to the marginal increase in the
log of MORT. For example, a one-unit increase in
the logarithm of entry weight is associated with a
reduction in MORT by 1·4% (β5=−1·434) for the
observations that experience a positive MORT.
It is interesting to note the different implications from

parameter estimates from the Tobit and SLNMmodels.
For example, an insignificant mean difference par-
ameter estimate for the variable Kansas in the
Tobit model implies that MORT are not significantly
impacted by feedlot location. However, parameter
estimates from the SLNM model infer that pens placed
into feedlots located in Kansas have a lower likelihood
of a positive MORT (γ4=0·099), relative to Nebraska
feedlots. At the same time, pens placed in Kansas that
have a positive MORT can be expected to realize
logged MORT that is 0·13 higher than Nebraska
feedlots (β4=0·130). It might be strange to have
significant impacts in opposite directions that influ-
ence both the likelihood of mortality and the positive
MORT, but by distinguishing between these processes
their respective impacts can be isolated. One possible
explanation might be that Kansas lots spend more time
on preventing mortalities from occurring through
vaccinations or backgrounding, but are not able to
detect the spread of disease as quickly as the Nebraska
feedlots. This is a notable departure from the Tobit
model, which saw no significant influence since these
impacts essentially cancelled each other out.
The SLNM model also demonstrates a better overall

ability to fit the within-sample datawith a DICmeasure
of 20752, as compared to the Tobit model, which has
a DIC value of 23020. However, MSPE is minimized

when using the Tobit model, indicating a trade-off
between within sample fit and out-of-sample predic-
tion effectiveness.

Table 5 breaks MSPE into four distinct groups based
on actual values. The SLNM model does not appear
to do as well fitting low actual values, relative to the
Tobit. The SLNMmodel appeared to domuch better in
correctly predicting the positive actual values, as only
0·39 of the actual zero values were correctly predicted,
while 0·72 of the positive values were correctly
predicted to be positive values. A lower Kendall’s
Tau for the SLNM model also demonstrates that the
Tobit more accurately predicts whether a value is zero
or positive. This is likely due to the inability of the
given ex ante variables to explainmuch of the variation
in the model which is also shown in past studies
(Belasco et al. 2009b). While the results shown in
Table 4 reflect significant estimates corresponding to γ,
they may not be large enough in magnitude to have a
real impact on the probability of positive observations.
To illustrate, the mean of predicted values for ρi
was 0·544, which is close to the actual degree of cen-
soring in the out-of-sample values (0·55). However,
the standard deviation around predicted ρi was 0·07.
The implications of this lack of spread means that the
model will tend to over-predict the amount of non-
censored values. The SLNM model does do very well
in fitting actual positive values that are greater than
one, which is likely due to its accommodation for
positive skewness.

Regressions from univariate mortality models offer
information concerning the relative impact each
conditioning variable has on MORT. However, this
variable is likely better characterized in a multivariate
setting with other variables that explain the health and
performance of cattle on feedlots, ultimately describ-
ing production risk in cattle feeding enterprises. To this
end, the multivariate Tobit model and multivariate
SLNM models were used to characterize these four
variables, described earlier.

Table 5. Out-of-sample prediction results for Tobit and SLNM models

Proportion correctly
predicted*

Kendell’s
Tau MSPE

Actual 0 >0 0 0–1 1–2 >2
Observed 1740 2059 1741 795 797 466
Tobit 0·46 0·67 0·14 0·18 0·32 1·26 16·68
SLNM 0·39 0·72 0·11 1·98 0·94 0·90 10·77

* Note: Correct prediction corresponds to predicting a zero or positive value that matches the actual value.
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Themultivariate SLNMmodel is applied to the cattle
feedlot data set and more accurately fits the within-
sample data and predicts with more accuracy, relative
to the Tobit model, as shown in Table 6. DIC for the
SLNMmodel is substantially lower than with the Tobit
model, mainly due to the more accurate fit for MORT,
which contributes quite a lot of unexplained variability
to the system of equations. MSPE is significantly lower
for semi-continuous variables when applied to the
multivariate mixture model. This is particularly inter-
esting given the contradictory univariate results;
however, these results are more consistent with data
generated from an SLNM model in the simulation
study. MORT are shown to be more accurately
characterized in a multivariate setting because of the
effects from other non-censored variables as MSPE
improves significantly from 2·612 (shown in Table 4)
to 1·296 (shown in Table 6). Recall, that the expected
value and variance of MORT accounts for the
uncensored variable levels in the multivariate setting.
This link allows for information from the continuous
variable to feed into the semi-continuous variable on
non-continuous portions of the density.

DISCUSSION

The present paper provides two distinct contributions
to existing research. The first is to develop an
alternative modelling strategy to the Tobit model and
more traditional mixture models, specifically for semi-
continuous data. This model originates in a univariate
case similar to that of Duan et al. (1983), then is
extended to allow for multivariate settings. In the
multivariate setting, the covariate relationship ac-
counts for the correlation between semi-continuous
and continuous variables. The second contribution
is to more accurately describe production risk for
cattle feeders by examining the model performance of
different regression techniques. MORT play a vital role
in cattle feeding profits, particularly due to the skewed

nature of this variable. A clearer understanding of
mortality occurrences will assist producers as well
as private insurance companies, who offer mortality
insurance, in managing risk in cattle operations.
Additionally, production risk in cattle feeding enter-
prises play a significant role in profit variability, but
is currently uninsured by current federal livestock
insurance programmes. Existing livestock insurance
programmes include the Livestock Revenue Product,
which provides insurance against drops in cattle
output prices, and the Livestock Gross Margin, which
insures against the net impact of cattle output price
drops and corn input price spikes. An accurate
characterization of production risk plays an important
role in addressing risk for producers and insurers.

Modelling semi-continuous data remains a large
area of concern and current research in econometrics.
While use of the Tobit model may be well-justified in
certain instances, the results from both simulated and
actual cattle production data sets suggest the use of an
SLNM regression model. This is particularly true in
instances where data come from a two-step process.
While two-step processes have been applied to Hurdle
models, mixture regression models have largely been
ignored in economic studies. This is mainly a result of
the past limitation of mixture regression models to
count data (zero-inflated models). In the present study,
a mixture regression model is developed that can
handle both univariate and multivariate situations
efficiently, in addition to nesting the standard Tobit
model. Additionally, the inherent parametric flexibility
allows for distributional assumptions to change based
on the data on hand, rather than strictly using truncated
or normal distributions. Here, a log-normal distribution
is used to capture the positively skewed nature of cattle
MORT, which gives the SLNM model significant
advantages over the Tobit model. Advantages in
model fit for the SLNM model stem from the ability
to isolate and identify the impacts from observing a
positive MORT and the level of MORT.

Production risk in cattle feeding enterprises is
inherently complex, given the many areas risk can
originate. The results from the present research
demonstrate the potential gains from using this
particular mixture model. Before applying this model
to the data, simulations were conducted to test the
model’s ability to predict and fit data generated in
different forms. These simulations provide results that
support the use of the mixture model, in both
prediction and model fit, when the data are from a
two-step process. However, the mixture model did not

Table 6. Model fit and predictive power estimates of
fed cattle parameters based on a multivariate Tobit
and SLNM models

Model

MSPE

DMFC VCPH ADG MORT DIC

Tobit 0·008 0·182 0·169 1·528 23284
SLNM 0·008 0·182 0·170 1·296 19348
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demonstrate a strong ability to fit the data when the
data are generated based on a Tobit model.
A solid understanding of cattle production risk is

limited by the ability to characterize variability. The
proposed model takes a step forward in developing a
modelling strategy that can be used to measure other
livestock or live animal productive measures. By more
accurately characterizing these risks insurance com-
panies, animal producers and operators can better
understand the risks involved with animal production.
Additionally, a more general form allows for a more
accurate depiction of ex ante variables and their
impact on MORT and other production variables.
Future research is currently focusing on developing
this model to account for systems where censoring
occurs in more than three variables, which is currently
problematic in classical estimation techniques.
Examples where this particular model might be useful
include health outcomes, consumption, livestock
disease spread or production processes. The frame-
work detailed in the present paper naturally extends to
situations of more complex censoring systems.
The major flexibility in the proposed model lies in

the ability tomake different distributional assumptions.
Distributional assumptions typically need to be
made in cases when data cannot fully explain vari-
ability. However, non-parametric and semi-parametric
methods may be of particular interest when large data
sets are evaluated, since they allow empirical data to
create a unique density. Semi-continuous production
and demand systems where each component may not
be accurately described by a single distribution may
provide an excellent application for semi- or non-
parametric extensions of the derived model.
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