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EXPONENTIAL ACTIONS, ORBITS AND THEIR KERNELS

J. LUDWIG AND C. MOLITOR-BRAUN

Let g be a nilpotent Lie algebra which is an exponential a-module, a being an
exponential algebra of derivations of JJ . Put 21 = exp a and (9 = exp a. If SI is
a closed orbit of a* under the action of 21, then Kernn<S(<5) is dense in Kerfi
for the topology of I»1('5) and the algebra Kerfi/J(fi) is nilpotent, where J(Q)
denotes the minimal closed ideal of i 1(0) whose hull is fl. Moreover, the 2l-prime
ideals of L}{®) coincide with the kernels Kerf2, where Q denotes an arbitrary
orbit (not necessarily closed) in g*.

1. INTRODUCTION

In abstract harmonic analysis a lot of efforts has been made to generalise certain
properties of the group algebra L1(M) (like the Wiener property, questions of spectral
synthesis, the characterisation of prime ideals) to nonabelian groups. For nilpotent Lie
groups these questions have among others been solved by Leptin (Wiener property in
L1(©), [10]) and by Ludwig ([15] for the Wiener property in the Schwartz algebra
5(0) and [14] for the characterisation of prime ideals in 5(<9) and L1 (<&)). Some
partial results are known for solvable exponential groups [13], but a lot of questions
remain open. In this paper we are therefore going to introduce an intermediate step
between nilpotent and exponential Lie groups: the exponential actions on nilpotent
Lie groups. Some special examples of exponential actions have already appeared in
literature. In [20] Poguntke considers a connected, simply connected exponential Lie
group <S = expg which acts in a natural way on 9t = expn, where n is the nilradical
of g. This induces an action on Z-1(9fI) and 5(9t). Poguntke uses this action in his
description of the algebraically irreducible representations of an exponential Lie group.
In [13] Ludwig uses particular exponential actions to study problems of symmetry and
a special case of the Wiener property for exponential Lie groups. These two examples
lead to the following definition of exponential actions on nilpotent Lie groups.

DEFINITION: Let g be a nilpotent Lie algebra. Let o be an exponential solvable
algebra of derivations of g, containing ad g. We define g to be an exponential a-module
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498 J. Ludwig and C. Molitor-Braun [2]

if, for every irreducible subquotient fli/g2i which is of dimension 1 or 2 as a is solvable,
the action of a on a vector of the complexification

(fll/fl2)c = (fll/92) ® i(0l/02)

is given by

A(X) = <p(A)(l + iu>)X mod(02)c, for all A G o, X <E fli,

with w G K, ip 6 a*. We then say that we have an exponential action of a on g.

Let 21 = exp a and 0 = exp g be the simply connected, connected Lie groups
associated with a and g. The group 21 is exponential solvable and defines the following
actions: for every a = exp A 6 21,

<*(*) = £ ^ * P 0 , f°r all* eg
ax = ° (exp X) = exp {a(X)), if x = exp X <S <S

(a7r)(x) =7r( a " 1 a ; ) , for all w G (5, x € <S

/ ° ( x ) = <5(a)/(az), for all f € L\<5).

Here (5 stands for the modular function defined such that

f fa(x)dx = f f(x)dx, for all / € L\G).

Moreover,

(A* l,X) = (I, -A{X)), for all leg*, X eg.

Of course, the Schwartz algebra 5(0) of rapidly decreasing C°° functions on <S is
invariant under the action of 21 = expo [16].

EXAMPLES, (a) Let 21 be the group of all n x n upper-triangular invertible real matrices
with positive entries on the diagonal. Then 21 acts exponentially on the Abelian group
© = Rn.

(b) The same group 21 acts by conjugation on the nilpotent group of all n x n
upper-triangular real matrices with 1 's on the diagonal.

By the Kirillov theory [9] we know that coadjoint orbits play an important role
in the representation theory of nilpotent Lie groups. The same will be true in our
situation, where orbits are defined as follows.
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[3] Exponential actions 499

DEFINITION: For all ( 6 g * , let ft/ denote the orbit of I given by

ft, = {a* -I | a

Recall that every n € <S is obtained in the following way: there exist I G Q* and
a polarisation f) c 0 of I such that, if x,(/i) = e~i<i'log'l> is the character defined by I
on Sj = exp f), then TT is equivalent to the induced representation ind® xi • I t 1 S easy to
check that for every a € 21, the representation an is unitarily equivalent to the induced
representation i n d ^ , ^ . ^ Xa'i • This fact justifies the following definition of the kernel
of an orbit.

DEFINITION: Let n = indf xi € ®- We define the kernel of the orbit ftj by

Kerft, = {/ G Z,J(0) | " * ( / ) = 0 Va 6 2l}.

REMARKS.

(a) Orbits of exponential actions are not necessarily closed. For instance,
let 21 be the connected component of the affine group. Its Lie algebra
a is spanned by {X, Y} where [X, Y] - Y. Take g = [a, a] = RY and
l = Y*\g. Then the orbit of I under the action of 21 is R ^ ( y | f l ) which
is not closed.

(b) The distinction between closed and nonclosed orbits will play an impor-
tant role in our future results.

(c) Every orbit of an exponential action is open in its closure. This is shown
by Pukanszky [22, Corollary 1] and Conze [1, p . l l ] .

In this paper we are going to prove the following facts about orbits of exponential
actions on nilpotent Lie groups.

(a) If the orbit Q is closed, then Kerfin<S(<5) is dense in Kerfi for the topology
of L1(®) (Theorem 4.2). This result is important since properties for function algebras
of nilpotent Lie groups are often first proved for the Schwartz algebra <S((9) and then
transferred to Lx(p).

(b) Let fi be a closed orbit. Then there exists a minimal closed ideal J(f2) in
L1((S) such that its hull satisfies /i(J(Q)) = fi and such that J(fi) is contained in every
ideal / of L}{<8) satisfying h(I) C ft ([15, 3.2] and [17]). We prove that the algebra
Kerft/J(ft) is nilpotent, which means that there exists M € N such that

(Theorem 5.1).This, by the way, is a generalised spectral synthesis result.
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(c) A proper 2l-invariant ideal I of Ll{<&) is said to be 2l-prime whenever for all
2l-invariant ideals I\ and I2 of Ll(0),

h * h C / => h C / or I2 C / .

We prove that the proper closed 21-prime ideals of L1(<8) coincide with the kernels
Kerfi of orbits ft of g* (Theorem 5.3).

The main tool to prove the preceding results is the use of functions of a generalised
Schwartz space

x <S/fj,l)=£S(Rn,18Lk x Rk)

(see Section 3). The elements of this space can be identified with the kernels of operators
of the form an(f) with / E S(<5). These functions will allow us to show the essential
relation between Kerfi and Kerfl n«S(<&) (Proposition 4.1).

2. FUNCTIONS WHOSE NONCOMMUTATIVE FOURIER TRANSFORMS

HAVE COMPACT SUPPORTS

For locally compact Abelian groups <8 the functions / E Ll{<&) whose Fourier
transforms have compact support, play an important role in the proofs of problems
of spectral analysis and synthesis. In a generalised form the same remains true in
our situation (Proposition 2.2, Theorem 4.2). But first we mention some results on
stabilisers and orbits.

DEFINITION: For all n — ind® xi € <3, we define the following stabilisers:

at = {A s a | A* • I = 0}

%r = {a E 211 °7T and n are unitarily equivalent}

flir = {A € a | expA E 21̂ -} = Iog2t^

R E M A R K S .

(a) As the algebra a is exponential and acts exponentially on g*, we know
that the stabiliser

21/ = {a E 211 a* • I = 1}

is the exponential of oj [1, 3.5].

(b) One shows that 21^ = Ad (5-21/ and hence that 21^ is a connected subgroup
of 21 [18, 2.9].
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PROPOSITION 2 . 1 . The spaces %/%„ and fy/Ad*© (identified with a sub-

space of <S) are homeomorphic.

PROOF: The mapping

<p : 2t - > Qi

is a continuous, open surjection [6]. The same is true for the projection

for the mapping

<Pi - P ° <P • 21 -> J V Ad* 0

and for the projection

P l : 21 ->• 21/21,.

Since 2lx is the stabiliser of Qj = Ad* (9 • I, there exists a unique bijection <j> of 21/21*

onto flf/ Ad* (5 such that <j>°Pi — <fi- In fact ^ is a homeomorphism. D

DEFINITION: For every / G Ll{<8), we define s u p p / by

supp / = {TT € <S | TT(/) / 0} .

PROPOSITION 2 . 2 . There exists an approximate identity {gv)v in S(&) such

that supp gl is compact for all v.

P R O O F : Let (Vj) .g N be a basis of neighbourhoods of the identity element e of

<&. For each j G N there exists a compact neighbourhood Kj of e in (S such that

(Kj)3 C Vj. Of course the Kj's also form a basis of compact neighbourhoods of e,

which we may even choose decreasing. We then construct a family of real positive

functions fj 6 <S(<S) such that f fj(x)dx = 1 and supp/ j C Kj for all j . Hence

supp (/,-)•' C {Kj)3' C Vj, lim (fj)tj * g = g and even Urn (/ i )*B • g = g for all
J-H-oo (j,n)-foo

5 G <S(<S), where (j, n) -> oo means that j -> +oo, n -> +co and j ^ n [16]. By [4]
we may now choose for each n G N, ipn G C°°(K), en > 0 and C n such that cpn = 0
in a small neighbourhood of 0, sup (<pn(t) — t n ) ^ < en for r = 0 , 1 , . . . , (n — 1),

tec n

en -»• 0 and fn{t) — tn for t £ Cn, where Cn is a compact neighbourhood of 0 in R
contained in [—1,1]. The functional calculus of Dixmier [4] and Hulanicki [8] shows
that tpn{f} * 9 - fn * 9 tends to 0 in 5(<8) if n —* +oo, independently of / , if /
is selfadjoint with support in a fixed compact set and if H/j^ ^ 1 (see the proof of
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Theorem 2.1 in [8]). Hence <pn{fj}*9 converges to g in S(<8). Let now e > 0 be such

that ipn = 0 on [—e, e]. As there exists a compact set C in © such that ||7r(/>)|| < £

for every n £ C [5], n(<pn{fj}) = Vn^ifj)) - 0 for every ir £C. The <pn{fj}'s may

then be taken as the approximate identity {gv)v. D

If the 2l-orbit Qt corresponding to TT = ind®xj is closed, Oj/Ad*<5 is a closed

subspace of g* /Ad*0 (identified with <S). If moreover s u p p / is compact, then

{a € 21/21^ | a7r(/) ^ 0} is a closed compact subset of 21/21^, which can be identified

with a closed compact subset of s u p p / n (fij/Ad*<S), according to Proposition 2.1.

This is in particular true for

{a

where (gv)u is the approximate identity of Proposition 2.2.

3. KERNELS OF aw(f) OPERATORS

For every Schwartz function / on the nilpotent Lie group (5, the operator TT(/)
is a kernel operator. Its kernel is given by a Schwartz function in two variables that
satisfies a certain covariance condition. These kernel functions have to be generalised
to take into account the exponential action on (9: if / € S(<&) is fixed, the kernel of
the operator OTT(/) = n(fa) is a function of a, denoted F(a;x;y) that has to decrease
exponentially in some directions of a. In order to be more precise, we have to use the
concept of a coexponential basis.

Let 2$ = exp b be an exponential solvable Lie group and *P = exp p a closed
connected, simply connected subgroup of 03. Then there exist a basis B — {&i,. . . , bp}

of b and an integer n ^ p such that B = {&i,... ,bn} defines a basis of b/p, B\ =
{ 6 n + i , . . . , bp} is a basis of p and such that the mapping

Eg: W —¥ 03

Eg(h,..., tp) = exp i i&i. . . exp tpbp

is a diffeomorphism [1, 20]. Let SO C 03 be defined by

with ( 0 , . . . , 0) 6 Rn~p. Obviously the subset 53 is closed in 03 and the equality
*8 = 53 • ?P gives us a diffeomorphism between 53 and 5J x Vp. Moreover the mapping

EB : Kn —»• 5J

EB(t1,---,tn)=Es(tl,...,tn,0,...,0)
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where (0 , . . . ,0) G Kn~p is a diffeomorphism between R" and 93.

DEFINITION: The basis B = {bi,...,bn} of 93 is called a coexponential basis of b
with respect to p.

Let us now apply the preceding construction to 21 and 21^: B, B and 93 will
be defined as previously, but for the groups 21 and 21̂ - instead of 53 and !J3. The
coexponential basis of a with respect to a*- defines a homeomorphism between 21/21^
(and Qj/Ad*<9, by Proposition 2.1) and Rn. In particular, fi(/Ad*0 is a locally
compact Hausdorff subspace of g*/Ad*<5. Moreover, the mapping E& allows us to
identify 93 with R n . Hence, for every a G Rn and every a G 93, (a, a) will denote
the number (a, .Eg1 (a)), obtained by the scalar product in R n . We then define the
generalised Schwartz spaces of kernel functions.

DEFINITION: (a) We note by £5(93,Rfc x Rfc) for the space of all complex valued
smooth functions on 93 x Rfc x Rfe such that

(a; s1,...,sk;t1,...,tk)i-> e<a'a)F(a; si,...,sk;tu...,tk)

is a Schwartz function for all a € Rn.

(b) We write 55(93,(8/55 x 0//),Z) for the space of all complex valued smooth
functions on 93 x 0 x © such that:

(i) F{a;xh;x'h') = xi{h)xi(h')F(a;x;x') for all x,x' e <&, h,h' G Sj

(ii) for every coexponential basis {ci,...,ck} in 0 with respect to f) and
every a in R n , the function

is a Schwartz function. For a fixed coexponential basis of g with re-
spect to I) we may of course identify the spaces £S(93, Rfc x Rfc) and
55(93, <S/fj x <5/Sj, 1). In particular, if 93 = 0 we have the space
5(Rfc x Rfc) = S(<8/f) x <3/Sj,l). For details, see [17, 18]. Similar defi-
nitions may be found in [11].

The kernel functions are obtained as follows: if / G 5(0) and TT = ind® xi 6 <S,
the operator ir(f) has a kernel /„• G 5(<S/i3 x <9/fj, I) given by

U(*,V)= I /(xhy-^xiWdh, for all x,y G <&.

Moreover the mapping
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is continuous [7]. Hence the relationship aw(f) — 7r(/a) shows that the operators
a7r(/) have a kernel function that depends continuously on a. Let us write F(a;.;.)

for the kernel function of OTT(/) if a e 53 and F(a;.;.) for the kernel function of the
same operator if we take a 6 21. For our future arguments the choice of the preceding
coexponential bases is not arbitrary, but has to be taken in accordance with the following
result.

THEOREM 3 . 1 . Let I S g*. Then there exist a Pukanszky polarisation f) of I
in g, a coexponential basis in g with respect to f) and a coexponential basis in a with
respect to an for which there is a continous mapping

£5(93, &/Sj x <&/Sj, I) ->• 5(<5)

such that a7r(/) is an operator with kernel F(a;.;.) for all a € 93. Moreover, in this
basis the space £5(93, &/Sj x <8/Sj, I) is identiBed with the space 55(93, Rfc x Rfc).

PROOF: See [19, 5.3]. D

Let 93 and 21 be equipped with their fixed bases and endowed with the Lebesgue
measures on the corresponding Rn and Rp spaces. Since the relationship 21 = 93 • %,
gives a unique decomposition u = v • a, v € 93 and a € 2lw, of every element u of 21,
we may define the projection p of 21 onto 93 by

p: 2l-»93

u = v • a*-*p(u) = v.

This projection is a continuous mapping of 21 onto 93.
For technical reasons we have to make some transformations: let ip € C£°(2l) with

compact support KQ C 21 such that

V>^0, V(0)>0, [ tp{a)da=l.

For all / € Ll{<S>) define

/ " = f fa'i>(a')da'.

As
•*(/»)= fa\(f)rP(a"a-1)6(a,a")da",

where 5(a, a") stands for the Jacobian of the change of variables a" = a'a, the kernel
of the operator an{ft) is given by

;.;.) = f F(a";.;.)^{a"a-
l)S(a,a")da",
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where F(a;.;.) is the kernel of the operator aft(f), a G 21. Put

for the kernel of the operator O7r(/') if we restrict ourselves to a G 53. If the support
of F in a is contained in the compact set K of 93, then the support of F" is contained
in

K* = (Ko1 • K • O») n 53 = p(Kol • K),

where p is the projection of 21 onto 93. Since p is continuous, K$ is a compact subset
of 93.

4. RELATIONSHIP BETWEEN Kerfi AND Kerf2nS((S)

In order to study the relationship between Ker fi and Ker f2n5((S) we have to work
with the kernels of the operators air(f), rather than with the functions / themselves.
The functions whose generalised Fourier transforms OTT(/) have compact support play
an essential role in the proof. If the main result is rather complicated for general orbits
(Proposition 4.1), it is very elegant for closed orbits (Theorem 4.2).

DEFINITION: Let K be a fixed compact subset of 93 (identified with 21/21^). We
define

IK = {/ e 5(0) | {a e */**\a*(f) * 0} C K)

and
J = {/ 6 5(6) | {a G a/a«|O7r(/) £ 0} is compact}.

Hence X = \JK XK • Then I is an 2l-invariant ideal of <S(<9). Obviously X <£ Kervr by

Theorem 3.1.

PROPOSITION 4 . 1 . With the notations of the previous definition

PROOF: By the Hahn-Banach theorem it is enough to show that for ip € L°°(<5)
such that (ip, Ker Q D <S(<S)) = 0 we have

(<P,IK*XK * Kerfi * J K * ZJC) = 0.

Let ffi,52,53,04 G ̂ K and / € <S(<8). We write Gi,G2,G3,G4,F for the kernels of
the operators aTr(gi),an(g2),

an(g3),
aTr(g4),

aTr(f) if a G 93 and Gi,G2,G3,G4,F for the
kernels of the same operators if a G 21. We define a product of two such kernels by

= / F(a,x,xi)Fi(a,xl,y)dxi
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for all F,Fi € £5(23; Rfc x l l ) . The product Fo.Fi is defined similarly. According to
this definition the kernel of an(gi * 92 * f * 9z * 9i) is then given by G\ o Gi o F o G3 o
Gi{a\.;.) if a e 23 and by Gx o G2 o F o G3 o G4(a;.;.) if a € 3 . Hence

supp ( d o G2 o F o G3 o G4) c AT x Rfc x Rfc.

Let ip, Ko, K, Kl be as in Section 3 and let us apply the construction of this section to
the function gi * 92 * f * 93 * 94- The kernel function of °TT((<7I * 92 * f * 93 * <74)") is
given by

i o G2 o F o G3 o G4(a";.; .)4>(a"a-1)6(a, a") da"

= (̂ Gi o G2 o F o G3 o G4J (a;.;.)

and the restriction of this kernel function to 5J is an element of 5 5 (33; Rfc x Rfc) whose
support in a is contained in the fixed compact set K^ of 5J, for every / 6 5 (0 ) . It is
an element of the space S(K*; Rk x Rfc) = V{K*\ 5(Rfc x Rfc)) .

Next we define a continuous linear form /x on £5(5J;Rfc x Rfc) in the following
way: let F € £5(2J;Rfc x Rfc) and / G 5(0) be such that the kernel of an{f) is given
by F(a;.;.) for every a € 93. We define \i by (//, F) = (<£>, / ) . The linear form /x is well
defined and continuous by Theorem 3.1 and by the fact that (up, Kerfi n 5(<5)) = 0.
By [23, p. 239], the restriction of this linear form to the space S(K*; Rfc x Rfc) is of the
form

where the rQ]^i7's are continuous functions of moderate growth and where iVgN.

We may then define a new continuous linear form y>" on Ll(<5) by

(<PK f) = (<P, {gi*92*f*93* 54)")-

Let us show that

op

for a certain compact set K\ of 21 and for all / 6 5(<8). In fact, for every / € 5 (0 ) ,

we have

J *

\da) (to) (dj) {GioG2oFoGaoG.){a,x,y)dadxdy
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with

[G10G20F0G30G4J {a,x,y)

= f f G1(a",x,x')G2oFoG3(a",xl,y')Gi(a",y',y)
JKX JUkxRk

ip(a"a-1)6{a,a") dx'dy'da".

In fact, the integral on a" may be limited to the compact subset K\ — Ko • K* of 21,
as the support of tp is the compact set Ko and as a takes its values in the compact set
K* of QJC 21. Hence

Let us write

The Cauchy-Schwarz inequality then gives us the following estimate:

~ ~ i2 •> 1 / 2

G'0tl(a",x,x')G'yA(a",y',y)\dadxdy} da"dx'dy'} .

By the continuity of the mapping

(a,a")->|tf'(a,a")|- f f |rQ)/3)7(a,x,y)
jRkxRkjRkxRk

G'p^a", x, x')G;|4(a", y', y) dxdydx'dy',
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this mapping is bounded on if" x K\ and one shows an inequality of the type

measKi- sup G2oFoG3(a,.,.)
K " Hi2(R*xR«=)

i i a

- sup 7
11 IIHS

as the Hilbert-Schmidt norm | | | | H S of an operator coincides with the L2-norm of its
kernel. Finally,

|(y8,/>| ^ Ci • sup [||°7r(52)||H5 • IpTC^OHtfJ • sup ||°7r(/)||

^C2- SUP |r7T(/)||op

<C2-\\f\\x,

for every / 6 <S(<&) and some new constants C\,C2. As S(<&) is dense in Ll{<5) and
as the linear form <̂ " is continuous on Ll(&), the inequality

M , / > | ^ C2 • ^ u p IfTrCOH^ ^ C2 • \\f\\x

remains true for every / € L1(<5). In particular, if / € Kerfi, an(f) = 0 for all a and

0 = <y>8,/)

= / / (p(x)(gi*g2*f*93*9i)a(x)ip(a)dxda.
JK0 J<S>

Let us now choose the functions ip such that their supports form a basis of neighbour-

hoods of the origin. We then see that

/ <p(x)(g1 * g2 * f * 93 * 9i){x) dx = 0.
J®

This completes the proof. U

THEOREM 4 . 2 . If Q is a closed orbit in g*, then

KerfinS(<5)L i@) = Kerfi.

PROOF: If {gu) is the approximate identity of Proposition 2.2, then gv E 1 and,

for all / € Kerfi,

gv*gv* / * £„ * ff,, e X * X * Kerfi * J * Z C

By taking the limit in i/ we complete the proof.
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REMARKS.

(a) This relationship will allow us to prove certain results first for 5 ( 0 ) and
to generalise them afterwards to L}{£>).

(b) In [12, 2.1 Proposition] Ludwig shows a similar result for the kernel of
an irreducible unitary representation of a connected, simply connected
nilpotent Lie group.

(c) Nothing seems to be known about the relationship between Ker ft and
Ker ft n 5 ( 0 ) , if the orbit fi is not closed.

5. APPLICATIONS

The main consequences of the relationship between Ker ft D 5 ( 0 ) and Ker ft are a
generalised spectral synthesis result for Ker ft (Theorem 5.1) and the characterisation
of the 2l-invariant prime ideals of Lx{<8) (Theorem 5.3). But first we have to recall
some questions of topology and some results on minimal ideals.

Let 0 be a connected, simply connected nilpotent Lie group. Then the topological
spaces 0 , g*/Ad* 0 , Prim, L1(0) and Pr im5(0) are homeomorphic by [2, 3 , 9,15].
In particular, the homeomorphism between 0 and Prim, L 1 (0) is given by

n i-> Ker w

as the group © is *-regular [2, Satz 2]. Hence, if C C 0 ,

TT, 6 C <=> Ker C C Ker nt

and for an arbitrary orbit ft,

Ker ft C Ker m <=> / € ft

(see [18]). This implies that for any two orbits fii and f22 one has

MINIMAL IDEALS IN S(<3) AND Ll{<8). Let ft be a closed orbit in g*. Hence f2/ Ad* <£>

is a closed subset of 0 = g*/Ad*<S = Prim, L^®) = Prim 5 ( 0 ) . There exists a
minimal ideal j(ST) in 5 ( 0 ) such that its hull satisfies /i(j(fi)) = fi and such that
j(Q) is contained in every ideal / of 5 ( 0 ) satisfying h(I) C fi. In [15, 3.2] and
[17] it is shown that j{fl) is generated by all the functions of the form <p{f} with
/ — /* € Ker f2n5(0) and where ip € C°°(R) is identically zero in a neighbourhood of
0. The functions <p{f} are given by the functional calculus of Dixmier [4]. Therefore
the closure of j(Cl) in -L1(0), denoted by J(ft), is the minimal closed ideal in
whose hull ft(J(f2)) is equal to fi.
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REMARK. In [15, 3.5] Ludwig shows the following result for 5 ( 0 ) . Let Q be a closed
orbit in 0*. There exists M 6 N such that

) M(Ker n n 5(0))M C j(ft)Ll(e) = J(fi).

This result can now be transferred to the algebra Lx{<5).

THEOREM 5 . 1 . Let Q. be a closed orbit in g*. Then there exists M € N such

that

This means that the algebra Ker Q/J(£l) is nilpotent.

PROOF: By the preceding remark and Theorem 4.2. D

REMARKS.

(a) In [16, Theorem 7] Ludwig shows a similar result for Ker n where n is a
unitary irreducible representation of a nilpotent Lie group.

(b) Poguntke proves similar results for other actions: for a nilpotent action on
a nilpotent Lie group [20, Theorem 5] and for the action of a semidirect
product of a compact Abelian group with a nilpotent Lie group on a
nilpotent Lie group [21, Satz 7].

DEFINITION: A proper 2l-invariant ideal / of Ll(<&) (5(0)) is said to be 21-phme
whenever for all 2t-invariant ideals 7i and h of Lx{<&), (respectively, 5 (0) ) ,

7i * h C / =• h C / or I2 C / .

LEMMA 5 . 2 . If we identify the spaces Prim 5(0) and Prim, L J (0) , the hull of
every closed ideal I of L^{<&) satisfies

PROOF: The identification between Prim»Lx(0) and Prim 5(0) is given by
Ker?r M- K e r 7 r n S ( 0 ) ([15, 3.1] and [2, Satz 2]). This implies the inclusion
h(I) C h(l n 5 (0 ) ) . On the other hand, the relation

shows that j(h(I)) C 7 n 5 ( 0 ) , which in its turn implies that h(l n 5(0)) C
D
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THEOREM 5 . 3 . The proper closed 21-prime ideals of Ll{<8) coincide with the
kernels Ker ft of the orbits ft of g*. Moreover the map

ft h-> Ker ft

is a bijection between the set of orbits of g* and the set of proper closed 21 -prime ideals
ofLl{<&).

P R O O F : It is obvious that the ideals Kerft are 2l-prime. Conversely, suppose
that / is a proper closed 2l-prime ideal of Lx{<&). Then Is = / n 5 ( 0 ) is a proper
2l-invariant ideal of 5 ( 0 ) which is closed in the continuous |j -1|a norm. Moreover, Is is
21-prime. In fact, if I\ and X2 are 2l-invariant ideals of 5 ( 0 ) such that T\ * I2 C Is,
then

^L\&) ^ ( S ) J-L\<5)
X\ * ±2 C Is C i .

As / is 21-prime, T[Ll(&) c I or T^{<S>) C / . Hence I i C Is or J2 C IS- By [18,
9.8] there is an orbit Cl such that Is = Ker On 5(0) . Hence, by Lemma 5.2,

h(I) = h(Is) = /i(Kerfin5(0)) = /i(Kerft) = Q

and I C Kerfi. With the notation of Proposition 4.1 we have

t-'W * I**™ * Ker ft * fl{9) * ̂  L l (g)

c/.

As 1 <jL Kerft and / C Kerft, X $. I. Hence Kerft c / and / = Kerft.

To finish the proof, we just have to show the injectivity of the mapping ft i-» Ker ft.
Suppose that fti and ft2 are two distinct orbits such that Kerfti = Kerft2- Hence
fti - /i(Kerfti) = /i(Kerft2) = ft2, fti C ft2\ft2 and ft2 C ft\\fti. As every orbit is
open in its closure, fti\ftx and ft2\ft2 are closed and

ftx C fti C ft2\ft2 C ft2 C fti\fti.

This contradiction shows that fti = ft2. D

REMARK. In [14,10, Theorem] Ludwig shows the corresponding result without exterior

action: the proper closed prime ideals of L1(0) coincide with the kernels Ker?r where

•K G 0 .
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