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A simple snowpack/cloud reflectance and transmittance
model from microwave to ultraviolet: the ice-lamella pack
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ABSTRACT. Modeling the reflectance and transmittance of strong volume scatterers
1s a delicate task. Slightly different approaches can lead to different results, making com-
parisons difficult. Here a simple, analytic multiple-scattering model is presented as a pos-
sible reference for comparisons and also for better understanding of the physics involved.
The model quantifies the transmittance and reflectance of homogeneously distributed
scatterers within slabs of any thickness. The simplicity of the model 1s given by the one-
dimensional geometry, a system consisting of freely arranged ice lamellae in air. Although
direct application of the model will be limited, it gives a spectral description of ice clouds
and snowpacks over a very broad spectral range from microwave to ultraviolet. As well as
the transmittance and reflectance, the model gives the emittance through Kirchhoff’s law.
Comparison with other models shows, on the one hand, agreement with current snow
models in the spectral description, and on the other, some quantitative inconsistencies
between all of them. It appears that the lamella pack produces the same optical spectra
as an average snow model, with spherical ice grains whose radius corresponds to about the

lamella thickness, whereas microwave spectra appear to be slightly different.

INTRODUCTION

The purpose of optical models of snow and clouds is to quan-
tify the measurable reflectance and transmittance as func-
tions of wavelength and medium properties, especially
particle size. The “optical” grain-size derived from measured
optical data is the direct inversion of such models. If different
models give different results we have the problem of ambigu-
ity. The present paper shows that this problem exists, and pro-
poses a way to solve it. Modeling the reflectance and
transmittance of strongly scattering media is a delicate task.
Different approaches using slightly different assumptions,
even within the same model, lead to different results, making
comparisons difficult. A major problem arises from the fact
that the shape and size of scattering particles are often not
known, and even if they are known cannot easily be de-
scribed. As a result, a certain degree of arbitrariness in the
choice of these quantities evolves in the different models. It
would be highly desirable to have a simple, analytic multi-
ple-scattering model available as a standard for comparison
and to better understand the physics involved. Such a model
can give detailed insight into the spectral behavior of scatter-
ing and emitting media, even if not all the properties are rea-
listic. The ice-lamella system presented here represents such a
model. It is purely one-dimensional, with all lamellae being
parallel, all waves being plane waves and all wave inter-
actions being limited to two directions (incident and reflected
waves at the same linear polarization).

In contrast to the optical industry where controlled
glass-lamellae systems play important roles in adjusting
light and heat transmittance and reflectance, in the present
case, the lamellae are assumed to be freely arranged and
slightly variable in thickness, leading to a kind of average
behavior. Free arrangement means that the expected ice-
volume fraction v is independent of position, which also
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means that a fraction v of particle surfaces are in contact.
This property assures, on average, incoherent interactions
between different lamellae even at high values of v, a rather
surprising result found by Mitzler (1997,1998a). The model
gives a surprisingly realistic spectral description of ice
clouds and snowpacks from microwave to the ultraviolet
(UV) of homogeneous situations. As well as the transmit-
tance and reflectance, the model gives the emittance
through Kirchhoff’s law. The model is described for vertical
incidence in section 2, and the extension to oblique inci-
dence 1s straightforward. In section 3 the model results are
presented, and comparisons are made with other snow-re-
flectance models, the emphasis being placed on comparison
of effective grain-sizes and on the spectral behavior.

2. THE MODEL

2.1. Model geometry

Let us assume a model for a purely one-dimensional scatter-
ing medium to represent either a snowpack or an ice cloud,
i.e. a pack of thin, horizontal ice sheets of mean thickness d,
packed to a volume fraction v (0 < v <1), so that on average
there are N lamellae per meter depth (Fig. 1). The lamellae
are assumed to be freely arranged, a concept introduced by
Mitzler (1997).
Expressing N by v and d we obtain

N =v/d. (1)

The main advantage of this geometry is that the reflectance
can be computed simply and exactly, in the sense that only
two spatial directions are involved in the scattering process,
a forward and a backward ray. In this case the integro-dif-
ferential radiative transfer equation decays into a pair of
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Fug. 1. Pack of freely arranged ice lamellae, representing the
wce-lamella system, a model of a cloud or of a snowpack. Freely
arranged lamellae can be in direct contact (second from
bottom ), thus increasing the average thickness.

first-order differential equations (see Equation (6)) identical
to the ones used in the two-flux model for which exact solu-
tions are known. Furthermore, certain icy scatterers are in-
deed horizontally aligned (ice lenses, horizontally aligned
snow layers, plate-like ice crystals in cirrus clouds in non-
turbulent condition), and thus are favorably approximated.
Since volume scattering of spherical or other ice grains is
also well approximated by two-stream theories (Meador
and Weaver, 1980), their results can be related and compared
to the present simple model.

2.2. Reflection of a single ice lamella

For a dielectric lamella with negligible losses, the reflectivity
1s given by the Airy equation(Born and Wolf, 1980)

1 — cos(2P) @)
14712 — 2ry cos(2P)’

where 7; 1s the Fresnel reflectivity of the air—ice interface

r=2r

and P is the one-way phase through the lamella. For vertical
incidence these quantities are given by
2

n—1
= 3
" n+1 (3)
and
P=n'kd, (4)

where n =n’ + 4 - n” is the complex refractive index of ice
and k is the vacuum wavenumber.

2.3. Average reflectivity of a lamella

Since d is assumed to be slightly different for different lamel-
lae, the phase terms in Equation (2) are smeared out when
averaged over many lamellae, except for very small values
of P. For the same reason, coherent superpositions of reflec-
tions at different lamellae disappear due to the variable dis-
tance between them, i.e. the free arrangement of the
lamellae. Noting that 7 < 1, the denominator of Equation
(2) can be approximated by 1. The average lamella reflectiv-
ity 75y can then be written as

- 4rysin® P; P <3mw/4=2.356 (5)
w 2r1; P >2.356.

For a small phase, Equation (5) gives the coherent reflectiv-
ity of the lamella through the first maximum of the sine
function (at one-quarter wavelength), and it provides a con-
tinuous transition from the coherent to the incoherent situ-
ation at larger thickness (or larger phase).
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2.4. Two-flux scattering coefficient

Scattering consists of reflections of incident radiation at the
ice lamellae. Since all lamellae are horizontally aligned, the
reflections from vertically incident radiation result in radi-
ation propagating in the opposite direction. Ireely arranged
scatterers interact incoherently (Mitzler, 1998a), so a radi-
ative-transfer treatment can be used to describe the scatter-
ing of the total layer. In this one-dimensional geometry, the
so-called two-flux or two-stream model (e.g. Ishimaru,
1978) is exact. In this model, the radiative transfer of the
up- and downwelling intensities, I1 (z) and I(z), respective-
ly, can be described by the following pair of equations
(emission being omitted here, but included later), assuming
an upward-directed z axis:

drl
dfj =ty 10+ — 1), (6)

where the minus sign in the first term on the right applies for

I; and the plus sign for I5. For constant coefficients these
equations are solved analytically, leading to the results
given below. For IV lamellae per meter depth the scattering
coefficient 7y 1s given by 5 = N7,,. However, due to the free
arrangement, this quantity is reduced by the probability
(1—v) of two adjacent lamellae being in contact, so 7y 13
given by
s = N(1 — 0)ryy
4v(1 — v)rysin® P
d Y
201—v)n. p>2356. (7)
d Y
The contacting lamellae have an increased total thickness,
thickness as

P =n'kd < 3r/4 = 2.356

so we can introduce the average
day = d/(1 — v). This quantity probably represents a meas-
ured mean thickness more closely than d. Thus Equation (7)

can also be expressed by

4ory sin® P
%; P = n'kduy (1 — v) < 31/4 = 2.356
% = -
o, P >2.356." (7")
dav

2.5. Two-flux absorption coefficient

So far, dielectric losses have been ignored. Small losses can
be included by the absorption coefficients of ice 7, jce and air
Vaair- The resulting absorption coefficient -y, of the lamella
model is

Ya = VVajice T (1 - U) Ya,air - (8)
In the case of high dielectric losses, absorption happens lo-

cally within the topmost lamella, leading to Equation (9')
below.

* dis the correlation length of the one-dimensional medium.
With constant d and increasing v, more and more lamellae
touch an adjacent one until v approaches 1 when the me-
dium consists of thick ice plates separated by a few thin air
gaps of thickness d. Thus the average ice-lamella thickness
depends on density, whereas the basic structure parameter
does not. See Equations (19-21) for other geometrical
considerations.
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2.6. Reflectance, transmittance and emittance of

the slab

Let us neglect atmospheric absorption, and let us assume
that the slab of height A (thus consisting of N - h lamellae)
is situated above a non-reflecting background. Then the re-
flectivity (or reflectance), r, and the transmissivity (trans-
mittance), ¢, of the slab are determined by the two-flux
model, defining the reflectivity 7¢ for infinite thickness, the
transmission function f; and the damping coefficient
(eigenvalue) 2 of the model (e.g. Mitzler, 1987):

1-— t02 . 1-— ’/‘02 .
1-— Toztoz ’
’Ya,iced <1 ) (9)

where the model parameters are given by

Yo 5
=B =1/ + 277
PRTIPVIPWERE Ta TSN

(10)

An exception to Equation (9) must be made when the ice la-
mella becomes opaque; then only the reflections at lamellae

and t =+t

to = exp(—eh); 1o

near the top of the pack will contribute. A useful approxima-
tion for the pack reflectivity and transmissivity is obtained by
including incoherent reflections at the three topmost air—ice
interfaces and neglecting multiple scattering:

r=7r1[14+2exp(—2%iced)]; t=0; Yajced > 1. (9)
Finally, the emissivity (or emittance) e of the slab is
obtained from Kirchhoff’ law, stating that e is equal to the
absorptivity a:

a=e=1—-t—r. (11)
This equation follows from energy conservation. The emis-

sivity of the whole (slab and background) system is given by
ep=1—-r=ec+t.

3. DISCUSSION

For thin packs, i.e. small h (< 1/7s), the slab reflectivity
simplifies to 7 = 7;h. On the other hand, for a sufficiently
deep pack, the reflectivity is only a function of the ratio

T = '75/’}"&3

X
rerg=—m0o o 12
i1+ Vit (12)

2

The often used Approximation (13) is approached for large
values of z (e.g. for snow at visible wavelengths). Inserting x
from Equations(7’) and (8) for Y, iy = 0 and for large P we
obtain
27"1
r=—-r 14
'Ya,i(:edav ’ ( )
and thus from Approximation (13) we find
ro=1-K 'Ya,icedavv (15)
a well-known approximation for the reflectance of a
strongly volume-scattering object (e.g. Bohren, 1987). Here,
the constant K is given by r; '7; thus for lossless ice we
obtain from Equation (3):
' +1
=1

Inserting the refractive index of ice in the visible range
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(n' = 1.33), we obtain r; = 0.020 and K = 7.06. Accord-
ing to an early snowpack model of spherical ice particles
(Bohren and Barkstrom, 1974), the reflectance of a deep
snowpack can be written as

ro = 1—15.96 ’Ya,ichBBv (17)

where Dpp is the sphere diameter of the Bohren and Bark-
strom model. This result agrees with Approximation (15) by
choosing

dav = 0.61DBB. (18&)

Another comparison can be made using the snow model of
Wiscombe and Warren (1980). Reflectivities of thick snow-
packs computed with this model for different grain
diameters Dyw were taken from Marshall (1989) and from
Sergent and others (1993) at a wavelength of 1 ym, and the
results are shown by the data on the upper curve of Figure 2.
The curve represents Equation (12) for x = 4.915 mm/ Dyww.
Comparing this result with Equation (14) for
r1 = 0.0171 (n' = 1.301) and 7ajce = 0.024mm™, we find
x = 1.42/d,,, so agreement is achieved with the lamella
model if

day = 0.29 Dy . (18b)

The lower curve in Figure 2 represents the model of De
Haan and others (1987), with = = 2.69 mm/Dpy. Agree-
ment with the lamella model is achieved if the De Haan
grain diameter Dpy 1s given by

dav = 0.53Dpy. (18(3)

Comparison of Equations (I18a—c) indicates that different
snow-reflectance models lead to slightly different results
(all within about a factor of 2) with respect to the grain
diameter. This is why a reference standard could help to
identify differences between models and ultimately improve
the modeling work. The above comparison also means that
the present simple model fits well within the snow-reflectance
models. On average, the lamella thickness is about equal to
the grain radius.

Another comparison of the lamella-pack model was made
with data of the NASA Adavanced Spaceborne Thermal
Emission and Reflection Radiometer (NASA-ASTER spec-
tral library (http://asterweb jpl.nasa.gov). The results are

1.

0.9

0.0 O.=1 0.’2 0.’3 0?4 0}5 0?6 D.:7 OFB 04:9 liO 1.1
arain diameter in mm
Fig. 2. Decrease of the reflectance o of pure snow (wave-
length 1 pm) with increasing grain diameter D of spherical
ice grains. Data points (diamonds) along the upper curve are
computed using the model of Wiscombe and Warren (1980);
the curve represents Equation (15) with © = 4.915 mm/D.
The lower curve represents Equation (13) with x =
2.69mm/D. The data points were computed by Sergent and
others (1998), using the model of De Haan and others (1987).


https://doi.org/10.3189/172756500781833476

shown in Figure 3 for three different effective grain-sizes
Dyxg = 0.024,0.082 and 0.178 mm. The lamella thickness,
d, was assumed to be equal to Dag, and a constant ice-volume
fraction v = 0.1 was assumed. The spectral ice data were
taken from Warren (1984). According to the description of
the ASTER library, the ASTER spectra were modeled based
on broad-band measurements (2-14 yum) made by Salisbury
and others (1994) at the Johns Hopkins University Infrared
Laboratory, Baltimore, MD. The model quoted is Wald’s
(1994). The agreement between the spectra of the lamella
pack and the ASTER snowpack 1s excellent. Especially at wa-
velengths of <1.4 ym, the ASTER data and the lamella-pack
model give almost identical results. From this coincidence it
can be concluded that the ASTER grain-size corresponds to
the original lamella thickness d for v = 0.1. Expressing the
comparison by d,, we have

dy = 1.1D,s. (18d)

Unfortunately, in the ASTER library the “grain-size” Dag is
not clearly defined. After discussion with the authors of the
database it seems probable that “ASTER grain-size” means
radius. In this case the agreement with the results of Equa-
tions (18a—c) and Figure 2 is much better. In fact, Wald
(1994) used “radius” and “grain-size” as synonyms.

From updated spectral information on the complex re-
fractive index of pure-water ice (Warren, 1984; Maitzler,
1998b), microwave to UV reflectivity and transmissivity
spectra were computed for given packs. Examples of reflec-
tance and transmittance data of two 10 cm thick snowpacks
at a temperature of 266 K are shown in Figure 4a and b. Fig-
ure 4c shows the spectra of an ice cloud (shortest wavelength
is 200nm). The corresponding reflectivity spectra for in-
finite thickness are also shown. The computations are based
on Equations (9), (9') and (10). At lower frequencies where
the phase P is small, we obtain a reflectivity which increases
with increasing kd, i.e. with frequency, so the emissivity de-
creases, as is observed for dry snow in the microwave range.
In Figure 4a and b the reflectivity in the 2-100 GHz range is
compared with the results of the recent Microwave Emis-
sion Model of Layered Snowpacks (MEMLS; Wiesmann
and others, 1998, Wiesmann and Matzler, 1999;) for the same
thickness, density and temperature, and for correlation
lengths pyewis of the isotropic heterogeneity fitted to the

1 . 4 s 4 y 4 1

0.0 t t t t t t t t T + T T
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

Wavelength (micrometer)

Iug. 3. Reflectance of thick snowpacks vs wavelength between
0.2 and 2.8 um for three effective grain-sizes: 0.024 mm
(uppermost pair of curves), 0.082 mm (middle pair) and
0.178 mm (lowest pair ). The smoother curves represent the la-
mella-pack model with the lamella thickness equal to the
grain-size for v = 0.1; the noisier curves represent data from

the ASTER spectral library.
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present data. It is found that pygyg 1s significantly larger
than d, and its influence on the scattering coefficient is
stronger than for d. Indeed, three-dimensional Rayleigh
scattering increases with k* (pMEMLS)?’, whereas in the one-di-
mensional geometry, scattering increases with k°d. The
shape of the MEMLS spectra (Fig. 4a and b) is also slightly
steeper than in the present model. Thus there 1s a functional
difference between scattering in one- and three-dimen-
sional heterogeneity at microwave frequencies, whereas at
optical frequencies both types of heterogeneity produce co-
incident spectra and coincident grain-size dependence.

A comparison between the two correlation lengths d and
Dumvws follows from geometrical considerations, referring to
the specific surface s = S/V of a granular medium where S
is the total surface of particles within volume V. In the
three-dimensional case, the equation of Debye and others
(1957) applies:

s = 4’0(1 - U) /pMEMLS ) (19)

L
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* + + .0
1 10 100 1000 10000 100000 1000000
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- lo.o
1 10 100 1000 10000 100000 1000000

0.4
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Fig. 4. (a,b) Radio to UV spectra of transmissivity t and
reflectivity v of a thin snowpack consisting of a 10 cm deep
tce-lamella pack with d =005mm, v=01 (a) and
d =0.02mm, v =01 (b). Also shown is the reflectivity ry
of the same snow, but at infinite thickness. The data points
labeled with crosses are MEMLS results of v _for the same
snow density, thickness and temperature (260 K ), but with
DPupsis =0.2mm (a) and pypys =0.12mm (b). (c)
Radio to UV spectra of transmissivity t and reflectivity v of
an ice cloud consisting of a 100 m deep ice-lamella pack with
d = 3um, v = 2x 10 °. Also shown is the reflectivity 7o of
the same cloud, but at infinite thickness. Absorption in moist
air was neglected.
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whereas in the one-dimensional case of Figure 1, s is given

by

s=2v(l—-v)/d. (20)
Comparing Equations (19) and (20) gives
Davs = 2d . (21)

In view of Equation (21) the discrepancy in Figure 4a and b
between pyrs and d is not too severe.

For the general behavior of the model as seen in Figure
4a—c, the following can be noted: There is a broad maxi-
mum of the infinite reflectivity 7 in the 10-1000 GHz range.
This maximum decreases with decreasing d, whereas the
maxima increase at short wavelengths. This property is in-
trinsic to volume scattering when the wavelength changes
from larger to smaller than the characteristic size of the
scatterers. The reason why the maximum of ry is so flat over
the 10-1000 GHz range is the common behavior of 7y, and s
in this frequency range, both increasing with the square of
frequency. The behavior is different at <10 GHz where 7,
converges to a frequency-independent value, leading to an
increase of 7y with frequency squared.

The transmissivity shows a high-frequency cut-off near
100 GHz for the 10 cm snowpacks and near 1000 GHz for
the ice cloud. The difference is mainly due to the different
water-equivalent depth, decreasing from 10mm for the
snowpack to 0.2mm for the cloud. The transition from
Equation (9) to Equation (9'), from transparent to opaque
lamellae, takes place deep within the cut-off region, at fre-
quencies of >4000 GHz, with a return to Equation (9) at a
wavelength of <3um (f > 10°GHz). At the transition
point, the reflectivity for Equation (9) is larger than for
Equation (9), leading to visible jumps in the spectra. The
transition from incoherent to coherent lamella reflections,
as expressed by P = 37/4 in Equation (7), occurs in the de-
creasing part of r, near 1000 GHz in Figure 4a and near
3000 GHz in Figure 4b (see the slight change in slope).

4. CONCLUSIONS

A simple, physical, multiple-scattering model was presented
for describing the reflectance and the transmittance (Equa-
tions (9) and (10)) over a very large frequency range in a
volume-scattering medium, such as snowpacks and clouds,
consisting of ice and air. The one-dimensional geometry
consists of a slab of freely arranged, horizontally aligned
ice lamellae of a given original thickness d. Due to occa-
sional contacts between adjacent lamellae, the average la-
mella thickness dyy is slightly larger than d. Either one of
these parameters describes the structure, together with the
ice-volume fraction v. The shortwave reflectance spectra up
to a wavelength of 2.8 um coincide with snow spectra
modeled for spherical ice grains using Mie theory for grain
radii about equal to dyy. The decrease of the reflectance with
increasing grain-size is the same in both types of model. A
certain discrepancy between different snow-reflectance
models was observed (Equations 18a—d).

Concerning the microwave range, there is no general
agreement between the ice-lamella model and scattering in
a three-dimensional heterogeneity. Nevertheless the present
one-dimensional geometry gives an approximate agree-
ment with reflectivities computed with a snow-emission

model if the correlation length pyys of the three-dimen-
sional medium is properly adjusted to d. By using the infor-
mation available on the complex refractive index of'ice, very
broad-band spectra for snowpacks and clouds can be con-
structed from the formulae presented here. Due to the sim-
plicity of the ice-lamella pack, this model could be used as a
reference in the development, validation and improvement
of more elaborate models.
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