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ESTIMATING MAHLER'S MEASURE

G.R. EVEREST

In 1962, Mahler defined a measure for integer polynomials in several variables as
the logarithmic integral over the torus. Many results exist about the values taken
by the measure but many unsolved problems remain. In one variable, it is possible
to express the measure as an effective limit of Riemann sums. We show that the
same is true in several variables, using a non-obvious parametrisation of the torus
together with Baker's Theorem on linear forms in logarithms of algebraic numbers.

0.

Suppose Q(z) denotes a polynomial in Z[zi,... , zn]. In 1962, Mahler [6] proposed
the following definition of measure (or height) for Q;

(1 ) m(Q) = f'••• f log \ Q { e 2 ™ > , . . . , e 2 ™ - ) | d u x . . . d v n .
Jo Jo

There exist some beautiful results and some intriguing conjectures about the values of
this measure. It is known (see [2, 7]) that it vanishes if and only if Q is a monomial
multiplied by a product of generalised cyclotomic polynomials. In the case where n = 1,
Lehmer (see [4]) suspected that the non-zero values of the measure are bounded below by
a positive constant. He asked whether the smallest measure belongs to the polynomial
x10 + x9 — x7 — x6 — xs — x4 — x3 + x -f 1. Sixty years on, this question is unresolved.

Some non-zero values were calculated by Smyth [7]. For example,

f
n = l

(2) m(l + Xl + x2) = ^ f ] (^) ±, m(l + x1+x2+ *,) =

In (2), ( - ) denotes the Legendre symbol mod 3 and £ denotes the Riemann zeta
function. The basic method here is an extended version of Jensen's formula. Boyd [2]
used the same method to prove formulae such as the following,

(3) Jim m ( i i , i f ) = m ( n , i 2 ) .
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146 G.R. Everest [2]

Spurred on by this, he made some conjectures about the closure of the set of values
of the measure in several variables in an attempt to see Lehmer's question in a wider
context. Recently [5], Mahler's measure has been recognised as defining the entropy for
commuting automorphisms of compact groups.

Since there is so much interest in the values taken by the measure we concern
ourselves with the more fundamental question of how these may be approximated ef-
fectively. Our longer view is theoretical, to try to explain results such as (3). (See
comment 3 after the proof of the theorem.) In one variable, write Q{x) = allj(a; — a^)
then, again by Jensen's formula,

(4)

This requires a priori knowledge of the roots. Also, it gives no help with the many
variable case.

Alternatively, it is possible to express the measure as a limit of Riemann sums. Let
N denote a large positive integer, with ( denoting a primitive N th root of unity. Then
it is possible to realise the following asymptotic formula;

(5) J T '

In (5), the formula is effective in the sense that both 0 < A\ = A\(Q) < 1 and the con-
stant implied by the big 0 notation are effectively computable. Moreover, they depend
upon the degree of Q and a more primitive version of height such as the absolutely
largest coefficient. Of course, we omit from consideration the finitely many zeros of Q.
The proof of formula (5) depends upon Gelfond's Theorem, namely a lower bound,

(6) A T 1 / i l l < | W ) | .

for all j — 1, . . . ,N, where A\ > 0 is effective. The powers of C, are uniformly
distributed on T, the unit circle and (6) gives abound of O(N~Al} for the discrepancy.
(We shall assume familiarity with the standard definitions and results from the metrical
theory of numbers as in [3].) Therefore, if Q has no zeros on T then log \Q\ is continuous
and we may apply Koksma's Theorem to deduce that the Riemann sum differs from
the integral by the bound shown in (5). If Q does have zeros on T then we may
surround them by e-neighbourhoods, where e — N~1lAl . Precisely, delete from T
those t with |<?(<)| < £ and call the deleted set T(e). Applying Koksma again gives
the same formula as in (5), except that the integral is adrift. The resulting bound for
the error can be calculated by multiplying a bound for the integrand, namely |loge|,
by a bound for the measure of T(e), namely
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[3] Mahler's measure 147

This method seems to be strangely resistant to generalisation to the many variable
case. (See Comment 1 after the proof of the Theorem.) Not the least of our troubles is
the absence of a many variable version of Gelfond's Theorem. The aim of this paper is
to show that Mahler's measure can be approximated effectively by Riemann sums, using
a different parametrisation of the torus together with Baker's Theorem on linear forms
in logarithms of algebraic numbers (see [l]). Suppose 6 denotes an algebraic number of
absolute value 1 which is not a root of unity. The powers 8X for x £ N , 0 ^ x < X
are dense and uniformly distributed in T. Moreover, Baker's Theorem gives a good
effective bound for the discrepancy. Using the same kind of reasoning as above, we may
show;

(7) X-1 £ log |Q(tf»)| = m(Q) + 0(X-A>),

for some effective 0 < A?, < 1, depending upon Q and the degree and the height of
9. Again, in (7), the zeros of Q are ignored. The possibility exists to generalise this
method.

As a first guess, choose a vector B_= [B\,... , 6n) of algebraic numbers with |0,-1 = 1
for all 1 ^ i ^ n and let x £ N " with | | denoting the 'max'-norm. Then form the
Riemann sum;

(8) X~n

\x\<x

Suppose we try to proceed as above by first specialising n — 1 of the variables. The
dependence of A2 in (7) upon the resulting polynomial is now a real stumbling block.
Instead, we choose algebraic numbers Oi,il>i, 1 ^ i ^ n in such a way that {l,6i,tj>i}

are multiplicatively independent for each 1 ^ i ^ n. (See Note 2 after the proof of the
theorem concerning this choice.) Then form the Riemann sum,

(9)

THEOREM.

There is an asymptotic formula, as X —» 00:

(10) S(Q,X,9,£) = 2"m(Q) + O(X~A*).

The constants 0 < A3 < 1 and that implied by the big O notation in (10) are effectively
computable and they depend upon 9_,tp and Q.

The remainder of the paper is occupied with the proof of this theorem.
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1.

Firstly, notice that the number of zeros of Q(x,y) with | (z , | / ) | < X is 0(X2n~1)

effectively so they will be ignored throughout the remainder of the paper. Given
Q G Z[zi,... , zn], we aim to decompose the sum in (10) as follows. We shall determine
Ei(X) such that the sum contains no terms with |Q(z,2/)| < £i(-^Q and |(z,2/)| < X .
Begin with the following elementary estimate; there are constants Cj = Ci{Q,6_,j^),

i — 1,2 such that

To see (11), note that the denominator of Q(x_,y) is clearly of the form of the left hand
side of (11). A bound for the non-zero values of the numerator is obtained by taking
the norm from Q(0t)^j) down to Q . This yields a lower bound of the desired shape.
Let ei(X) denote the smallest value of the left-hand side of (11) as (aj,y) run over all
elements of N 2 n with \(x,y)\ <X. Obviously, |log£i| = 0{X), effectively.

Now {x_, y) runs over a product of intervals IQ and we consider Q as defined on the
real points. Then Q is periodic in each variable with period equal to the corresponding
interval. Consider the pre-image in IQ of the inequality |Q(*.,2/)| ^ £i • Label this
IQ(E-L). Then IQ(£I) is a compact subset of IQ. Moreover, consider each (x,j/) 6 N 2 n

mod IQ . The resulting images with | (* ,y) | < X are dense and uniformly distributed
in J Q ( £ I ) . Therefore the function log \Q\ is continuous on the compact set / Q ( E I ) and
we may apply Koksma's Theorem to deduce that

(12) X-2" = f

In (12), Dx denotes the discrepancy of the sequence (z.,y) mod IQ(CI) for
(*.>!/) ^ N 2 n with |(as,2/)| < X. Also, d^t denotes the usual measure giving the
Riemann integral on IQ. Writing flf'Vf' = exp(xjlogtfj + jftlog^i), our attention
turns to the sequence Zjlogdj +yjlogV'« mod 2ni with |a!i,j/i| < X. Baker's The-
orem gives an effective lower bound of the form X~llc* for the absolute values of
this sequence. We obtain an effective bound for the discrepancy of O(X~Ca>), where
0 < C3 = C3(0,V>) < 1 .

Simply replacing logei by the value O(X) obtained above and using Dx

= O{X~C3') gives a useless error term, much bigger than the main term. So we practise
the following refinement. Let n — 1 of the Zi be determined (say for 2 ^ t ^ n ) , cor-
responding to a specialisation of 2n — 2 of the pairs x,,j/< in the range |z,-|, |y,-| < X.

https://doi.org/10.1017/S0004972700013976 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013976
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The result is a polynomial Q(zi) which we regard also as an exponential polynomial in

zi)2/i • We shall now determine £2 = £2{X) such that the number of solutions xi,yi

with | z i | , | i / i | < X and |Q(xi ,yi) | < £2 is bounded by a number C4 — C^Q) which

depends on Q but is independent of the specialisation of the other variables. Given

Z2i--- ,zn let Q(zi) — aQ.(z\ — otj) denote the factorisation of Q(zi). We ask how it

is possible for |Q(si,2/i)| to be less than £2-

Of course this happens only if at least one of the factors of Q(zi) satisfies the

same inequality apart from e2 replacing 62, where K denotes some bound on the

multi-degree of Q. If it is \a\ < e2 then induction gives the result we desire. On the

other hand, K + 1 distinct solutions of the inequality |Q(«i)| < £2 will force

^ e 2 >

for some j , with 0 < x\ ^ x\,yi ^ y[ < X. Eliminating ctj gives rise to an inequality
as follows;

A simple application of Baker's Theorem shows (13) is impossible for £2 of the form
X ~Cs for a positive constant C5 which depends on 81 and ^ 1 . Therefore, by induction,
taking account of all specialisations, there are constants as claimed and we now record
the statement in the following;

LEMMA. There are constants Cs = C5(£,^) and C6 = C6(<?) with the property
that the number of solutions of the inequalities

(14) \Q(x,y)\<X-c*, \(x,y)\<X,

is bounded by Ce •

Using the lemma we can now complete our analysis leading to the proof of the
theorem. Let e2 denote the quantity X~°s . Subdivide the intervals in /Q(EJ), x = 1,2
according to the values of £,•. Deal first with the sum,

(15) X-*n

By Koksma's Theorem, this is the integral

(16)
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up to an effective error which is

(17) C

upon substituting the values for Dx (as used in (12)) and e2 . The integral in (16)
differs from the following integral;

(18) / log\Q\dx,

by an amount which is 0(meas (IQ — /Q(E2)) |log£21) 5 where meas denotes the measure
on the torus T2n. We claim that this measure is bounded by e2

 7 , for some effective
constant Cy = Cj(Q,$_,ij)) > 0. Assuming this, we have shown that the sum in
(15) differs from the integral in (18) by an effective bound which is O(A"~Cs), where
(78 = Cs(Q,0.,'ip) • The integral in (18) differs from m(Q) by the appropriate winding
number, namely 2™, which explains the presence of that term in (10).

To prove the claim about the measure, specialise 2ra — 1 of the variables to leave an
exponential polynomial, say Q(xi) = aD^tf*1 — a ; ) . Those specialisations with a = 0
already have measure zero. As before, a bound of the kind |Q(a;i)| < £2 forces a similar
bound for a least one of the factors, with e2 replacing £2 . If this is |o| < e2 then
induction gives the result. If it is \6\l — aj\ < e2 then clearly Xi is determined to
within a window proportional to a power of £2, depending upon B\ but independent of
a.j . The same is true for all of the variables and concludes the proof of the claim about
the measure.

Finally, deal with the sum,

(19) * - 2 n

By the remarks above, if we specialise 2n — 2 of the variables, there exist only finitely
many possibilities for the remaining variables. For these, we can only take the most
pessimistic view for the value of | C? (z., j/) |, namely £1. Thus the bound for the sum
in (19) is the effective estimate O(X1 - 2 n) , multiplied by the number of specialisations
possible, a total (effective) error of O(X - 1 ) . U

COMMENTS.

1. The reason that we could not apply a similar technique with roots of unity is
because the multiplicative independence criterion would not be met. We could try to
overcome this by choosing the roots to have orders which are coprime. The difficulty
then arises of finding a good analogue of the elementary estimate (11).
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2. It is desirable to choose Oi,il*i in such a way as to minimise the exponents in the
error terms. These depend upon both the degrees and the heights of the numbers. It is
not clear yet, whether it is better to choose numbers of small degree such as (3 + 4i ) /5 ,
given by Pythagorean triples or to choose numbers of small height, such as the Salem
numbers.

3. The approximation of m(Q) by Riemann sums of the kind in (9) gives some
insight into formula (3). Perhaps this technique will yield an alternative proof or even
better, a way of understanding the closure of the set of values of the measure. (See [2]
for some conjectures on this topic.)
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