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1. Introduction. In 1960 Ericksen [1] introduced a simple theory of anisotropic fluids.
This theory differs from the classical theory of fluids in that the deformation of the material is
no longer solely described by the usual vector displacement field but requires in addition the
specification of a further vector field d;, termed the director. Moreover, corresponding to this
increased kinematic flexibility new types of stress, body force and inertia are introduced.
Leslie [2], adopting the conservation laws of [1], formulated constitutive equations similar to
those considered by Ericksen and discussed the thermodynamical restrictions imposed by the
Clausius-Duhem inequality. Here we shall consider the case in which at each point the
director is constrained to remain a unit vector. Then the usual interpretation is to regard d;
as indicating a single preferred direction in the material (see for example [3]). It is thought that
the physical applications of this theory are likely to lie in such areas as polymeric fluids and
suspensions.

In the present note we shall consider the uniqueness of the solutions of the equations
governing the isothermal motions of an incompressible anisotropic fluid with a director of
constant (unit) magnitude. We assume that the fluid occupies a bounded region D of three-
space with a boundary éD which is smooth enough to allow applications of the divergence
theorem. If we introduce the director velocity w; by

W= db

where a superposed dot denotes material time differentiation, then the fluid velocity v; and the
director velocity w; satisfy the equations [2]

v, =0, (1.1

pi; = pFi—p+iaqv, ;;+{a, d;d;dd, v ) +ax(d;wi+vy,d;dy)
+az(dw+ vy did) +asd;dyvg n+asdidy vy )} 1.2)
p1 W= py Li—yd;i— (a3 —a)[w;+ Utk iy di]— (00— as)d; v (1.3)

in the space-time cylinder D x [0, T], where T is a finite instant of time and
v, = o+ 050, v, = 3o, —0;,)-

Throughout this note we employ the usual convention of summing over repeated indices and a
subscript k£ following a comma indicates partial differentiation with respect to the space
variable x,. In equations (1.2) and (1.3), p denotes the (constant) density, p, is a positive
constant and F, and L, are the prescribed body forces. The unknown scalar functions p and y
are called the pressure and director tension, respectively, and they arise from the constraints of
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incompressibility and the director having a fixed magnitude. The coefficientsa, (i=1,2,..., 6)
are constants which, from thermodynamical considerations, are restricted to satisfy the
conditions [2]

00, 20, 20, +300,+205+206 20, 20,+as+os20,
(3—03) 20, Aoz —ap) (20t +0ts+a6) = (0 + 003+ 05— t5) > (1.4)

~ For the purposes of this note it is convenient to introduce a new variable Q; termed the
rotational velocity and defined by

Qi =¢udiw, w;=¢6;;Q;d; (1.5)
where ¢;; denotes the alternating tensor. Employing (1.5),, we can rewrite (1.2) as
pv; = pF—p +3040, ;;+ {0y did;dp d vy +02(6 Q, d; di + vy nd; dy)

+ 038,k Qp di A+ vp 1 i d) + 05 Vg 1y A di+ 06 0 gy di di} (1.6)

and moreover, by multiplying (1.3) by &,;;d; we obtain an equation that does not involve the
director tension 7y, namely,

£1Q;=p, €ijk dj Li— (a3— 0‘2)[91 +€ijx Vpp iy dj dp] —(ag— as)sijk V(p,k) dj dp' (1.7

We shall restrict our attention to classical solutions which are assumed to exist in [0, T)
subject to prescribed initial conditions

v(x,0) = fi(x), d{x,0)=g,(x), w(x,0)=h(x) in Dx0 (1.8)
and, on D x (0, T), prescribed boundary conditions of one of the following types:
U;(X, t) = F,-(X, t)a Fini = 0’ (19)
or, if F;n; #0,
vi(x,0) = F(x,1), dyx,t)=G(x,1), wix,t)=H(x,?), (1.10)
v,-(x, t) = F,-(X, t), di(x: t) = Gi(xr t)’ adi(x’ t) = J,-(X, t)s (1'1 l)

where n; are the Cartesian components of the unit normal to D and 4 is the normal gradient
operator. In what follows we employ the familiar energy arguments to show that the fluid
motion in D is uniquely determined by the initial velocity, director and director velocity
together with one of the sets of boundary conditions (1.9), (1.10) or (1.11).

2. Uniqueness. We shall say that a continuously differentiable pair (v;, d,) is a solution to
problem & if it satisfies the equations (1.1)~(1.3), the boundary conditions (1.9)and at ¢t =0
reduces to the conditions (1.8), ,. Furthermore, if (v;, ;) is a solution pair of problem & with
an associated rotational velocity Q, and the pair (v, d¥) a solution corresponding to the same
body forces F; and L; with rotational velocity Q, then it is easily verified that the difference
fields

u=v-v', D=d—df, py=0-0 2.1
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satisfy the equations

pus = —pojty ;—pviuy—(p—pi) +ioaguy i +oy A

+a2Bij,j+a3Bﬂ’j+a5 Cu,j+a6Cﬂ’j (2.2)
and
PiBiys= ~P1V;;— Py Q:j u;
— (o3 — o)1ty — &3 Ugp, jy i A — 813 V55, jy (Di dp+ D, di)]
: + (s —as)&iju Up,jy Ak dp+&1ju Vp, jy(Did,+ D, di5)], (2.3)
where

A,‘j = u(k'p) d‘ dJ dk dp+ v&,p)(Di d.l dk dP+D.I dk dp d‘*"l'Dk dpd;*dl*‘l"Dpd;*dj‘dk*)’
By; = &y pdjdit 81 Qp (D dy+ Dy d) + tipy iy d dy + vy 1y(D; dy+ Dy d}),
Cij = gy d; dp+ 0l o(D;dy+ D, dP),

and a comma followed by a ¢ indicates ‘partial differentiation with respect to time, holding the
spatial variable fixed. Moreover, from the definitions (1.5) and (2.1), we deduce

DiDi.l=8ijkujDidk_DiDi,j _,—D,ujd:r (2.4)
We are now in a position to establish the

THEOREM. If the coefficients o, (i = 1,2,...,6) satisfy (1.4) but with the strict inequality
holding for (1.4), , 3, then there is at most one solution of the initial value problem ..

We first introduce the function F(t) defined by

F(1) = L (pu;uy+py i+ D, D)) dx,

where the symbol D, indicates that the integral is to be taken over the region D at time ¢.
Differentiation using the boundary conditions (1.9) yields

F'(n=2 jo (pu;tt;+py py i+ Dy Dy ) dx.

Consequently, on using the equations (2.2)~(2.4) and integrating by parts, we obtain
F'()y= —ZID {pu,u; ey 3 jug oy ug Ao u  Btasu jBytasu; ;Cy;

+agu;; Cit py iyt QF+ (ot — o)t — 83 gy, 51— & vy i(Dudp+ D, d)]

—(otg—s); &julup,jy Ak dp+ 005, (D dp+ D, dif)]+Dyu; df+ 6,5 iy Dy dj} dx.
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Rearranging the terms, we can write
F'(t) = —ZID {pu,ujv(‘;,j)+p1 ﬂ‘ujQ:j"'ujD‘d:j'*‘EUkllkD‘dj
+a1 u;,jva,,p)(D‘djdkdp+ DJ dkdpd,*+Dkdpd‘*d;+Dpdi*d;dk‘)
+ap 4y J(Qp i+ Ok, )(D; di+ D, d;) oz (Qp e+ 00,i) (D dy+ Dy d)
+ as uu v(*k,l)(Dj dk + Dk d;) + as ui'j v:‘,"j)(D, dk+ Dk ? )
+ (o3 —az), Ua,j] &;p(D; dy+ Dy dh)+(as— as)i, v:u) &;p(Dydy+ D, d’)

+(23—ag)p p;dyd;} dx—20, (2.5
where
+(a2 + a3 +a6 - a5)u(,,1) di Nj'*‘ (d3 _az)Ni N‘} dx
and

N; = g p, dy+ug ndy.

We then proceed to obtain estimates for the terms in the braces on the right hand side of
(2.5). We let M be the generic notation for an upper bound and note that, although the
number M will differ for every estimate, nevertheless it is always possible to determine its size.
We employ weighted arithmetic-geometric mean and Schwarz’s inequalities to obtain

F@H < —2Q+f

D¢

2
{M(ut u+pu i+ D D)+ qu “:.J} dx.

Here A is an arbitrary positive constant which is to be prescribed, while M depends on 4 and
the bounds of Q and the spatial derivatives of v, d*, Q during [0, T].

Now, since o, is assumed strictly positive, we can choose a value of 4 such that

oy = 04—

A

is nonnegative. Moreover, if the inequalities (1.4) hold with «}, replacing a,, then we can show
that (see [2], (5.8))

1
Q—_J\ uuu‘jdx
A )b, '

is nonnegative. Consequently, if we restrict ourselves to those materials for which the in-
equalities (1.4), , 5 hold strictly, we can deduce that

F'(t) £ MF(1).
Thus, by integrating from ¢ = 0 to ¢ = T using the initial conditions, we conclude that

F(T)exp(—MT) < 0.
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It follows that F(z) is zero for all te[0, T} and thus u; = u; = D, = 0, so that the two flows are
identical. Moreover, since T is an arbitrary instant, we can conclude that the flows are
identical as long as they exist.

We remark that, in the preceding proof, the boundary condition (1.9), enabled us to show
that the surface integrals

j oy py dX, I n;v; D, D, dx (2.6)
oD, oD,

are zero. Clearly these integrals will also vanish with boundary data (1.10). Moreover, given
any surface, we can express the director velocity w, over the surface in terms of the surface
gradient operator d; and the normal gradient operator 0, thus:

W, = d,',+vjajdi+vjnjadi,

where #, is the unit normal to the surface, so that under data (1.11) the integrals (2.6) will again
vanish. Consequently the corresponding uniqueness theorems for data (1.10) and (1.11)
replacing (1.9) can be established.
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