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ON A CONGRUENCE RELATED TO CHARACTER SUMS

BY
J. H. H. CHALK

In memory of my late colleague R. A. Smith

ABSTRACT. If x is a Dirichlet character to a prime-power modulus p*,
then the problem of estimating an incomplete character sum of the form
21 <c=n X(x) by the method of D. A. Burgess leads to a consideration of
congruences of the type

f(x)g' (x) = f(x)g(x) = 0(p*),

where fg(x) # 0(p) and f, g are monic polynomials of equal degree with
coefficients in Z. Here, a characterization of the solution-set for cubics is
given in terms of explicit arithmetic progressions.

1. Introduction and notation. Let p"(p > 3 prime, n = 2) be a fixed prime-power,
congruences to the modulus m will be denoted by (m) and ord, m will signify the integer
v for which p*|m, p**'fm. The symbol [[x]] for x € R will denote the least integer =
x, i.e., [[x]] = —[—x]. Letf, g denote monic polynomials in Z[X] of equal degree r
say, and suppose that they satisfy the mild restriction, modulo p":

1 lf(X) + mg(X)#0, (p")

for all pairs (I, m) € Z* with (I, m) # (0,0), (p). Let

() J(f,8:X) = f(X)g'(X) = f(X)g(X).

Then J is a combinative invariant of the pencil f + Ag with the properties
3) J(f+ Xg,8X)=J(f8X)

C)) J'(f,8:X) = f(X)g"(X) — f"(X)g(X).

Let

%) S.(f.8) ={x € Z:fg(x) # 0(p), J(f,8,x)=0(p"}

Our purpose is to identify and classify the elements of S,(f, g) and, after some prepa-
ratory material on certain invariants of the pencil f + Ag, this is presented in the
theorem for the case r = 3 (cf. §3)..Apart from elements derivable by reduction (p")
from such roots of J (f, g,x) = 0 as lie in Z,, the remaining elements of S,(f, g) form
a set which is a union of at most 4 arithmetic progressions. Congruences of the type
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in (5) have acquired significance in the problem of estimating incomplete character
sums of the type == X(x), where x is a (primitive) character to a prime-power
modulus p*. The methods of Davenport-Erdos [2] and of Burgess [1] lead directly to
a consideration of sums of the form (cf. [1], Lemma 2):

a(p) =p 2 xlf/gW], (y=ia)
1=x<pY
J(f,8.0=0(p*" "
f8(x)#0(p)

and, by the theorem (r = 3), it is now possible, for example, to give precise estimates
for the number of terms in such sums. It may be remarked that while previous work on
general polynomial congruences (cf. [3], for references) is effective for the case r =
2 (cf. [2]) it is difficult to apply for r = 3.

2. Invariants of the pencil f + Ag.
DEFINITION. Let
(©) p=p(f,8) = ord,[f(X) — g(X)]
Then, by (1),
7 O=p<n
and, from the definition of J (f, g,X),
(®) J(f,8X)=J'(f8X)=0 (p*).

We assume henceforth that

) S.(f.8) + ©.

Then it follows that there is a t € Z with fg(t) # 0(p) for which

(10) f(0) + Ag() = f'(1) + Ng'(1) = 0(p"),

where (\,p) = 1 and

(11 -\ =f/g(n), (M.

By Taylor’s theorem, applied to f(X) + Ag(X), we have

(12) FX) +Ng(X) =uX — o[wX — 1) + v], (p")

where u = u(t), w = w(t), v = v(z) are constants depending on the choice of ¢ which

we can suppose, without loss of generality, to satisfy
(13) ged(v,w,p)=1, w=1 if ordw =0 and v =1 if ord,w > 0.

We show firstly that ord,u = . For, if ord,w = O sothatw = 1, then 1 + X = u(p"),
by comparing the coefficients of X* in (12). But by (10), and (6), f(t) + Ag(t) =
(I +Nf@), (p*)andso 1 + N\ =0(p*), u = 0(p*). However, if u = 0(p**"), then
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1+ A=0(p* ") andf(X) + Ag(X) =0(p**"), contrary to the definition of p in (6).
Now, if ord,w > 0 so that v = 1, then again on comparing coefficients of X’ in (12),
we have 1 + A = uw(p"). But then

(14) fX) —gX) =ul-wgX) + wX — ) + X - 1)’], (p")

and now it is clear that ord,(f(X) — g(X)) = ord,u, since the polynomial on the right
of (14) is primitive (p). Next, by means of a transformation ¢t — T of the form

T=t+zp' (z€E2Z),

where [ = [[3m]], m = n — w = 1 and \, u and w are kept fixed, we can ensure that,
if

v =v(t) = ord,v = [[sm]],

then v(T) = ord,v(T) = [[3m]], for a suitable choice of .
Thus, we may suppose that ¢ is chosen initially to satisfy

(15) v =1v(t) = ord, v = [[3m]].
Let
(16) F\(X) = f(X) + Ag(X),

then it suffices to check F,(T) and Fy(T) and note that since v = 1, we have w = 1
and so u = 1 + N(p"), from (12). But

Z3

2
F\(T) = F\(1t) + zp'Fi(1) + %P”F'{(t) *t% pF(1)

2
Z ",
Fi(1) = F{(®) + zp'Fi(1) + 3P2'F'x(t),

since F'(X) = 0 and F"(X) = 6(1 + \). Now,
FY(1) = 2uv(p"), by (12)

and so, by (13), either

ord, Fy (1) = p + v(1)
or p + v(¢) = n, ord,Fy(t) = n. Then
a7 F\(T) = FX(T) = 0(p")
if both the inequalities

I+ p+v(@)=n

2l + ord,(1 + N) =n

hold. But

I+p+v@)=[Gml]+p+ml=m+p=n
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m
2] + ord,(1 +)\)_>_21+p,22—2*+p,=n,

and so (17) holds. Now
F{(T) = F}(t) + zp' FY(1)
=2uv(t) + 6zp'u (p")
= 2u[v(r) + 3zp'] (p")
= 2up'lp~'v(r) + 3z] (p")
Thus, withz=1ifv>landz=pifv =1
ord, F{(T) = p + I = p + [[3m]]

and so v(T) = | = [[3m]].

We note, in passing, that we could equally well choose z so that F{(T) = 0(p"), in
which case the pencil f(X) + Ag(X) contains a perfect cube (p"), for (12) becomes
(18) fX)+reX) =0 +MNX-=T) (p"),

whenever v = v(t) = [[3m]].
Henceforth, we shall assume that (12) holds with v chosen so that v = ord, v is
maximal, subject to the condition v < [[3m]].

3. The reduction formulae. By (2) and (5), and writing

19 GO =X = [wX — 1) + v],

(20) S.(f,8) = Su(fi,8) UEL(fi,8),

where

21 Snh,8) ={x €Z: fifgx) #0(p), J(fi,g,x)=0(p"}
and

(22) En(fi,8) ={x€Z: filx) =0(p), fg(x) # (O(p), J(fi,gx)=0(p™)}
Here SX(f,,g) is a modification of S,,(f;, g) for the special case p. = 0, since
(23) Sn(fi,8) = Sy(fi,g) when pn >0,

for \,p) = 1, g(x) = 0(p) = f(x) = —Ng(x) + ufi(x) = 0(p), if p > 0. The
theorem may now be stated in terms of a 2-stage reduction formula:

THEOREM. Let r = 3
(i) There is a v with 0 < v < [[3m]], where m = n — w, for which

S.(f,8) = Sa(fi,8) U A,(v),
where f(X) is as defined in (19) and S*(f,, g) in (21). Further

A0 ={x € Z:x=1t(p™M}, A ([2]) = {x € Z:x = 1(pl"*)}
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and for 0 = v = [[$m]],
An(v) = A,(v) U A, (v),
where
A,(v) ={x€Z:x=1(p" ")}
Arw)={xEZ:x=1t+ vz,z = z(p" )},

and z, is uniquely defined (p™~2*) and satisfies 3z, + 2 = 0(p).
Gi) If SE(fi,g) #* © then either, (a) all solutions of J(f,,g,x) = 0(p™) are
non-singular, or (b) there is a pair (t,, v) with | = v, < v such that
Su(fi,8) = Au(vy).

PROOF OF PART (i) OF THE THEOREM. Observe firstly that, from (22)
Ex(f,8) = En(fi,8),
where
(24) E.(fi,8) ={x €Z:x=1(p), J(fi,8x)=0(p")},
since
J(fi,8,%) = filx) = 0(p) = fi(x) = 0(p), as g(x) # O(p).
Thus x = t(p) and the condition fg(x) ¥ O(p) is redundant as fg(¢) # O(p). Next, we
express J (f, g,X) is alternative forms, using the notation:
(25) filX) = (X — )’L(X), where L(X) =w(X — 1) + v,
J(fi,8,X) = (X = ’L(X)g"(X) — gX)[(X — 1)L’ (x)
+2(X = HL(X)]
(26) =X - 9l(X = nJ(L,gX) - 2L(X)g(X)],
27N =X = n{X - n[J(L,gX) - 2wg(X)] - 2vg(X)}.

From (25), we see that in the case v = 0 the conditions x = ¢(p) and J (f;, g, x) = 0(p™)
imply, by (26), that x = t(p™), since L(¢)g(¢) # 0(p). It remains to consider the cases
where v > 0, when w = 1.

For brevity, we write

(28) Y=X-1

and then, by (27),

29) J(fi,g, Y + 1) =Y{YI(Y) — 2vg(Y + 1)},
where

(30) LY)=( + v)g'(Y + 1) — 3g(Y +1).
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Note that
B y=x-—1=0p)=> Uy = -3 #0(p), gly+ 1 #0(p).
Suppose firstly that v = [[5m]]. Then, by (30) and (31),
y=0(p),J(fi.g,y + 1) =0(p") & [l(y) — vg(y + D} = 0(p")

& ord,y = 3m,

& x = 1(pllm2))
as required. It now remains to consider the case

0<v<im.
Here the conditions on y are
(32) y=0(p), ylyl(y) = 2vg(y + ] =0(p")
and clearly imply that
ord,y = v.

Now, for the set of such y’s with ord,y > v, it is necessary and sufficient that
ord,y = m — v,x = t(p""). For the remaining set of y’s, we have

ord,y = v,
and this requires more detailed consideration. On putting
(33) Y=vZ
our conditions become
(34) z# 0(p), J(fi,g,t+ vz)=0(p™).
But, with X =t + vZ,
LX) = vN(Z’ + Z%) = v’ fo(Z), say

and
fiX) = viizyv = v fi(2)
gX) = g() + g'(OVZ + 38" (1)V’Z + 38" ()V’Z°
= £(Z) say,
gX) =g@yv "
Thus

J(f1,8,X) = V' H(2Z)v'8:(2) — v fi(2)8:(2)
= v (£, 8,.2).

and our conditions (34) take the form
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(35) z#=0(p), J(f,8,2) =0p" ™).
Now
J(f>,8,2) = Z[Z(Z + 1)g:(Z) — (3Z + 2):(2)],

where g;(Z) = 0(p”) and g,(Z) = g(¢) # 0(p) identically in Z.
Thus (35) becomes the single condition

(36) F(z) =0 (p"™),
where
F(Z) = Z2(Z + )gi(Z) — (3Z + 2)g:(2).
But
F(Z)=-(3Z+2)gn, F'(2)=-30)#0 (p)

and so (36) has just one solution z = z,(p"~?"), where 3z, + 2 = 0 (p).

This completes the proof of part (i) of the theorem. For part (ii), we shall need the
following lemma to obtain the inequality v, = v in a second application of the reduction
formula of part (i).

LEMMA. Suppose that

(37 FX) + A g(X) = ufi(X), (p")
with (\,p) = 1 and f,(X) of the form in (19). If
Sn(fi.8) #¢
there is a t, # t(p) such that
(38) g(X) + M Ai(X) = ugi(X), (p"),m = n — ,
where
(39) \i,p) =1, fifg() # 0(p)
and
(40) gX) =X — 1)l [wi(X — 1) + v]
with

1 ged(vi,wy,p), w; =1 if ord,w; = 0 and v, = 1 if ord,w; > 0.

Moreover,

42) FOO+ N+ N we) =N ungi (X0, (")
where

43) w =ord,u; =0, N+ ANluE 0(p), vi=ord,v, =v.
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PrOOF. From the definition of S¥( f,, g) in (21), it is clear that there is a ¢, # t(p)
which satisfies (38), (39), (40) and (41). Now (42) is obtained from (37) and (38) by
multiplying (38) by u)\[' and substituting u)\l_'(ulg,(x) — g(x)) for uf,(x) in (37).
Note that, if A + \;'u = 0(p), then

fFX) =\ uugi(X) (p), by (42),

which is impossible since g,(t;) = 0(p), f(#;) # O(p). Hence A + AN uE 0(p). Now,
if ord,u; > 0, then, by (42)

fXO)+ N+ N'weX) =00p*""

and (by comparing coefficients of X*) A + \,'u = —1(p**"), which implies that
f(X) = g(X) (p**"), contrary to the definition of . Hence ord,u; = 0. Since the
choice of ¢ was taken so that v = ord,v < [[3m]] was maximal, it follows from (42)
that v, = ord, v, = v. This completes the proof of the lemma.

PROOF OF PART (ii) OF THE THEOREM. Suppose that S¥(f;,g) # ©; then there is a
t; # t(p) such that f, fg(¢,) # 0(p) and

g(t) + Mfi(y) = g' (1) + N fily) = 0(p™),
where (A, p) = 1. Then, by Taylor’s theorem applied to g(X) + \, fi(X), we have
g(X) + MAX) = wgi(X) (p"),

where g,(X) satisfies (40) and (41) of the lemma. Suppose first that, for all such choices
of t;, J'(fi,8,t;) # 0(p). Then all solutions of J (fi, g,x) = 0(p™) are non-singular
and SE(fi,g) =degJ(fi,g,X) =<4, as required. If this is not the case, we may choose
t; as above and satisfy the further condition

44) g"(t) + N fi(n) = 0(p)
since
J'(fi,g, ) =J'(fi,g + Mifit) = 0(p),

implies (44), as f,(#;) # 0(p) and g(t,) + \, fi(z;,) = 0(p™), (cf. (4)). But by (38) and
(40) of the lemma,

g"(n) + Nifi(n) = 2uv, (p)
whence
495) v=vy =ord,v, = 1.
We can now prove that S,,(f;,g,) = ©. For

J(fi,8,X)=3{X - 0’X — 1) — (X — t)'(X — 1)’} (p)
=3(4 — DX — 1)'(X — 1) (p),

where
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) =& =0’ #0(p), gx) =x—1)*0@p)
by (45). Now, if w # 0, S¥( f,,8) = S, (f1, &) and the reduction formula of part (i) can
be applied again to give
S::(fl»g) = S:(,fl’gl) U A,,,(V|)

and since S,f(f,,g,) C S.(fi,8) = @, the proof is complete. For the case p = 0, we
give a direct verification, using the formula

Sn(fi,8) = Su(fi,8) U EL(fi, &),
where
Sn(fi,8) ={x €Z:fgfigi(x) #0(p), J(fi,8,x)=0(p™}
E.(fi.8) ={x €Z:8(x) =0(p), fgfi(x) #0(p), J(fi,8,x)=0(p™M}
Clearly, S, (fi,g) C S.(fi,8) = @, and
E,(fi,8) ={xE€Z:x=1t(p), J(fi,g,x)=0(p"}
since
J(fi,8,%) = g(x) =0(p), fi(x) # 0(p) > gi(x) = 0(p) > x = t(p)
Thus the condition fg f,(x) # 0(p) in E,(f,, &) is redundant and we obtain
E.(fi,8) = E.(fi,8) = A,(v)),

as required.
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