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SOME RESULTS IN THE THEORY OF FIBRATIONS 

BY 

RENZO A. PICCININI(1) 

§0. Introduction. I wish to present here some of the results of a research in 
the Theory of Fibrations initiated some time ago by Peter Booth, Philip 
Heath, and myself. The philosophy behind the work is to approach certain 
aspects of the Theory of Fibrations in a unified way through the systematic use 
of the sections of suitable fibrations; this yields general theorems, of which 
some well-known results are eventually particular cases. 

In the first paragraph a useful functor—the Section Functor—is discussed; 
more precisely, if p:E-*B is a Hurewicz fibration, there exists a covariant 
functor from a certain full subcategory of the fundamental groupoid of E into 
the category of sets. The construction of this functor is explained in detail 
in [7]. 

The second paragraph deals with some applications of the Section Functor; 
for example, if X, Y are based topological spaces with base points X and Y 
respectively, if [X, x; Y, y]# is the set of all base-homotopy classes of maps 
from X to Y taking x into y, if À is a path from x to x' in X, /LL is a path from y 
to y' in Y, then under suitable conditions on x and x', there is a bijection 
[X, x; Y, y]* = [X, x'; Y, y']#. This generalizes the non-relative version of [23, 
7.3.3] which considers change of base point in just the second variable and, of 
course, change of base points in homotopy groups. The material of this 
paragraph is contained in [8]. 

The topic of the last part of the paper is the characterization of Universal 
F-fibrations in the sense of Allaud-Dold, where F is a fixed ground fibre; the 
results here presented will concern a forthcoming joint paper. 

A few words about notation: I indicate with Top, Top*, and Set respectively, 
the category of topological spaces and continuous functions (maps), the categ
ory of based topological spaces and based maps and, the category of sets and 
functions. Also, if K is any category, the family of objects of K will be 
denoted by obj K; if X, Y G Obj K, K(X, Y) stands for the set of morphisms of 
K from X to Y 

No proofs are given; the definitions needed can be found either in the test or 
in a suggested reference. 
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§1. The section functor. Let E and B be topological spaces. A map p:E-> 
JB is called a (Hurewicz) fibraiion if, for every XeObj Top and every com
mutative diagram 

X x { 0 } - ^ E 
0 I 

Xxl > B 
H 

(I is the unit interval [0,1]) there is a map H':XxI-*E such that H'\Xx 
{0} = h and pH' - H. For example, given any two topological spaces X and Y, 
the projections prx:XxY-+X and pr2:XxY->X on the first and second 
factors respectively, are fibrations. Other simple examples are provided by 
pullbacks of a fibration and a map; more precisely, if p:E—>B is a fibration 
and f:A-*B is a map, the universal property of pullbacks shows that pf: A n 
E = {(a, e) e A x E \ f(a) = p(e)}—» A, (a, e)-» a, is a fibration. 

A section of a fibration p:E-*B is a map s:B—»E such that ps = lB. In 
what follows, sec p denotes the set of all sections of p (may be 0 ) ; if the work 
is done within the category Top* and eeE, p(e) = beB are the base points, 
sece p will stand for the set of all based sections of p. At a first glance, there are 
clearly two kinds of homotopies in sec p; the homotopies in the usual sense, 
which we call free homotopies, and the vertical homotopies, that is, those which 
at each stage are sections of p. Actually, as demonstrated by James and 
Thomas [16], these two coincide: s, s'esec p are vertically homotopic if, and 
only if, they are free-homotopic. With this in mind, call [sec p] the set of all 
free (equivalently, vertical) homotopy classes of sections of p. In the presence 
of base points, namely in secc p, we can have four kinds of homotopies: free, 
vertical, based and vertical-based homotopies; precisely, 5, s'esecep are base-
homotopic if there exists a homotopy H:s — s' such that Ht(b) = e for every 
tel; if, in addition, H t€seccp for every tel, s and s' are vertically-based 
homotopic. Of course, it would be interesting to know when two sections 
s,sfe sece p are equivalent in the four senses described; we shall see later how to 
answer this question. For the moment we shall content ourselves with the 
following. Suppose that b = p(e) is an admissible point of B, that is to say, such 
that {b} is closed in B and the inclusion {i}cfi is a cofibration;a) then, 
mimicking the corresponding result of [16], one shows that s, s'esecep are 
vertically-based homotopic if, and only if, they are based-homotopic. Thus, for 

(1)A map g:X-+Y is a cofibration if, given any Z€ Obj Top and maps H:Xx/-»Z, 
h : Y-+Z such that H|Xx{0}= h ° gx l|X'x{6}, there exists H' : Yx / -»Z such that H'\ Yx{0} = 
h and H = H ' ° g x l . A detailed account of the properties of fibrations and cofibrations can be 
found in [11]. 
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any e G JE with b = p(e) admissible, let [seccp] be set of all based (equivalently, 
vertically-based) homotopy classes of sections of p which take b into e. 

The reader is now reminded that a groupoid is a small category whose 
morphisms are invertible [10]. As an example, recall the fundamental groupoid 
TTE of a topological space E. The objects of TTE are the points of E; its 
morphisms are constructed as follows. If À, A' are paths from e to e' in E, that 
is to say, A, A' are maps from I into E such that A(0) = A'(0) = e, A(l) = A'(l) = 
e\ A and A' are said to be homotopic rel e, e' if there is a map H : Jx J-» E such 
that H( , 0) = A, H( , 1) = A', H(0, t) = e, H(l, t) = e', for every r G /. Then the 
morphisms from e to e' in TTE are the homotopy classes rel e, e' of paths with 
end points e and e'. 

In what follows, IT E will denote the full subgroupoid of TTE of classes (rel 
end-points) of paths with end-points over admissible points of B. Let me take 
the occasion to observe that admissible points are not so uncommon in nature; 
for instance, every point of a CW-complex is admissible [18]. Also notice that 
if B is locally equiconnected (for example, if B is a CW-complex [15, II.2]) 
then TT\E = TTE [15, II.3 and II.8]. 

Let [A] G 7r'E be a path class from e to e'; because the inclusion of b' = p(e') 
in B is a cofibration, it is possible to construct a homotopy G :B x I-+B such 
that G( ,0)=1 B and G(b', t) = p\(l-1) for each tel Now, for any given 
5 G sece p, set up a commutative diagram 

Bx{0}u{b'}xj s G ( > 1 ) u x)£ 
p I 

p 

J5XJ >B 
G 1 

where G_1(JC, 0= G(JC, l-t) for all JCGE and all tel From [25, Theo. 4], we 
obtain a map H:J3xI->E which extends sG( , 1)U A and is such that pH = 
G_1. Set s' = H( ,1):JB-»E; it is easy to show that s'e seccp. Now, in [7, 
Lemma] we have proved that the association [s]—»[s']—where [s], [s'] are the 
base-homotopy classes of s, s'—is independent of A within its path-class and of 
5 within its base homotopy class in [secep]. In other words, if [AJGTT'E is a 
path-class from e to e\ there is a function A#:[sec€p]-»[secep] such that 
^#t5] = [s']. Notice that for the construction of s\ the hypothesis that b = p(e) 
is admissible was not used; however, all the properties of ir'E will be needed 
to prove the following. 

(1.1) THEOREM. For any fibration p:E-*B there is a covariant functor 

y-.TT'E-tSet 
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—the Section Functor—which assigns to each object e of TTE the set [sece p] and 
to each morphism [X]£TT'E the function (bijection) A# [7, Theorem], 

For a fixed e e O b j ir'E, let F = {xeE \ p(x) = p(e)} be the fibre of p which 
contains e; if secc p # 0 , the exact homotopy sequence of p shows that Trt(F, e) 
can be viewed as a subgroup of 7Ti(E, e). Hence, there is a well-defined 
function 

ITI(F, e) x [secc p]-> [secc p] 

which takes every pair ([A], [s])e TT\(F, e)x[sec cp] into A#[s]. The following 
corollary is a consequence of (1.1). 

(1.2) COROLLARY. Given that e e O b j u'E and seCeP^ 0, then: 
1) the function TT^F, e) x [sece p]-> [sece p] as defined before is a left-action ; 
2) if s, s G sece p, s is homotopic to s in the vertical (or, equivalently, free) sense 

if, and only if, there exists [A] G TTI(F, e) such that A#[s] = [s]. 

The proofs for the following group of results can be found in [8]; the reader 
is advised that in all of them, e is a fixed object of TT'E and F is the fibre of p 
which contains e. The first result gives the precise relationship between free 
and based homotopy classes of sections of p. 

(1.3) PROPOSITION. The following are equivalent: 

1) the obvious function [secep]-*[secp] is an injection; 
2) if s, se sece p, the statements that s and s are homotopic in each of the four 

senses described earlier are equivalent; 
3) the action of TT^F, e) on [seccp] is trivial. 

(1.4) PROPOSITION. For every s G seep, there is sGseccp which is free-
homotopic to s if, and only if, s(b) and e lie in the same path-component ofF. 

(1.5) PROPOSITION. If F is path-connected, [secep]—>[secp] is a surjection; if 
furthermore, for every e'eF, secc' p ^ 0 , the condition is also sufficient. 

Combining (1.3) and (1.5) we obtain 

(1.6) PROPOSITION. If F is path-connected, there is a bijection between [seep] 
and the set [secc p]/7Ti(F, e) of the orbits of [secc p] under the action of TT\{F, e). 
{Clearly, if F is simply-connected, [secp] = [secep]). 

§2. Applications of the Section Functor. Let Y be a topological space and let 
li be a path in Y connecting the points y and y'. It is well-known that fi 
induces an isomorphism of homotopy groups JA* :7rn(Y, y) = 7rn(Y, y'), for 
every rc>0. Ignoring the algebraic structure involved, this result has a very 
easy generalization: let X be a topological space and let xeX be a non-
degenerate base point of X (that is to say, the inclusion {JC}<=X is a cofibra-
tion); then, JLL induces a bijection JU,*:[X, x; Y, y]* = [X, x; Y, y']* (see [23, 
7.3.3]). Notice that the base point of X was kept fixed; it would be interesting 
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to know how the change of base point in both X and Y affects the set 
[X, x; Y, y]*. The study of this problem fits nicely in the context of the work 
developed in §1; as we shall see, its solution is very simple. 

Let us begin by observing that [X, x; Y, y]* = [sec(x>y)pr2], where 
pr2:Xx Y-» Y is the projection on the second factor. Next, the reader should 
notice that for the trivial fibration pr2, Theorem 4 of [25], used in the 
construction of the Section Functor, can be proved under the hypothesis that 
the inclusion A <= X is a cofibration and without requiring A to be closed in X 
(Str0m's notation). This, together with the fact that ir(Xx Y) = TTXX TTY, 

shows that the Section Functor associated to the fibration pr2 becomes a 
functor from the category 7r*Xx 7TY to Set, where 7r*X is the full subcategory 
of 7rX whose objects are the non-degenerate (not necessarily closed) points of 
X; for every (x, y) e ?r*X x TT Y, ${x, y) = [X, x ; Y, y]*. 

(2.1) PROPOSITION. Let x,x'eX and y,y'eY be given with x and x' non-
degenerate. Any pair of paths A from xtox' in X and (x from y toy' in Y induces a 
bijection (A, jx)# : [X, x ; Y, y]* = [X, x'; Y, y']*. 

Since the fibre ofpr2 which contains y is Y, one can expect the fundamental group of 
Y to act on [X, x; Y, y]*, // x is non-degenerate. In-fact, 

(2.2) PROPOSITION. Let xeX and ye Y be given, with x non-degenerate. 
Then, 

1) there is a left-action of TTI(Y, y) on [X, x; Y, y]* which takes each pair 
([vl[f])€Tri(Y, y)x[X, x; Y, y]* into (Ax, |>]) #[ / ] , where Ax is the constant 
path at x in X; 

2) two maps f. f from (X, x) into ( Y, y) are homotopic if, and only if, there is 
[fi]e ir^Y, y) such that (Ax, [^])#[/] = [/]. 

The next result is obtained applying (1.3) to the fibration pr2. 

(2.3) PROPOSITION. If xeX is non-degenerate, the following statements are 
equivalent: 

1) the function [X, x; Y, y]*-*[X, Y] (= set of all free homotopy classes of 
maps from X to Y) is an injection; 

2) iff, fe Top* ((X, x), ( Y, y)) the assertion that there is a homotopy from f to 
f is equivalent to the assertion that there is a base-homotopy from f to f; 

3) the action of 7Ti(Y, y) on [X, x; Y, y]# is trivial. 

As in (1.5) we see that if Y is path connected and x eX is non-degenerate, 
[X, x; Y, y]#-»[X, Y] is a surjection; we also have, as a trivial particularization 
of (1.6), the following result of Dold [14, 4.10]: 

(2.4) PROPOSITION. If Y is path-connected and xeX is non-degenerate, there 
is a bijection [X, Y] = [X, x; Y, y]/7Ti(Y, y). 

5 
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Recall that a lifting of a map f:A-*B over a fibration p:E-*B is a map 
g:A-*E such that pg = /. Let L(/, p) be the set of all liftings of / over p ; it is 
easy to see that L(f,p) = secp/, where Pf.A HE-*A is the fibration induced 
from p by /. If a e A, e e E are base-points and L(f,a; p, e) are the liftings of / 
over p which take a into e, then L(/, a; p, e) = sec(a>C) P/. Two liftings 
g, geL(f, p) are said to be vertically homotopic if there is a homotopy H:g = g 
such that HteL(f,p) for each f€ l . Denote the set of all vertical homotopy 
classes of liftings of / over p by L[f,p] and the set of all vertically-based 
homotopy classes of liftings in L(f, a;p,e) by L[f, a; p, e]; then, identify L[f, p] 
with [sec pf] and L[/, a;p,e] with [sec(a,e) P/]. It should be pointed out that in 
spite of the close relationship between liftings and sections of a convenient 
fibration, the generalizations: 

1) free homotopic liftings are vertically homotopic, and 
2) based homotopic liftings are vertically based homotopic, do not seem to 

hold. In the latter instance this applies even if a is admissible. 
Theorem (1.1) applied to liftings shows easily that if (a, e), (a', e')e AHE, 

with a, a' admissible, then for every path h from a to a' in A and every path k 
from e to e' in E such that pk = fh, there is a bijection {h, k)#:L[f, a;p,e] = 
L[f, a'; p, e']. It should also be noticed that for any pair (a, e) as before, if F is 
the fibre of p (or of pf) over /(a) (respectively, a) and if sec (ac)p /y

é 0 , the 
fundamental group ^ ( F , e) acts on L[/, a; p, e]; furthermore, 

(2.5) PROPOSITION. The following conditions are equivalent: 
1) the obvious function L[f, a; p, e]—»L[/, p] I'S an injection: ' 
2) i/ g, g L[/, a;p,e] then g and g are vertically-homotopic if and only if, 

they are vertically-based homotopic; 
3) the action of TTI(F, e) on L[/, a;p,e] is trivial 

(2.6) PROPOSITION. If F is path-connected, L[f, a; p, e]-*L[f, p] is surjective; 
furthermore, there is a bijection L[f, p] = L[f, a; p, e]/7Ti(F, e). 

§3. Universal grounded fibrations. Let F be a fixed topological space; a 
grounded fibration with fibre F, or F-fibration, is a sequence of topological 
spaces and maps 

F - ^ ^ p ~ 1 ( * ) c - > F ^ ^ B 

such that: 
1) B is a based, path-connected CW-complex with base point *; 
2) p is a fibration; 
3) g is a homotopy-equivalence. Denote this fibration by £ = (p, g). 
Let & = (pi, gi) and £2

 = (P2, g2) be F-fibrations; a morphism £ i —* Ç2 is a pair * 
(a, 0), a:E1->E2,0 : B i - * B2 , such that |3pi = p2a anda/prH*) ° gi ~ g2. Clearly 
a | pïl( * ) is a homotopy equivalence; furthermore, if # i = B2 and |3 is the identity 
function, a will be a homotopy equivalence [13, 6.3]. Because a takes p^ib) 
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into P2 l(b)—the fibers over b of px and p2, respectively—for every beB,a is called 
a fiber homotopy equivalence. Let tFB be the set(1) of all fiber homotopy 
equivalence classes of F-fibrations over JB. Actually, tF is a contravariant 
functor from the category C* of based, path-connected CW-complexes and 
based maps to the category of sets; each Xe Obj C* is taken into tFX and each 
map / : X—> Y defines a function tF(f) : tFY—> tFX which maps the class {£} of an 
F-fibration £ over Y into the class of the F-fibration over X obtained by taking 
the pullback of p and /. According to [14, 6.5], tF is a half-exact functor; 
furthermore, tF is representable, that is to say, there is an object B^ of C* such 
that tF and [ , ;J3oo,*]* are naturally equivalent [14, 16.7 and 16.8]. Let 
0 : [ , ; Boo, *]*-» tF be the natural equivalence; a representative £» = (P~> &») °f 
0(1BJ is said to be F-universal. The obvious question one should investigate is 
the following: given that £ = (p, g) is an F-fibration, when is it F-universal? G. 
Allaud has taken up this problem in [1] and [2]; in [2] he came up with the 
following result. "Suppose that F is locally compact and let J5(F) be the set 
{/ : F-> EI there is b e B such that imf <= p_1(ft) and / : F-> p~~x(b) is a homotopy 
equivalence} with the compact-open topology. If E(F) is contractible then £ is 
F-universal." Our objective is to obtain a theorem which is more general than 
Allaud's; furthermore, we would like to relate its proof to the study of the 
sections of some suitable fibration. Notice that because we are dealing in part 
with function spaces, it is advisable to work within the realm of a "Convenient 
Category". The study of these categories was pursued by several mathemati
cians (e.g. [5], [9], [12], [24], [26], and [27]); they are full subcategories of Top 
(or Top*) satisfying a certain amount of "convenient" properties. In the words 
of the late N. Steenrod, "the demands which a convenient category should 
satisfy are first that it be large enough to contain all the particular spaces 
arising in practice. Second, it must be closed under standard operations; these 
are the formation of subspaces, product spaces Xx Y, function spaces Y x , . . . . 
Third, the category should be small enough so that certain reasonable propositions 
about the standard operations are true" e.g., an exponential law. An 
example of a convenient category can be obtained as follows. Let H be the 
category of all compact Hausdorff spaces and let E : H -* Top be the imbed
ding functor. Next, take k to be the (left) Kan extension of E along itself(2) and 
define K as the image of Top by k; then, K is convenient [26]. If X, Ye Obj K 
define the product Xx Y as the image by k of the usual product; also, define 
K(X, Y) as fc(Yx), where Yx is the set of all maps from X into Y with the 
compact-open topology. One shows that for every X, Y, Z Obj X, X(Xx 
Y, Z) = X(X, X(Y, Z)) [26, 3.6]. One more comment is in order: the category 
K contains the compactly generated spaces (for their definition see [24]) and 

(1) There is a set-theoretical problem here; for a discussion of this point and generalizations of 
the notion of F-fibration, see [20]. 

(2) For the definition and relevant properties of Kan extensions see [17], [19], and [21]. 
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hence, all CW-complexes. From now on, all spaces and maps considered will 
be objects and morphisms of K. 

(3.1) THEOREM. Let £ be the fibration 

F-r»p-\*)<^-+E-îr>B 

with B a based, path-connected CW-complex. If TTj(EiF)) = 0 for every / >0 (i.e., 
E(F) is weakly-contractible) then £ is F-universal 

We have based the proof of the Theorem above on an ingenious construction 
due to Peter Booth; I refer to the fibered mapping projection of two maps 
p : X-~* JB and q : Y-» B first introduced in [3] for the category of quasitopologi-
cal spaces (see [22]) and then, in [5] for K. Let me explain briefly such a 
construction and quote some of its properties. For a given B eOb'jK, B. 
Hausdorff, let (K 1 B) be the comma-category of objects of K over B [19], 
that is, the category whose objects are morphisms p:X—»JB of K; the morph
isms from p:X->B to q:Y-*B are morphisms g:X->Y in K such that 
qg = p. Given two objects p and q of (K I B) as above, consider for each 
beB, the fibres Xb = p~\b) and Yb = q~1(b); then, take the set (XY) = 
\Jb<=BK(Xb, Yb) and the set-theoretical function (pq):(XY)-*B which maps 
any element F:Xb~* Yb into beB.lt is possible to topologise (XY) so to make 
it an object of K and make (pq)—the fibered mapping projection—a morphism 
of that category [5], [6]. It is easily seen that (K 1 B) is a category with finite 
products: the product of p and q is given by the pullback p r i q r X n Y—>B. 
Clearly, for peOb](K I B) fixed, (p_) and - r i p are endofunctors of 
(K i JB); moreover, - (lp is a left-adjoint ot (p_) [5]. Finally, if p and q are 
Hurewicz fibrations, so are (pq) and q\l p [5, 3.4]. 

With this in mind one can prove the following. 

(3.2) PROPOSITION. Let p:X-*A and q: Y-+B be fibrations, with A and B 
Hausdorff. Consider the fibration p*q:(BxXYxA)->A constructed as the 
composite of the fibrations (1B x pq x 1A) : (B x XY xA)->BxA and pr2 : B x 
A-+A. Then, there is a bijection between the set of all map pairs (h, k) with 
h:X->Y, k:A-*B, qh = kp, and secp*q. 

Theorem (3.1) is then a consequence of (3.2) and 

(3.3) PROPOSITION. Let £ = (p, g) be a grounded fibration with weakly contrac
tible ground fibre; then p has sections, any two sections are homotopic and any 
two based sections (same base) are based-homotopic. 

REMARK. Following [1, IV] one can show that if £ is F-universal, with F of 
the homotopy type of a CW-complex, then JB(F) is weakly contractible; 
moreover, if F is compact, E(F) is contractible. Thus [1] and (3.1) give rise to 
the following characterization of F-universal fibrations: "An F-fibration with 
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ground fibre F of the homotopy type of a CW-complex is F-universal if, and 
only if, 23(F) is weakly contractible." One can avoid entirely [1] and the 
condition that F be of the homotopy type of a CW-complex, by putting the 
notion of F-universality in a slightly more restrictive perspective. To wit, let 
HFF be the homotopy category of grounded F-fibrations over C* and corres
ponding morphisms. We then have that £ is a final object ofHFF if, and only if, 
E(F) is weakly contractible. Here, the crucial point is that if £ = E(p, g) is an 
F-fibration over a sphere Sy, sec*p?* 0 and [sec*p] = irj(F)9 / > 0 . 
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